
Image Compression: JPEG
Multimedia Systems (Module 4 Lesson 1)

Summary:
� JPEG Compression

� DCT
� Quantization
� Zig-Zag Scan
� RLE and DPCM
� Entropy Coding

� JPEG Modes
� Sequential
� Lossless
� Progressive
� Hierarchical

Sources:
� The JPEG website:

http://www.jpeg.org

� My research notes

Why JPEG
� The compression ratio of lossless methods (e.g.,

Huffman, Arithmetic, LZW) is not high enough for
image and video compression.

� JPEG uses transform coding, it is largely based on
the following observations:
� Observation 1: A large majority of useful image contents

change relatively slowly across images, i.e., it is unusual
for intensity values to alter up and down several times in
a small area, for example, within an 8 x 8 image block.
A translation of this fact into the spatial frequency
domain, implies, generally, lower spatial frequency
components contain more information than the high
frequency components which often correspond to less
useful details and noises.

� Observation 2: Experiments suggest that humans are
more immune to loss of higher spatial frequency
components than loss of lower frequency components.

JPEG Coding

Y
I

Q

DPCM

RLC

Entropy
Coding

Header
Tables

Data

Coding
Tables

Quant�
Tables

DCT
f(i, j)

8 x 8

F(u, v)

8 x 8

Quantization
Fq(u, v)

Zig Zag
Scan

Steps Involved:
1. Discrete Cosine

Transform of each 8x8
pixel array
f(x,y) �T F(u,v)

2. Quantization using a
table or using a
constant

3. Zig-Zag scan to exploit
redundancy

4. Differential Pulse Code
Modulation(DPCM) on
the DC component and
Run length Coding of
the AC components

5. Entropy coding
(Huffman) of the final
output

DCT : Discrete Cosine Transform
DCT converts the information contained in a block(8x8) of

pixels from spatial domain to the frequency domain.
� A simple analogy: Consider a unsorted list of 12 numbers

between 0 and 3 -> (2, 3, 1, 2, 2, 0, 1, 1, 0, 1, 0, 0). Consider a
transformation of the list involving two steps (1.) sort the list
(2.) Count the frequency of occurrence of each of the numbers
->(4,4,3,1). : Through this transformation we lost the spatial
information but captured the frequency information.

� There are other transformations which retain the spatial
information. E.g., Fourier transform, DCT etc. Therefore
allowing us to move back and forth between spatial and
frequency domains.

1-D DCT: 1-D Inverese DCT:

�
−

=

+=
1N

0n 16
1)(2nf(n)cos2

α(ω))F(ωπω

[]0p1α(p)
2
1α(0)

≠=

=

�
−

=

+=
1N

0 16
1)(2n)cosF(2

α(ω))(f'
ω

ωπωn

Example and Comparison

0

2 0

4 0

6 0

8 0

0 1 2 3 4 5 6 7

0.40-20-50-52100 44466101036

444661010360.40-20-50-52100

4859514032201224635748403224158

0

2 0

4 0

6 0

8 0

0 1 2 3 4 5 6 7
0

2 0

4 0

6 0

8 0

0 1 2 3 4 5 6 7

DCT FFT

Inverse DCT Inverse FFT

Example Description:
� f(n) is given from n = 0 to 7; (N=8)
� Using DCT(FFT) we compute F(ω) for ω = 0 to 7
� We truncate and use Inverse Transform to compute f�(n)

2-D DCT
� Images are two-dimensional; How do you perform 2-D DCT?

� Two series of 1-D transforms result in a 2-D transform as
demonstrated in the figure below

1-D
Row-
wise

1-D
Column-
wise

8x8 8x8 8x8

j)f(i,

v)F(u,

� F(0,0) is called the DC component and the rest of F(i,j) are called
AC components

2-D Transform Example
� The following example will demonstrate the idea behind a 2-

D transform by using our own cooked up transform: The
transform computes a running cumulative sum.

1

1-D
Row-
wise

1-D
Column-
wise

8x8

8x8

8x8

1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1

64 56 48 40 32 24 16 8
56
48
40
32
24
16
8

49
42
35
28
21
14
7

42
36
30
24
18
12
6

35
30
25
20
15
10
5

28
24
20
16
12
8
4

21
18
15
12
9
6
3

14
12
10
8
6
4
2

7
6
5
4
3
2
1

� =
= 8

nmy (n)f)(F ωωMy Transform:

j)f(i,

v)(u,myF

Note that this is only a hypothetical
transform. Do not confuse this with DCT

Quantization
� Why? -- To reduce number of bits per sample

F�(u,v) = round(F(u,v)/q(u,v))
� Example: 101101 = 45 (6 bits).

Truncate to 4 bits: 1011 = 11. (Compare 11 x 4 =44 against 45)
Truncate to 3 bits: 101 = 5. (Compare 8 x 5 =40 against 45)
Note, that the more bits we truncate the more precision we lose

� Quantization error is the main source of the Lossy
Compression.

� Uniform Quantization:
� q(u,v) is a constant.

� Non-uniform Quantization -- Quantization Tables
� Eye is most sensitive to low frequencies (upper left corner in

frequency matrix), less sensitive to high frequencies (lower right
corner)

� Custom quantization tables can be put in image/scan header.
� JPEG Standard defines two default quantization tables, one

each for luminance and chrominance.

Zig-Zag Scan
� Why? -- to group low frequency coefficients in top of vector

and high frequency coefficients at the bottom
� Maps 8 x 8 matrix to a 1 x 64 vector

8x8

. . .

1x64

DPCM on DC Components
� The DC component value in each 8x8 block is large and varies

across blocks, but is often close to that in the previous block.
� Differential Pulse Code Modulation (DPCM): Encode the

difference between the current and previous 8x8 block.
Remember, smaller number -> fewer bits

45

54

48

32

45

9

-6

12

36 4

.

.

.

.

.

.

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

RLE on AC Components
� The 1x64 vectors have a lot of zeros in them, more so towards

the end of the vector.
� Higher up entries in the vector capture higher frequency (DCT)

components which tend to be capture less of the content.
� Could have been as a result of using a quantization table

� Encode a series of 0s as a (skip,value) pair, where skip is the
number of zeros and value is the next non-zero component.
� Send (0,0) as end-of-block sentinel value.

. . .

1x64

0 0 0 0 0 1 1 0 0 0 0 0

5,1

0 0

7,2

0 . . .2

Entropy Coding: DC Components

---00

�-2047,�, -1024, 1024,� 204711
..
..

0000,�, 0111, 1000,�, 1111-15,�, -8, 8,�, 154
000,�, 011, 100,�111-7,�, -4, 4,�, 73

00,01,10,11-3, -2, 2,32
0,1-1,11

CodeValueSIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a Value is derived from the following table

Size_and_Value Table

Entropy Coding: DC Components (Contd..)

11111110810

1111057
11111068

111046

0020

111111110911

111111079

11035
10134
10033
01132
01031

CodeCode
Length

SIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a SIZE is derived from the following table

Example: If a DC component is 40
and the previous DC
component is 48. The
difference is -8. Therefore it
is coded as:
1010111

0111: The value for representing �8
(see size and value table in

previous slide)
101: The size from the same table

reads 4. The corresponding
code from the table at left is
101.

Huffman Table for DC component SIZE field

Entropy Coding: AC Components
� AC components (range �1023..1023) are coded as (S1,S2 pairs):

� S1: (RunLength/SIZE)
� RunLength: The length of the consecutive zero values [0..15]
� SIZE: The number of bits needed to code the next nonzero AC component�s

value. [0-A]
� (0,0) is the End_Of_Block for the 8x8 block.
� S1 is Huffman coded (see AC code table below)

� S2: (Value)
� Value: Is the value of the AC component.(refer to size_and_value table)

1111111110000011160/A

1111100080/7

1111110110100/8

111100070/6

101040/0

1111111110000010160/9

1101050/5

101140/4

10030/3

0120/2

0020/1

CodeCode
Length

Run/
SIZE

1111111110001000161/A

Such rowsMore� 15/A

1111111110000110161/8

1111111110000111161/9

1111111110000101161/7

110041/1

1111111110000100161/6

11111110110111/5

11111011091/4

111100171/3

1101151/2

CodeCode
Length

Run/
SIZE

Partial Huffman Table for AC Run/Size Pairs

Entropy Coding: Example
Example: Consider encoding the AC components by

arranging them in a zig-zag order -> 12,10, 1, -7
2 0s, -4, 56 zeros

12: read as zero 0s,12: (0/4)12 � 10111100
1011: The code for (0/4 from AC code table)
1100: The code for 12 from the

size_and_Value table.
10: (0/4)10 � 10111010
1: (0/1)1 � 001
-7: (0/3)-7 � 100000
2 0s, -4: (2/3)-4 � 1111110111011

1111110111: The 10-bit code for 2/3
011: representation of �4 from size_and_Value

table.
56 0s: (0,0) � 1010 (Rest of the components are

zeros therefore we simply put the EOB to
signify this fact)

Note: For DC component see slide 13

40 12 0 0 0 0 0 0
10 -7 -4 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

JPEG Modes
Sequential Mode:
� Each image is encoded in a single left-to-right,

top-to-bottom scan.
� The technique we have been discussing so far is an

example of such a mode, also referred to as the Baseline
Sequential Mode.

� It supports only 8-bit images as opposed to 12-bit images
as described before.

JPEG Modes
Lossless Mode:
� Truly lossless
� It is a predictive coding mechanism as opposed to the

baseline mechanism which is based on DCT and
quantization(the source of the loss).

� Here is the simple block diagram of the technique:

Predictive
Difference

Huffman
EnCoder Lossless

Coding

Lossless Mode (Contd..)
Predictive Difference:

� For each pixel a predictor (one of 7 possible) is used that best
predicts the value contained in the pixel as a combination of up
to 3 neighboring pixels.

� The difference between the predicted value and the actual
value (X)contained in the pixel is used as the predictive
difference to represent the pixel.

� The predictor along with the predictive difference are encoded
as the pixel�s content.

� The series of pixel values are encoded using huffman coding

C B
A X

(A+B)/2P7
B + (A-C)/2P6
A + (B-C)/2P5
A+B-CP4
CP3
BP2
AP1
PredictionPredictor Notes:

� The very first pixel in location
(0, 0) will always use itself.

� Pixels at the first row always
use P1,

� Pixels at the first column always
use P2.

� The best (of the 7) predictions
is always chosen for any pixel.

JPEG Modes
Progressive Mode: It allows a coarse version of an

image to be transmitted at a low rate, which is
then progressively improved over subsequent
transmissions.
� Spectral Selection : Send DC component and first few

AC coefficients first, then gradually some more ACs.

Spectral Selection:

First Scan:

Second Scan:
Third Scan:

.

.

Nth Scan:
Image Pixels

Progressive Mode
� Successive Approximation : All the DCT components are

sent few bits at a time: For example, send n1 (say,4) bits
(starting with MSB) of all pixels in the first scan, the next
n2(say 1) bits of all pixels in the second and so on.

Pixels ordered (zig-zag-wise)

First Scan:

Second Scan:

Third Scan:

5th Scan:

7 6 5 4 03 2 1MSB LSB

.

.

. . .

. . .

. . .

. . .

.

.

One Pixel

Hierarchical Mode
� Used primarily to support multiple resolutions of the same

image which can be chosen from depending on the target�s
capabilities.

� The figure here shows a description of how a 3-level
hierarchical encoder/decoder works:

2x2 Encode

Decode

4x4 Encode

Decode

2x2

2x2

+

-

+ +

+ -

L4

L2

L1I
Encode

Decode

Decode

Decode

DecodingEncoding

4x4

2x2

2x2

+

+

I4

I2

I�4

I�2

I�

