### Multimedia Communication <u>Multimedia Systems(Module 5 Lesson 2)</u>

#### Summary:

# Sources:

- Internet Phone Example
  - Making the Best use of Internet's Best-Effort Service.
- Chapter 6 from "Computer Networking: A Top-Down Approach Featuring the Internet", by Kurose and Ross

## Best of Best-Effort: Internet Phone

### The Scenario (Similar to application category 3):

- The speaker generates an audio signal consisting of alternating *talk spurts* and *silent periods*.
- To conserve bandwidth, the application only generates packets during talk spurts. During a talk spurt the sender generates bytes at a rate of 8 Kbytes per second, and every 20 milliseconds the sender gathers bytes into chunks.
  - Number of bytes in a chunk is (20 msecs) (8 Kbytes/sec) = 160 bytes.
  - A special header is attached to each chunk (!Think RTP!).
- The chunk and its header are encapsulated in a UDP segment, and then the UDP datagram is sent into the socket interface. Thus, during a talk spurt, a UDP segment is sent every 20 msec.

## Scenario Figure



### Internet Phone Scenario Contd.

- If each packet makes it to the receiver and has a small constant end-to-end delay, then packets arrive at the receiver periodically every 20 msec during a talk spurt. Ideally, the receiver can simply play back each chunk as soon as it arrives.
- Unfortunately, some packets can be lost and most packets will not have the same end-to-end delay, even in a lightly congested Internet. Therefore, the receiver must take more care in
  - determining when to play back a chunk, and
  - determining what to do with a missing chunk.

## Limitations of Best-Effort Service

#### Packet Loss

- The UDP datagram traverses intermediate routers' buffers/queues.
- An datagram may find that the intermediate router has its queue/buffer full: The router drops the datagram
- Why not use TCP? Retransmissions!!
- Depending on how the audio is coded (maybe with redundancy) we can tolerate losses of 1%-20%.
- End-to-End Delay
  - Transmission processing delay + queuing delay + Propagation delay + end-system processing delay.
  - $\odot$  Acceptable for voice communication:  $\leq$  400 ms.
- Delay Jitter
  - Inter-packet delay at sender is 20 ms. Inter-packet arrival times at receiver may be greater than or less than 20 ms.
  - If the receiver plays as it receives the audio quality suffers.

### A. Removing Jitter at Receiver

Can be done by *combining* the following three mechanisms:

#### Prefacing each chunk with a sequence number

- The sender increments the sequence number by one for each packet it generates.
- Prefacing each chunk with a timestamp
  - The sender stamps each chunk with the time at which the chunk was generated.

#### Delaying playout

- The playout delay must be long enough so that most of the packets are received before their *scheduled* playout times.
- Packets that do not arrive before their scheduled playout times are considered lost.
- The playout delay may be a constant throughout the duration of the conference, or it may vary adaptively during the conference.



 v<sub>i</sub> denote an estimate of the average deviation of the observed network delay from the estimated average delay.

Derive,  $v_i = (1-u) v_{i-1} + u |r_i - t_i - d_i|$ 

The estimates d, and v, are calculated for every packet received, although they are only used to determine the playout point for the first packet in a talkspurt.

### Adaptive Playout Delay Receiver Playout Algorithm: □ If packet *i* is the first packet of a talkspurt, its playout time is: $p_i = t_i + d_i + Kv_i$ Where K is a +ve constant (e.g., K=4). The Kv term is to set the playout time far enough into the future so that only a small fraction of packets in the talkspurt will be lost due to late arrivals. The playout point for any subsequent packet in a talkspurt is given by: $p_i = t_i + q_i$ where, $q_i = p_i - t_i$ , is the length of time from when the first packet of the talkspurt to which paket *j* belongs is generated until it is played out. How do you find out if a packet i is the first packet of a talkspurt? Compare the timestamps of the *i*-1<sup>th</sup> and *i*<sup>th</sup> packet: if $t_i - t_{i-1}$ > 20 ms then the packet is the first in a talkspurt What if one of the packets within a talkspurt is lost? then the timestamp difference between the two packets adjacent to the lost packet may differ by > 20 ms Use the sequence number to detect whether the difference of more than 20 ms is due to a new talkspurt or a lost packet.

## **B.** Recovering from Packet Loss

A packet is lost if either it never arrives at the receiver or it arrives after its scheduled playout time.

Three Approaches:

### □ Forward Error Correction (FEC)

- Idea: Add redundant information to the original packet stream.
- Used in FreePhone and RAT (a MBONE audio conf. tool)

#### Interleaving

 Idea: Interleave (reorder the sequence) the media so that originally adjacent units are separated by a certain distance in the transmitted stream.

#### Receiver-Based Repair

• Idea: Receiver attempts to produce a replacement for a lost packet that is similar to the original.

# <u>FEC</u>

#### Mechanism 1:

- Sends one redundant encoded chunk after every *n* chunks.
- The redundant chunk is obtained by exclusive OR-ing the n original chunks
  - If any one packet of the group of n + 1 packets is lost, the receiver can fully reconstruct the lost packet.
  - If two or more packets in a group are lost, the receiver cannot reconstruct the lost packets.
  - By keeping n + 1, the group size, small, a large fraction of the lost packets can be recovered when loss is not excessive.
  - Smaller the group size, greater the relative increase of the transmission rate of the audio stream. In particular, the transmission rate increases by a factor of 1/n; for example, if n = 3, then the transmission rate increases by 33%.
- This simple scheme increases the playout delay, as the receiver must wait to receive the entire group of packets before it can begin playout.

# <u>FEC</u>

### Mechanism 2:

- Send a lower-resolution audio stream as the redundant information.
  - For example, the sender might create a nominal audio stream and a corresponding low-resolution low-bit rate audio stream. (The nominal stream could be a PCM encoding at 64 Kbps and the lower-quality stream could be a GSM encoding at 13 Kbps.)
- The low-bit-rate stream is referred to as the redundant stream.
- □ The sender constructs the *n*th packet by taking the *n*th chunk from the nominal stream and appending to it the (*n* - 1)st chunk from the redundant stream.

# <u>FEC</u>

### Mechanism 2 (Contd.):

- If there is nonconsecutive packet loss, the receiver can conceal the loss by playing out the low-bit-rate encoded chunk that arrives with the subsequent packet.
- The receiver only has to receive two packets before playback, so that the increased playout delay is small.
- If the low-bit-rate encoding is much less than the nominal encoding, then the marginal increase in the transmission rate will be small.



## Interleaving

Interleaving can mitigate the effect of packet losses. If, for example, units are 5 msec in length and chunks are 20 msec (that is, 4 units per chunk), then the first chunk could contain units 1, 5, 9, 13; the second chunk could contain units 2, 6, 10, 14; and so on.



# Interleaving (Contd.)

- The loss of a single packet (see figure) from an interleaved stream results in multiple small gaps in the reconstructed stream, as opposed to the single large gap that would occur in a non-interleaved stream.
- The obvious disadvantage of interleaving is that it increases latency. This limits its use for interactive applications such as Internet phone, although it can perform well for streaming stored audio.
- A major advantage of interleaving is that it does not increase the bandwidth requirements of a stream.