
M ultim edia Com m unication
M ultim edia System s(M odule 5 Lesson 3)

Summary:
� Beyond B est-Effort

� M otivating Q oS
� Q uality of S ervice (Q oS)
� S cheduling and Po licing

Sources:
� Chapter 6 from

�Com puter N etw ork ing: A
Top-D ow n A pproach
Featuring the Internet�, by
Kurose and Ross

Beyond Best-Effort
In order to take the internet into the realm of supporting

quality of service (QoS) several important architectural
components have been proposed.

To illustrate these proposals we will use the following network:
� Suppose that two application packet flows originate on hosts H1

and H2 on one LAN and are destined for hosts H3 and H4 on
another LAN. The routers on the two LANs are connected by a
1.5 Mbps link. Let's assume the LAN speeds are significantly
higher than 1.5 Mbps, and focus on the output queue of router
R1; it is here that packet delay and packet loss will occur if the
aggregate sending rate of the H1 and H2 exceeds 1.5 Mbps.

H2

H3H1

H4
R1 R2

1.5 Mbps link

R1�s o/p
interface
queue

Scenario 1:
A 1 Mbps Audio App and an FTP transfer
� A 1 Mbps audio application (for example, a CD-quality audio

call) shares the 1.5 Mbps link between R1 and R2 with an FTP
application that is transferring a file from H2 to H4.

� In the best-effort Internet, the audio and FTP packets are
mixed in the output queue at R1 and (typically) transmitted
in a first-in-first-out (FIFO) order.

� A burst of packets from the FTP source could potentially fill
up the queue, causing IP audio packets to be excessively
delayed or lost due to buffer overflow at R1. How should we
solve this potential problem?

H2

H3H1

H4
R1 R2

1.5 M bps link

R1�s o/p
interface
queue

Scenario 1 (Contd.)
� Given that the FTP application does not have time

constraints, our intuition might be to give strict priority to
audio packets at R1.

� Under a strict priority scheduling discipline, an audio packet
in the R1 output buffer would always be transmitted before
any FTP packet in the R1 output buffer.

� The link from R1 to R2 would look like a dedicated link of 1.5
Mbps to the audio traffic, with FTP traffic using the R1-to-
R2 link only when no audio traffic is queued.

� In order for R1 to distinguish between the audio and FTP
packets in its queue, each packet must be marked as
belonging to one of these two "classes" of traffic.

� The Type-of-Service (ToS) field in IPv4 can be used for this

Principle 1: Packet marking allows a router to distinguish
among packets belonging to different classes of traffic.

Scenario 2:
Scenario 1 with high-priority FTP
� Suppose now that the FTP user has purchased "platinum

service" Internet access from its ISP, while the audio user
has purchased cheap, low-budget service.

� Should the cheap user's audio packets be given priority over
FTP packets in this case? Arguably not.

� It would seem more reasonable to distinguish packets on the
basis of the sender's IP address. More generally, we see
that it is necessary for a router to classify packets
according to some criteria.

Principle 1 (modified): Packet classification allows a router to
distinguish among packets belonging to different classes of
traffic.

Scenario 3:
A misbehaving Audio App and an FTP transfer
� Suppose, the router knows it should give priority to packets

from the 1 Mbps audio application.
� Since the outgoing link speed is 1.5 Mbps, even though the

FTP packets receive lower priority, they will still, on average,
receive 0.5 Mbps of transmission service.

� What happens if the audio application starts sending packets
at a rate of 1.5 Mbps or higher (either maliciously or due to
an error in the application)?
� In this case, the FTP packets will starve

� Ideally, one wants a degree of isolation among flows, in
order to protect one flow from another misbehaving flow.

Principle 2: It is desirable to provide a degree of isolation
among traffic flows, so that one flow is not adversely
affected by another misbehaving flow.

Scenario 3 (contd.):
� With strict enforcement of the link-level allocation of

bandwidth, a flow can use only the amount of bandwidth that
has been allocated;

� It cannot utilize bandwidth that is not currently being used
by the other applications.

� It is desirable to use bandwidth as efficiently as possible,
allowing one flow to use another flow's unused bandwidth at
any given point in time.

Principle 3: While providing isolation among flows, it is
desirable to use resources (for example, link bandwidth
and buffers) as efficiently as possible.

Scenario 4:
Two 1 Mbps Audio apps over an overloaded 1.5 Mbps Link
� The combined data rate of the two flows (2 Mbps) exceeds

the link capacity. Even with classification and marking
(Principle 1), isolation of flows (Principle 2), and sharing of
unused bandwidth (Principle 3), of which there is none, this
is clearly a losing proposition.

� Implicit with the need to provide a guaranteed QoS to a
flow is the need for the flow to declare its QoS
requirements. This process of having a flow declare its QoS
requirement, and then having the network either accept the
flow (at the required QoS) or block the flow is referred to
as the call admission process.

Principle 4: A call admission process is needed in which flows
declare their QoS requirements and are then either
admitted to the network (at the required QoS) or blocked
from the network (if the required QoS cannot be provided
by the network).

Providing QoS Support : Summary

QoS for Networked Applications

Packet Classification

Isolation S
cheduling

and Policing

H
igh Resource
U

tilization

Call A
dm

ission

Scheduling and Policing
We have seen the principles (policies) that govern the support

of QoS, now we see mechanisms that accomplish this.
Scheduling Mechanisms (at the link):
� FCFS

FIFO Queue
Abstraction

FIFO Queue
Operation

Scheduling Mechanism 2
� Priority Queueing

Prio. Queue
Operation

Prio. Queue
Abstraction

Scheduling Mechanism 3
� RR and

Weighted Fair
Queuing(WFQ)

RR
Operation

WFQ
� A generalized abstraction of round robin queuing that has

found considerable use in QoS architectures is the so-called
weighted fair queuing (WFQ) discipline

� WFQ differs from round robin in that each class may
receive a differential amount of service in any interval of
time.

� Each class, i, is assigned a weight, wi. During any interval of
time during which there are class i packets to send, class i
will be guaranteed to receive a fraction of service equal to

wi /(Σwj)
� In the worst case, even if all classes have queued packets,

class i will still be guaranteed to receive a fraction wi /(wj)
of the bandwidth.

� Thus, for a link with transmission rate R, class i will always
achieve a throughput of at least R · wi /(Σwj).

Policing
We can identify three important policing criteria, each

differing from the other according to the time scale over
which the packet flow is policed:
� Average rate : The network may wish to limit the long-term

average rate (packets per time interval) at which a flow's
packets can be sent into the network.

� A crucial issue here is the interval of time over which the average
rate will be policed. A flow whose average rate is limited to 100
packets per second is more constrained than a source that is
limited to 6,000 packets per minute, even though both have the
same average rate over a long enough interval of time.

� Peak rate : While the average rate-constraint limits the amount
of traffic that can be sent into the network over a relatively
long period of time, a peak-rate constraint limits the maximum
number of packets that can be sent over a shorter period of
time.

� Burst Size : The network may also wish to limit the maximum
number of packets (the "burst" of packets) that can be sent
into the network over an extremely short interval of time. It
limits the number of packets that can be instantaneously sent into
the network.

Policing: The Leaky Bucket
The leaky bucket mechanism is an abstraction that can be used

to characterize policing limits:
� A leaky bucket (r,b), consists of a bucket that can hold up to

b tokens. Tokens are added to this bucket as follows:
� New tokens, which may potentially be added to the bucket, are

always being generated at a rate of r tokens per second.
� If the bucket is filled with less than b tokens when a token is

generated, the newly generated token is added to the bucket;
otherwise the newly generated token is ignored, and the token
bucket remains full with b tokens.

The Leaky Bucket (Contd.)
How to use the leaky bucket concept in policing?
� Suppose that before a packet is transmitted into the

network, it must first remove a token from the token
bucket.

� If the token bucket is empty, the packet must wait for a
token.

� Let us now consider how this behavior polices a traffic
flow.
� Because there can be at most b tokens in the bucket, the

maximum burst size for a leaky-bucket-policed flow is b
packets.

� The token generation rate is r, therefore, the maximum
number of packets that can enter the network in any interval
of time of length t is rt + b.

� Thus, the token generation rate, r, serves to limit the long-
term average rate at which the packets can enter the
network.

Leaky Bucket + WFQ =>
Provable Maximum Delay in queue

� Consider a router's output that multiplexes n flows, each
policed by a leaky bucket with parameters

(bi, ri) for i = 1, . . . , n, using WFQ scheduling.
� Each flow, i, is guaranteed to receive a share of the link

bandwidth equal to at least R · wi /(Σ wj), where R is the
transmission rate of the link in packets/sec.

Leaky Bucket + WFQ (Contd.)
� Suppose that flow 1's token bucket is initially full. A

burst of b1 packets then arrives to the leaky bucket
policer for flow 1. These packets consume all of the
tokens (without wait) from the leaky bucket and then join
the WFQ waiting area for flow 1.

� Since these b1 packets are served at a rate of at least R ·
w1/(Σ wj) packet/sec., the last of these packets will then
have a maximum delay, dmax, until its transmission is
completed, where:

�
=

j

1
max w/

1
w R

b
d

 ·

� That is, if there are b1 packets in the queue and packets
are being serviced (removed) from the queue at a rate of
at least R · w1/ (Σ wj) packets per second, then the
amount of time until the last packet is transmitted cannot
be more than b1/(R · w1/(Σ wj)).

