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Beyond Best-Effort
In order to take the internet into the realm of supporting 

quality of service (QoS) several important architectural 
components have been proposed. 

To illustrate these proposals we will use the following network:
� Suppose that two application packet flows originate on hosts H1 

and H2 on one LAN and are destined for hosts H3 and H4 on 
another LAN. The routers on the two LANs are connected by a 
1.5 Mbps link. Let's assume the LAN speeds are significantly 
higher than 1.5 Mbps, and focus on the output queue of router 
R1; it is here that packet delay and packet loss will occur if the 
aggregate sending rate of the H1 and H2 exceeds 1.5 Mbps.
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Scenario 1:
A 1 Mbps Audio App and an FTP transfer
� A 1 Mbps audio application (for example, a CD-quality audio 

call) shares the 1.5 Mbps link between R1 and R2 with an FTP 
application that is transferring a file from H2 to H4. 

� In the best-effort Internet, the audio and FTP packets are 
mixed in the output queue at R1 and (typically) transmitted 
in a first-in-first-out (FIFO) order. 

� A burst of packets from the FTP source could potentially fill 
up the queue, causing IP audio packets to be excessively 
delayed or lost due to buffer overflow at R1. How should we 
solve this potential problem?

H2

H3H1

H4
R1 R2

1.5 M bps link

R1�s o/p 
interface
queue

 



Scenario 1 (Contd.)
� Given that the FTP application does not have time 

constraints, our intuition might be to give strict priority to 
audio packets at R1. 

� Under a strict priority scheduling discipline, an audio packet 
in the R1 output buffer would always be transmitted before 
any FTP packet in the R1 output buffer. 

� The link from R1 to R2 would look like a dedicated link of 1.5 
Mbps to the audio traffic, with FTP traffic using the R1-to-
R2 link only when no audio traffic is queued.

� In order for R1 to distinguish between the audio and FTP 
packets in its queue, each packet must be marked as 
belonging to one of these two "classes" of traffic. 

� The Type-of-Service (ToS) field in IPv4 can be used for this

Principle 1: Packet marking allows a router to distinguish 
among packets belonging to different classes of traffic.

 

Scenario 2:
Scenario 1 with high-priority FTP
� Suppose now that the FTP user has purchased "platinum 

service" Internet access from its ISP, while the audio user 
has purchased cheap, low-budget service. 

� Should the cheap user's audio packets be given priority over 
FTP packets in this case? Arguably not. 

� It would seem more reasonable to distinguish packets on the 
basis of the sender's IP address. More generally, we see 
that it is necessary for a router to classify packets 
according to some criteria. 

Principle 1 (modified): Packet classification allows a router to 
distinguish among packets belonging to different classes of 
traffic. 

 

Scenario 3:
A misbehaving Audio App and an FTP transfer
� Suppose, the router knows it should give priority to packets 

from the 1 Mbps audio application. 
� Since the outgoing link speed is 1.5 Mbps, even though the 

FTP packets receive lower priority, they will still, on average,
receive 0.5 Mbps of transmission service. 

� What happens if the audio application starts sending packets 
at a rate of 1.5 Mbps or higher (either maliciously or due to 
an error in the application)? 
� In this case, the FTP packets will starve

� Ideally, one wants a degree of isolation among flows, in 
order to protect one flow from another misbehaving flow. 

Principle 2: It is desirable to provide a degree of isolation 
among traffic flows, so that one flow is not adversely 
affected by another misbehaving flow. 

 



Scenario 3 (contd.):
� With strict enforcement of the link-level allocation of 

bandwidth, a flow can use only the amount of bandwidth that 
has been allocated; 

� It cannot utilize bandwidth that is not currently being used 
by the other applications.

� It is desirable to use bandwidth as efficiently as possible, 
allowing one flow to use another flow's unused bandwidth at 
any given point in time. 

Principle 3: While providing isolation among flows, it is 
desirable to use resources (for example, link bandwidth 
and buffers) as efficiently as possible. 

 

Scenario 4:
Two 1 Mbps Audio apps over an overloaded 1.5 Mbps Link
� The combined data rate of the two flows (2 Mbps) exceeds 

the link capacity. Even with classification and marking 
(Principle 1), isolation of flows (Principle 2), and sharing of 
unused bandwidth (Principle 3), of which there is none, this 
is clearly a losing proposition. 

� Implicit with the need to provide a guaranteed QoS to a 
flow is the need for the flow to declare its QoS
requirements. This process of having a flow declare its QoS
requirement, and then having the network either accept the 
flow (at the required QoS) or block the flow is referred to 
as the call admission process.

Principle 4: A call admission process is needed in which flows 
declare their QoS requirements and are then either 
admitted to the network (at the required QoS) or blocked 
from the network (if the required QoS cannot be provided 
by the network). 
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Scheduling and Policing
We have seen the principles (policies) that govern the support 

of QoS, now we see mechanisms that accomplish this.
Scheduling Mechanisms (at the link):
� FCFS
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Scheduling Mechanism 2
� Priority Queueing
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Scheduling Mechanism 3
� RR and 
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WFQ
� A generalized abstraction of round robin queuing that has 

found considerable use in QoS architectures is the so-called 
weighted fair queuing (WFQ) discipline 

� WFQ differs from round robin in that each class may 
receive a differential amount of service in any interval of 
time. 

� Each class, i, is assigned a weight, wi. During any interval of 
time during which there are class i packets to send, class i
will be guaranteed to receive a fraction of service equal to 

wi /(Σwj)
� In the worst case, even if all classes have queued packets, 

class i will still be guaranteed to receive a fraction wi /( wj) 
of the bandwidth. 

� Thus, for a link with transmission rate R, class i will always 
achieve a throughput of at least R · wi /(Σwj).

 

Policing
We can identify three important policing criteria, each 

differing from the other according to the time scale over 
which the packet flow is policed:
� Average rate : The network may wish to limit the long-term 

average rate (packets per time interval) at which a flow's 
packets can be sent into the network. 

� A crucial issue here is the interval of time over which the average 
rate will be policed. A flow whose average rate is limited to 100 
packets per second is more constrained than a source that is 
limited to 6,000 packets per minute, even though both have the 
same average rate over a long enough interval of time.

� Peak rate : While the average rate-constraint limits the amount 
of traffic that can be sent into the network over a relatively 
long period of time, a peak-rate constraint limits the maximum 
number of packets that can be sent over a shorter period of 
time.

� Burst Size : The network may also wish to limit the maximum 
number of packets (the "burst" of packets) that can be sent 
into the network over an extremely short interval of time. It 
limits the number of packets that can be instantaneously sent into 
the network. 

 

Policing: The Leaky Bucket
The leaky bucket mechanism is an abstraction that can be used 

to characterize policing limits:
� A leaky bucket (r,b), consists of a bucket that can hold up to 

b tokens. Tokens are added to this bucket as follows:
� New tokens, which may potentially be added to the bucket, are 

always being generated at a rate of r tokens per second. 
� If the bucket is filled with less than b tokens when a token is 

generated, the newly generated token is added to the bucket; 
otherwise the newly generated token is ignored, and the token 
bucket remains full with b tokens. 

 



The Leaky Bucket (Contd.)
How to use the leaky bucket concept in policing?
� Suppose that before a packet is transmitted into the 

network, it must first remove a token from the token 
bucket. 

� If the token bucket is empty, the packet must wait for a 
token. 

� Let us now consider how this behavior polices a traffic 
flow. 
� Because there can be at most b tokens in the bucket, the 

maximum burst size for a leaky-bucket-policed flow is b
packets. 

� The token generation rate is r, therefore, the maximum 
number of packets that can enter the network in any interval 
of time of length t is rt + b.

� Thus, the token generation rate, r, serves to limit the long-
term average rate at which the packets can enter the 
network.

 

Leaky Bucket + WFQ => 
Provable Maximum Delay in queue

� Consider a router's output that multiplexes n flows, each 
policed by a leaky bucket with parameters 

(bi, ri)  for i = 1, . . . , n, using WFQ scheduling.
� Each flow, i, is guaranteed to receive a share of the link 

bandwidth equal to at least R · wi /(Σ wj), where R is the 
transmission rate of the link in packets/sec.

 

Leaky Bucket + WFQ (Contd.)
� Suppose that flow 1's token bucket is initially full. A 

burst of b1 packets then arrives to the leaky bucket
policer for flow 1. These packets consume all of the 
tokens (without wait) from the leaky bucket and then join 
the WFQ waiting area for flow 1. 

� Since these b1 packets are served at a rate of at least R ·
w1/(Σ wj) packet/sec., the last of these packets will then 
have a maximum delay, dmax, until its transmission is 
completed, where:
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� That is, if there are b1 packets in the queue and packets 
are being serviced (removed) from the queue at a rate of 
at least R · w1/ (Σ wj) packets per second, then the 
amount of time until the last packet is transmitted cannot 
be more than b1/(R · w1/(Σ wj)).

 
 


