
EE 319K Homework Manual
Univ of Texas at Austin

Instructors: Gerstlauer, Telang, Valvano, Yerraballi
Do not print the entire document; we will be making changes.

Spring 2012 (4/23/12 version)

Homework Schedule
Due Date

Task

01/30/12 Homework 1: Hand Assemble

02/6/12 Homework 2: Assembly Concepts

02/13/12 Homework 3: Signed/Unsigned numbers Arithmetic/Logic
operations (Patt, Chapters 11 and 12)

02/27/12 Homework 4: If-then-else, Loops, and Functions (Patt, Chapter 13
and 14)

03/7/12 Homework 5: Functions and Arrays (Patt, Chapters 14, 16.3)

03/19/12 Homework 6: Practice Exam 2s

03/26/12 Homework 7: Three programs in C using Arrays and parameter-
passing

04/9/12 Homework 8: Metrowerks Introduction

04/23/12 (Monday) Homework 9: Interpolation

04/30/12 Homework 10: Practice Final Exam

Homework 1: Introduction to Embedded
Systems

EE 319K
The University of Texas at Austin

Ramesh Yerraballi
Due: Monday 1/30/12 11:00pm on Blackboard

Instructions:
You may discuss the problem with your fellow classmates but the write up
must be your own. Please use the TAs and the Instructor for help before you
seek out a friend or classmate.

Manually assemble the given program showing the address and machine
code in hex for each instruction. Also, show the corresponding Symbol Table.

DDRH equ $0262 ; Port H Data Direction Register
DDRT equ $0242 ; Port T Data Direction Register
PTH equ $0260 ; Port H I/O Register
PTT equ $0240 ; Port T I/O Register

 org $4000 ; Object code goes in EEPROM
Main ldaa #$FF
 staa DDRT ; Port T is output
 ldaa #$00
 staa DDRH ; Port H is input
 ldab #129
 ldab #-127 ; Are these two instructions the same?
loop ldaa PTH ; Read inputs
 staa PTT ; Set output
 bra loop ; Repeat

 org $FFFE
 fdb Main ; Starting address after a RESET

Also give the printout of the listing (TheList window) when you type and
assemble this program in TExaS.

Do not cheat yourself, FIRST do the assembly by hand and then check it
against the listing from TExaS. If there is a mismatch then review your hand
assembled code to see where you may have gone wrong.

Submit: Upload a word or pdf file with one page of your hand assembled
code and the second page that you cut-and-paste from TExaS listing.

Homework 2: EE 319K
Ramesh Yerraballi

Due: Monday 2/6/12 at 11:00pm on Blackboard

Instructions: Submit your answers electronically online on Blackboard. A
single page (word or pdf document) with your answers will suffice.

Homework 3

Due: Monday 2/13/12 11:00pm on Blackboard

Go to http://codepad.org and try out the following simple C Programs. When
you visit the site you may choose to create an account that will help you
track your work. It is not required to create an account to actually use the
site though.

As I mentioned in the syllabus you should read the later parts of Dr. Patt's
EE306 textbook for help with the basics of C. If you do not have the text or
you are looking for more information, we have a C Primer for you that is
specifically written for Embedded Systems (using Metrowerks) at the
following URL:
 http://users.ece.utexas.edu/~ryerraballi/CPrimer/

The concepts covered there apply to C programming in general but with a
few exceptions like, the lack of input/output library support for functions like
printf, scanf and no support for floating point types.

In this set we will look at declarations, logical operations, flow-control using
conditionals (if-then-else statements). If you are referring to Yale
Patt's book, you may want to read chapters 11, 12 and 13. If you are
referring to the C Primer, you should read chapters 4, 5, and 6.

Exercise 0: The obligatory greeting program.
void main(void)
{
 printf("Hello 9S12");
}

Exercise 1: Numbers - Signed vs. Unsigned, 8-bit vs. 16-bit

In this exercise we will see how to define a 8-bit signed or unsigned number.
Note that we use char as the type, to declare 8-bit numbers in C. To define a
16-bit number we use short as the type.

void main(void)
{
 unsigned char u8bit; // Unsigned 8-bit number
 signed char s8bit; // Signed 8-bit number

 unsigned short u16bit;

 u8bit = 166;

 printf("u8bit as an unsigned number = %u\n",u8bit);
 printf("u8bit in decimal = %d\n",u8bit);
 printf("u8bit in hex = %x\n",u8bit);

 s8bit = u8bit;
 printf("s8bit as a signed number is = %d\n",s8bit);

 u16bit = 0xABCD; // Hex numbers have the 0x prefix
 printf("u16bit is = %d\n",u16bit);

}

printf is a library function you call in C programs to print something out to
the screen. You pass it the string you want to output in quotes with
placeholders for variables inserted where needed. The placeholders must
have the format %d (for decimal), %u (for unsigned decimal), %x (for
hexadecimal), %c (for character), %s (for string) etc. Other special characters
like \n (for newline), \t (for tab) can also be embedded in the string.
Try different values for u8bit, s8bit and u16bit for practice.

(Note that in an embedded system we may not have a screen to output to so
the printf library call may not exist)

Exercise 2: Logical Operations - AND, OR and XOR, left shift (<<), right
shift(>>).
In this exercise we will see how to perform simple logical operations.
// Given switch1 is in bit position 1 of sw1
// Given switch2 is in bit position 0 of sw2
// Given the light is in bit position 7 of lt
// Logic: light ON only if both switches are ON
void main(void)
{
 unsigned char sw1, sw2, lt; //declare two switches and 1 light
// 1) Input phase of system
 sw1 = 0x02; // change these values to try various
 sw2 = 0x01; // setting of the switches
// 2) Calculation phase
 lt = (sw1>>1 & sw2)<<7; // l-shift to align the bits, r-shift for result

// 3) Output phase
 if (lt) {
 printf("Light On");
 }
 else {
 printf("Light Off");
 }
}

Try the code with different options for turning the light on:

 Light ON if either of the two switches are ON. Note, the OR operator in C is
the pipe symbol: "|"

 Light ON if either of the two switches are ON but not both. Note, the XOR
operator in C is the caret operator: "^"

Homework 3: Write code that counts the number of 1s in the odd positions
of a given 8-bit number and checks it this matches the number of 1s in the
even positions and turns a light on, otherwise it is off. Position 0 is
considered even.
Here are a couple of examples:
Ex1: 8-bit number is 0xAA.
 The number of 1s in the odd positions are 4,
 the number in even positions is 0, so light off
Ex2: 8-bit number is 0x5A.
 The number of 1s in the odd positions are 2,
 the number in even positions is 2, so light on

Here is a skeleton to get you started:
// Number is given in num
// Assume the light is in bit position 4 of lt
#define test1 0xAA // off
#define test2 0x5A // on
#define test3 0x84 // on
#define test4 0xF0 // on
void main(void)
{
 unsigned char num, lt; //
// 1) Input phase of system
 num = test1; // change test case to try your logic works
 // Write your code here to implement the logic described
// 2) Calculation phase

// 3) Output phase

}

Submit a printout of the Codepad screen showing both the code listing and
the generated output. You will turn this in electronically on Blackboard. A
screenshot of your codepad screen will suffice.

Homework 4
Due: Monday 2/27/12 11:00pm on Blackboard

In this set we will look at arithmetic and loops If you are referring to Yale
Patt's book, you may want to read later part chapter 13. If you are referring
to the C Primer, you should read later part of chapter 6.

Exercise 1: A simple count down using a while loop and the same concept
implemented using a for loop
void main(void) {
 unsigned char count;
 count = 10; // Initialize the loop control variable, (count)
 while (count > 0) {
 printf("%d ",count);
 count = count - 1; //update count and repeat
 }
 printf("Lift Off\n"); // When count becomes zero we get out of the loop

 for (count=10; count > 0; count--) {
 //count-- is short for count = count-1
 printf("%d ",count); printf("Lift Off\n");
 }
}

Write C code to do the following:
• Count down from 100 to 0 but print every other number out: 100, 98,96,

... 4, 2, 1 ---- Lift Off
• Print all numbers between 1 and 50 that are divisible by 3 or 5 (you will

have to use a conditional statement in the body of the for loop)

Nested Loops: The body of a for or while loop may itself contain a for or while
loop.

Exercise 2: Say we want to print the multiplication table for numbers between 2
and 9:
void main(void){
 unsigned char number, count, result;

 for (number = 2; number <= 9; number++) {
 printf("\nMultiplication Table for %d\n", number);
 for (count = 1; count <= 10; count++) {
 result = number*count;
 printf("%d X %d = %d\n", number, count, result);
 }
 }
}

Write C code to do the following:
• Print the factorials of numbers 1 to 15. The factorial of a number N is the
N*(N-1)*(N-2) ... 1.
• You could have loops nested any number of times.
Print all Pythagorean triples less than 15. Refer to Figure 14.11 from Yale Patt's
book

Homework 4 : The solution to this exercise is what you will be submitting for
this assignment. Write a subroutine which will be called by the main program to
do the following with the input passed to it.
The subroutine iterates over all integers (inclusive) from 1 to the number passed
to it. For example, if the input number is 10, the subroutine should iterate over 1
through 10. At each integer value in this range, your code may possibly (based
upon the following rules) output a single string terminating
with a newline.
- For integers that are evenly divisible by three, output the exact string Hoppity,
followed by a newline.
- For integers that are evenly divisible by five, output the exact string Hophop,
followed by a newline.
- For integers that are evenly divisible by both three and five, do not do any of
the above,
but instead output the exact string Hop, followed by a newline.
Here is code you are to complete:

void hoppityhop(unsigned char);
int main(){
 hoppityhop(10);
 hoppityhop(15);
 hoppityhop(55);
}
//Complete this subroutine according to the description given above.
// Your output will depend on the input and will be a sequence of
// lines that have either
// Hoppity, Hophop or Hop on them
void hoppityhop(unsigned char input) {

}

Here is the expected screen output for the call hoppityhop(15):
Input = 15
Hoppity
Hophop
Hoppity
Hoppity
Hophop
Hoppity
Hop
You will need to show the output for all three calls to the subroutine from main.

Submit a printout of the Codepad screen showing both the code listing and the
generated output. You will turn this in electronically on Blackboard.
A screenshot of your codepad screen will suffice.

Homework 5
Due: Monday 3/5/12 11:00pm on Blackboard

You are required to print the results (screenshot) of the Homework 5
upload it as you did for homework 3. Go to http://codepad.org and try
out the following simple C Programs and their suggested modifications.

In this set we will look at basics of arrays and revisit the for loop as a
natural fit for traversing an array. We will also look at Subroutines and
parameter passing. If you are referring to Yale Patt's book, you may want
to read chapters 13, 14 and 16. If you are referring to the C Primer, you
should read chapters 6, 7, 8 and 10.

Arrays
To declare an array of a particular type of size N we use the declaration:
 type arrayname[N];
// type indicates what each value in the array can be (for
example unsigned char).
// arrayname is the variable name by which the array will be
referred to

Examples:
 unsigned char anums[5]; // array of 5 8-bit unsigned
numbers
 signed char bnums[8]; // array of 8 8-bit signed
numbers
 unsigned short scores[25]; // array of 25 16-bit unsigned
numbers

To access individual elements of the array you use the square brackets with
the index of the element you wish to access. Note that
indexes start from 0. So, the first element's index is 0 and the last element's
index is (Size-1).

Exercise 1: Lets say Sum(n) refers to the sum of the numbers n down to 1.
For example (Sum(5) is 5+4+3+2+1 which equals 15). We wish to compute
theses sums for the first 25 numbers and store them in an array Sum. We
have another array FSum that computes these same sums by using a
formula instead. We will check if the formula is correct by comparing
elements of Sum against elements of FSum.

#define true 1
#define false 0
#define N 25 // The Size of the Array
void main(void){
 unsigned short num, partialsum, count;
 unsigned short Sum[N], FSum[N]; //Declared arrays to store 16-bit values

 unsigned char correct;

 for (num = 0; num < N; num++){
 partialsum = 0; // partialsum will hold the running sum as we compute it
 for (count = num+1; count >= 1; count--){
 partialsum += count;
 }
 Sum[num] = partialsum; //Note Sum[0] holds Sum(1); Sum[1] holds Sum(2) and so on
 }

 for (num = 1; num <= N; num++){
 FSum[num-1] = (num * (num + 1))/2;
 // Note FSum[0] holds Sum(1); FSum[1] holds Sum(2) and so on
 // based on the formula Sum(n) = (n * (n+1))/2
 }

 // Check if the formula and computation agree
 correct = true; // Assume that they match and change it to false if
 // there is a mismatch
 for (num = 0; num < N; num++){
 if (Sum[num] != FSum[num]) {
 correct = false;
 }
 }
 if (correct) {
 printf("Formula Works");
 } else {
 printf("Formula Wrong");
 }
}

Write C code to do the following:
 Declare 3 arrays called bases, opposites and hypotenuses all of the same

size N. Populate theses arrays by computing the N Pythagorean triples
that you wrote the code for in the previous exercise in homework 3.

 Write a program that searches an array of N 16-bit numbers (call it
haystack) to see if a particular value (call it needle) is present in
it. You can declare an array and initialize it in one step like
so: unsigned char foos[5] = {12, 4 , 13, 2, 15}; //
foos[0] has 12, ... foos[4] has 15

Subroutines (aka Functions)

Subroutines work in C very much like in assembly except they are called
functions in C.

The key elements to note about functions are:
• Functions must be declared using function prototypes. This is used by the

compiler when checking to see if you are calling a function correctly.
 For example the following function prototype says foofunc is
a function that expects one unsigned short as input parameter and

returns a signed char are output: signed char
foofunc(unsigned short); // Note only types need to the
specified for checking

• Calls to functions. A function call (like bsr or jsr in 9S12) must follow the
calling convention specified by the prototype. So calls to foofunc for
example have to be as follows: result = foofunc(input);
// input must be declared as an unsigned short and result
as a signed char

• Function implementations provide the code that will be executed when the
function is called. The code captures the purpose of the function. Say
foofunc simply returned the higher byte of the passed input as a
signed number then the code would be as follows: signed
char foofunc(unsigned short input){ signed char
result; result = input>>8; return
result; }

Exercise 2: Lets rewrite the code from Exercise 3 by modularizing it using
subroutines:
#define true 1
#define false 0
#define N 25 // The Size of the Array

unsigned short Sum[N], FSum[N]; //Declared arrays to store 16-bit values
 // These are now Global so all sub-routines including
 // main can manipulate them

//Declare function prototypes here so compiler can check if we are
// calling them correctly
unsigned short hardway(unsigned char);
unsigned short formula(unsigned char);
void Check(void);

// The main program uses a modular decomposition of the problem into
// sub-problems that are implemented as functions that are called
int main(void){
 unsigned char num;

 for (num = 0; num < N; num++){
 Sum[num] = hardway(num); //Call the hardway function by passing it num
 // put the returned sum in the corresponding location
 // in the array Sum
 }

 for (num = 1; num <= N; num++){
 FSum[num-1] = formula(num);
 }
 Check();
}

unsigned short hardway(unsigned char number){
 unsigned short sum = 0; // partialsum will hold the
 // running sum as we compute it

 unsigned char num, count;

 for (count = number+1; count >= 1; count--){
 sum += count;
 }
 return sum; // sum holds the result so return it
}

unsigned short formula(unsigned char number){

 return (number * (number+1))/2; // formula

}

void Check(void){
 unsigned char correct, num;

 // Check if the formula and computation agree
 correct = true; // Assume that they match and change it to false if
 // there is a mismatch
 for (num = 0; num < N; num++){
 if (Sum[num] != FSum[num]) {
 correct = false;
 }
 }
 if (correct) {
 printf("Formula Works");
 } else {
 printf("Formula Wrong");
 }
}

Homework 5: Write a subroutine that counts the number of instances of
letter in a string. All strings are 11 characters long (12 bytes including null.)
Complete the implementation of the subroutine Count, and test it using the
following main program. You may use pointer or index syntax to access data
from the string. Take a printout from http://codepad.org showing your code
and the output results of running your code. Turn in this printout (in word or
pdf format) on Blackboard with your name at the top.
const struct countTestCase{
unsigned char Letter; // Letter for which to search
unsigned char Buffer[12]; // String in which to search
unsigned short CorrectCount; // proper result of Count()
};
typedef const struct countTestCase countTestCaseType;

countTestCaseType countTests[7]={
{ 'o', "Hello World", 2},
{ 'b', "Bill Bard ", 0},
{ 'V', "Jon Valvano", 1},
{ 'a', "Yerraballi ", 2},

{ 's', "Mississippi", 4},
{ '2', "21212121212", 6},
{ '1', "11111111111", 11}};

//This is the only subroutine you are expected to write.
// It is not necessary that you understand the rest of the code.
// What you need to know is what this subroutine is supposed to do.,
// that is, count the number of occurrences of letter in string.
unsigned short Count(unsigned char letter, unsigned char string[12]){
 return 1000; // replace this line with your code
}

int main(void){
 unsigned short i,result;
 unsigned short errors=0;
 for (i = 0; i < 7; i++){
 result = Count(countTests[i].Letter,countTests[i].Buffer);
 if (result != countTests[i].CorrectCount){
 errors++;
 printf("i=%d, result=%d\n",i,result);
 }
 }
 if (errors==0){
 printf("Program works");
 } else {
 printf("Does not work");
 }
 return 0;
}

Homework 6
Due: Monday 3/19/12 11:00pm on Blackboard

HW5 is a TExaS programming assignment and will serve as practice
for Exam2. Please do ONE of the following three old Exam2s, upload
the rtf file showing your name and score in comments at the top. Here
are the exams to pick from:
 http://users.ece.utexas.edu/~valvano/EE319K/HW6a.zip
 http://users.ece.utexas.edu/~valvano/EE319K/HW6b.zip
 http://users.ece.utexas.edu/~valvano/EE319K/HW6c.zip
Though I am only asking you to submit your solution to one of these
three sample exams, I strongly urge you to solve all three of them to
prepare for the exam.

Homework 7
Due: Monday 3/26/12 11:00pm on Blackboard

This homework is asking you to write the solutions for the three
different Exam2-like problems. However, your solution is not in
assembly, it must be in C. Attached you will find three different C
programs that have a incomplete subroutine that you are expected to
complete.

Read the comments on top the subroutine to see what you are
expected to do.

//*************** HW 6 Part 1 ********************
// You have to write the code for ChkPalind
// You may call the routine PtrLast inside ChkPalind

#include <stdio.h>

unsigned char * PtrLast(unsigned char *);

const struct TestCase{
unsigned char *Buffer; // String to check; Null terminated
signed char check; // +1 or -1 according as Buffer is or is not a
palindrome
};

typedef const struct TestCase TestCaseType;

TestCaseType Tests[5]={
{ "Madam\0",-1 },
{ "risetovotesir\0",1 },
{ "raceCar\0",-1 },
{ "NeveroddoreveN\0",1 },
{ "\0",1 }};

//This is the only subroutine you are expected to write.
// It is not necessary that you understand the rest of the code.
// What you need to know is what this subroutine is supposed to
do.,
// that is, check if the given string is a palindrome and return
a 1 if
// it is OR a -1 if it is not
// Input: Pointer to a null-terminated string of characters
// Output: 1 or -1 depending on whether the given string is a
palindrome
// or not

unsigned char ChkPalind(unsigned char *string){

 return(0); //replace this line with your code
}

// This routine is given to you
// It takes a pointer to a string and returns the
// pointer to the last (non-null) character in the string

unsigned char * PtrLast(unsigned char *string){
 unsigned char *work;

 work = string;
 while(*work != '\0'){ work++;}
 if (work != string) {
 work--; // want the ptr to the last char so decrement
 }
 return(work);
}

int main(void){
 signed char i,result;
 unsigned char errors=0;

 for (i = 0; i < 5; i++){
 result = ChkPalind(Tests[i].Buffer);
 if (result != Tests[i].check){
 errors++;
 printf("Error Case: i=%d, String= %s, result=%d\n",i,
Tests[i].Buffer, result);
 }
 }
 if (errors==0){
 printf("Program works\n");
 } else {
 printf("Does not work\n");
 }
 return 0;
}

//*************** HW 6 Part 2 ********************
// You have to write the code for the function OddSum
#include <stdio.h>

unsigned short OddSum(unsigned char);

const struct TestCase{
unsigned char N;
unsigned short oddsum;
};

typedef const struct TestCase TestCaseType;

TestCaseType Tests[5]={
{ 12,36 },

{ 7,16 },
{ 0,0 },
{ 40,400 },
{ 1,1 }};

//This is the only subroutine you are expected to write.
// It is not necessary that you understand the rest of the code.
// What you need to know is what this subroutine is supposed to
do.,
// that is, return the sum of all odd numbers from 1 till N.
// N may or may not be included depending on whether it is odd or
even
// Input: The number N
// Output: sum of all odd numbers from 1 to N

unsigned short OddSum(unsigned char input){
 return(100); //replace this line with your code
}

int main(void){
 signed char i;
 unsigned char errors=0;
 unsigned short result;

 for (i = 0; i < 5; i++){
 result = OddSum(Tests[i].N);
 if (result != Tests[i].oddsum){
 errors++;
 printf("Error Case: i=%d, N= %d, result=%d\n",i, Tests[i].N,
result);
 }
 }
 if (errors==0){
 printf("Program works\n");
 } else {
 printf("Does not work\n");
 }
 return 0;
}

//*************** HW 6 Part 3 ********************
// You have to write the code for the function IntvlCount
#include <stdio.h>

unsigned char IntvlCount(signed char *array, signed char llim,
signed char ulim);

const struct TestCase{
 signed char list[50];
 signed char intvl[2];
 unsigned char count;
};

typedef const struct TestCase TestCaseType;

TestCaseType Tests[5]={
 { {4,12,19,2,6},{3,9},1 },
 { {3,-1,0,4},{-1,1},2 },
 { {5,-2,3,15,62,-15},{4,10},0 },
 { {3,0,-1,1},{-1,1},3 },
 { {3,2,5,7},{8,10},0 }
};

//This is the only subroutine you are expected to write.
// It is not necessary that you understand the rest of the code.
// What you need to know is what this subroutine is supposed to
do.,
// that is,
// In the given array find how many elements fall in the interval
// covered by [llim,ulim] with boundaries included. Note that the
// input array has size as the first element.
// Input: Array of 8-bit signed numbers with the first element
being the size
// llim is the lower limit of the interval to check
// ulim is the upper limit of the interval to check
// Output: Return the number of elements in array that fall
within the interval
// covered by [llim,ulim]

unsigned char IntvlCount(signed char *array, signed char llim,
signed char ulim){
 return(100); //replace this line with your code
}

int main(void){
 unsigned char i, errors=0, result;

 for (i = 0; i < 5; i++){
 result =
IntvlCount(Tests[i].list,Tests[i].intvl[0],Tests[i].intvl[1]);
 if (result != Tests[i].count){
 errors++;
 printf("Error Case: i=%d, result=%d\n",i, result);
 }
 }
 if (errors==0){
 printf("Program works\n");
 } else {
 printf("Does not work\n");
 }
 return 0;
}

Homework 8
Due: Monday 4/9/12 11:00pm on Blackboard

You will view, understand and implement the example shown in Lesson 5 of Jon’s
lessons on Metrowerks. First, you will need to download and install the Metrowerks
Codewarrior IDE on your PC by following the instructions provided here:
http://users.ece.utexas.edu/~valvano/S12C32.htm#Metrowerks

The Lessons on Metrowerks (there are 6 of these) are here:
http://users.ece.utexas.edu/~valvano/Lessons/#Metrowerks

The lessons are incremental in that they start by showing you how to use Metrowerks to
write C code, assembly code, mix C and assembly, pass parameters from C to assembly
and vice versa and finally, how to run code that was developed in Metrowerks, in TExaS.

For this homework you will view lessons 1 through 4 and write the code that lesson 5
refers to. You will not submit your code though, instead you will submit a word document
with the five screenshots that you take at points in the development process.
Specifically, the five screenshots are:

1. A screenshot of the C code in Metrowerks with the comments at the top showing
your name

2. A screenshot of the assembly code in Metrowerks with the comments at the top
showing your name

3. A screenshot of the running of your code in “Full chip simulation” in the True-time
simulator with the Data window showing the variable “MyCount” before a call to
PortP_Toggle

4. A screenshot of the running of your code in “Full chip simulation” in the True-time
simulator with the Register window showing the contents of register D once you
enter the assembly routine PortP_Toggle.

5. A screenshot of the running of your code in “Full chip simulation” in the True-time
simulator with the Register window showing the contents of register B once you
enter C routine Toggle.

You will submit a single word file with the five screenshots in it.

Homework 9

Signal Interpolation

Due: Monday 4/23/12

The purpose of this assignment to give you some insight into how the technique of
interpolation can be used to estimate values a signal takes between two known data
points. Also, we will further exercise parameter-passing in C using arrays. The particular
interpolation mechanism we will use is called Cubic Interpolation. The idea behind this
technique is given in the following document online:
http://paulbourke.net/miscellaneous/interpolation/

The starter code with comments can be found at the following link:
http://users.ece.utexas.edu/~ryerraballi/ee319k/HW9.c

Take a printout from http://codepad.org showing your code and the output results of

running your code. Turn in this printout (in word or pdf format) on Blackboard with your
name at the top.

Homework 10

Due: In your class after Monday 4/30/12

For this homework, you are required to solve one final exam from a previous
semester. You may choose from the following:

Valvano’s previous exams:

1. Fall 2009:
http://users.ece.utexas.edu/~valvano/EE319K/FinalF09a.pdf

2. Spring 2010:
http://users.ece.utexas.edu/~valvano/EE319K/FinalSp10b.pdf

3. Fall 2010:
http://users.ece.utexas.edu/~valvano/EE319K/FinalF10a.pdf

4. Spring 2011:
http://users.ece.utexas.edu/~valvano/EE319K/FinalSp11a.pdf

Yerraballi’s previous exams:

1. Spring 2010:
http://users.ece.utexas.edu/~ryerraballi/ee319k/finals/S10.pdf

2. Fall 2010:
http://users.ece.utexas.edu/~ryerraballi/ee319k/finals/F10.pdf

3. Spring 2011:
http://users.ece.utexas.edu/~ryerraballi/ee319k/finals/S11.pdf

4. Fall 2011:
http://users.ece.utexas.edu/~ryerraballi/ee319k/finals/F11.pdf

You are required to submit a hand-written solution to one of the above eight
exams, in class. The due date is either Monday or Tuesday depending on
which professor you are taking the class with and the particular lecture
section you are registered in.

