
1

Networking Sensors Using Belief Propagation
Sujay Sanghavi Dmitry Malioutov Alan Willsky

Abstract—This paper investigates the performance of belief
propagation (BP) as a distributed solution to two combinatorial
resource allocation problems arising in sensor networks: network
formation and fusion center location. We model these problems
by max-weight b-matching and uncapacitated facility location,
respectively. Each of these is a classical optimization problem.
For both problems, we (a) show how BP can be simplified for
implementation in distributed environments where transmissions
are broadcast and can interfere, (b) derive a principled inter-
pretation of estimates before convergence, and(c) compare the
performance of BP to that of linear programming.

I. I NTRODUCTION

There has been much recent interest in the use of (the max-
product form of) belief propagation (BP) as a distributed solver
for a variety of optimization problems defined on graphs [5],
[6]. While much of the interest in BP stems from its distributed
and lightweight nature, in general, BP remains a heuristic:
without additional assumptions on the problem it is difficult
to have a-priori guarantees on the quality of the output.
However, for some combinatorial optimization problems on
graphs, including the ones considered in this paper, recent
results [14], [3], [5] point to a connection between the output
of BP and the LP relaxation of the original problem.

Applying BP in sensor network settings poses some unique
challenges. Typically, BP updates are executed until conver-
gence, i.e. until the numerical values of the messages do not
change much from iteration to iteration. Most of the analytical
results on BP performance pertain to the final, converged
output. In sensor networks, it may not be possible to detect
convergence globally. It may also not be possible to wait until
convergence; recovering good (but not necessarily optimal)
solutions from non-converged estimates is also important.
Finally, most sensor network communications occur over a
wireless medium, with every transmission broadcast to all
neighbors of a node. Broadcasting causes interference between
the messages that BP needs to pass between nodes.

In this paper we investigate the effectiveness of BP in
solving two problems that arise in sensor network operation:

(a) Network formation,
(b) Locating fusion centers.

Each problem is well-modeled by a classical combinatorial
optimization problem. We provide simplified, asynchronous
implementations of BP, that allow distributed implementation
in broadcast environments. We also show how to interpret
intermediate messages, which have not converged, in a con-
sistent way. Finally, we also compare BP to smoothed dual
coordinate descent (since both share the sameper-update
complexity). Empirically, BP is seen to perform much better,

Email: sanghavi@purdue.edu, dmm@microsoft.com, willsky@mit.edu.
This paper appears in the Allerton Conference, 2008

in the sense that it converges to the correct answer in much
fewer updates.

II. D ISTRIBUTED NETWORK FORMATION

In many distributed sensor network applications, in partic-
ular if the sensors are randomly deployed in bulk over an
area, as a first step they may be required to self-organize
into a network [1]. Such a network should be connected,
be robust to occasional failing links, but at the same time
it should be sparse (i.e. have nodes with small degrees) due
to severe limitations on power available for communication.
Furthermore, due to the nature of the application, the network
formation itself should occur in a distributed fashion. These
considerations are not fully met by any available approaches,
such as spanning trees, selectingb nearest neighbors1, or
simply connecting each node to its neighbors within some
distanceR. An interesting set of sparse planar subgraph
constructions is proposed in [10] that requires the use of
directional information.

Instead, we formulate sensor network formation as a
weightedb-matching problem, a well-studied problem in com-
binatorial optimization. Our formulation only requires the
knowledge of distances between neighboring nodes, does not
require planarity, and admits an efficient distributed solution
via the max-product form of belief propagation. We describe
the b-matching problem next, its solution via max-product in
Section II-B, and our experiments in Section II-E.

A. Weightedb-matching problem

Given a graphG = (V,E) with non-negative weightswe on
its edgese ∈ E, theweightedb-matching problem(MWbM) is
to find the heaviest subset of edges such that not more thanb

edges share the same node. Such a subset of edges is called a
b-matching – each node is ’matched’ to at mostb other nodes.
The special case withb = 1 reduces to the maximum weight
matching (MWM) problem, one of the most widely studied
problems in combinatorial optimization.

Weighted b-matching can be naturally formulated as an
integer program (IP). Let binary variablexe ∈ {0, 1} represent
whether the edgee ∈ E is part of theb-matching. Then
MWbM is the solution of the following IP:

IP : max
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≤ b for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E.

1A b-nearest neighbors solution may lead to high degrees (more than b)
due to asymmetry – ifi belongs to the set ofb nearest neighbors ofj, then
the converse does not need to hold. Note that ab-matching solution disposes
of this anomaly.

2

HereEi is the set of edges incident to nodei, and the first
constraint enforces that the solution is a validb-matching.

The b-matching problem provides a very appealing view of
the sensor network formation problem. The original graphG

represents the nodes that can communicate with each other
(e.g. nodes within some radiusR). In a random deployment
scenario such a graph may have a very wide degree distribution
with the undesirable presence of large hubs. We assign edge
weights to be proportional to the throughput of the link,
which can be argued to decay as the received power, typically
as d−p with distance, wherep ∈ [2, 4] depending on the
communications channel. We setp = 2 for concreteness, and
let the edge weights bewe = d−p

e . Theb-matching objective is
now to maximize the total throughput (received power) among
sparse subgraphs with degree at mostb.

The final requirement that the solution be distributed re-
quires some innovation. Theb-matching problem originally
comes from the combinatorial optimization literature, and
while in general, the IP problem can be solved in polynomial
time e.g. by Pulleyblank’s or Edmond’s algorithms, [4], these
algorithms are not easily distributed.

Instead, we will view MWbM IP as a MAP estimation
problem in a graphical model, and apply the max-product algo-
rithm. The special structure of the problem allows us to make
strong statements about the convergence and correctness ofthe
MP solution, and give a connection to a linear programming
relaxation of the IP, which we discuss in Section II-D.

B. Max-product solution of MWbM

We now formulate weightedb-matching onG as a MAP
estimation problem by constructing a suitable probability
distribution in a Markov Random Field (MRF) form over the
valid matchings. This construction is naturally suggestedby
the form of the integer programIP. Associate a binary random
variablexe ∈ {0, 1} with each edgee ∈ E, and consider the
following probability distribution:

p(x) ∝
∏

i∈V

ψi(xEi
)
∏

e∈E

exp(wexe), (1)

where the factorsψi(xEi
) for each nodei ∈ V represent

the b-matching constraints – that at mostb edges incident to
node i can be assigned the value “1”: i.e.ψi(xEi

) = 1 if
∑

e∈Ei
xe ≤ b, and 0 otherwise2. Note that we usei to refer

both to the nodes ofG and factors ofp, ande to refer both
to the edges ofG and variables ofp. It is easy to see that, for
any x, p(x) ∝ exp(

∑

e wexe) if the set of edges{e|xe = 1}
constitute ab-matching inG, andp(x) = 0 otherwise. Thus the
max-weightb-matching ofG corresponds to the MAP estimate
of p.

Max-product for the MRF (1) above can be simplified
to the following iterative update algorithm. We provide
the derivation of this scheme starting from the standard
max-product message updates in the appendix. For two
setsA and B the set difference is denoted by the notation

2We will see in the next section that storing this (potentially very large)
factor as a table is never necessary, and message updates involving this factor
reduce to simple maximization operations.

A\B. Also, y+ = max(0, y), rankb(A) denotes theb-th rank
element in the setA, andN (i) is the neighborhood ofi. An
edge estimatêxij = 1 corresponds to that edge being in the
MWbM, “0” means it is not in the MWbM, and “?” means
undecided.

Simplified Max-Product for Weighted b-matching
(o) Sett = 0 and initialize eacha0

i→j = 0
(i) Update as follows

at+1
i→j = rankb

{

(wik − at
k→i)+ | k ∈ N (i)\j

}

(2)

(ii) For each edge set̂xt
(i,j) = 0, 1 or ? if (at

i→j + at
j→i) is

respectively>,< or = wij .

We remark that for the matching problemb = 1, and rank-
1 element is simply the maximum. The corresponding max-
product updates for MWM are:

at+1
i→j = max

k∈N (i)\j

(

wik − at
k→i

)

+
. (3)

C. Broadcast implementation

To further simplify the protocol for networks where the
number of neighbors may be large, we describe an equiva-
lent broadcast scheme, where a node broadcasts a summary
message, and all the recipients can calculate their intended
personal message based on the summary message and their
local information.

For clarity we start with the broadcast scheme for simple
matching, and the one forb-matching immediately follows.
Suppose we are at nodei, and we are interested in message
at+1

i→j . Instead of calculating the maximum over the remaining
neighbors (i.e.k ∈ N (i)\j) as in (3), we calculate the
maximum overall the neighbors:

a t+1
i = max

k∈N (i)

(

wik − at
k→i

)

+
(4)

and letk∗ denote the correspondingarg max. If j 6= k∗ then
the message is correct,at+1

i→j = a t+1
i . While the recipient node

j does not know the identity ofk∗, it can find out whether
j = k∗ by comparingwij−a

t
j→i to at+1

i . Otherwise, ifj = k∗,
we need to find the second-in-order value, i.e.

at+1
i = max

k∈N (i)\k∗

(

wik − at
k→i

)

+
(5)

and thenat+1
i→j = at+1

i . This way, instead of sending a real-
valued message toeachof its neighbors, the broadcast version
only requires broadcasting a single message consisting of
two real values,at+1

i and at+1
i . This results in a substantial

reduction in communications without sacrificing accuracy.
The extension forb-matching is immediate: instead of

sending the maximum and the second-to-maximum values
from (wik − at

k→i)+ over k ∈ N (i), we send theb-th and
(b + 1)-th ranked values. Ifwij − at

j→i exceeds the rank-b
value, then it must have been included in the topb elements,
and to calculate the correct message we must remove it and
use the rank-(b + 1) element. Otherwise, we use the rank-b

element. We summarize this scheme forb-matching next.

3

Broadcast Max-Product for Weighted b-matching

(o) Set t = 0 and initialize eacha0
i→j = 0

(i) Pick a nodei at random, and compute the summary
message consisting of two real values:

a t+1
i = rankb

{

(wik − at
k→i)+ | k ∈ N (i)

}

(6)

a t+1
i = rankb+1

{

(wik − at
k→i)+ | k ∈ N (i)

}

For each node recipient node,j ∈ N (i):
Set at+1

i→j = a t+1
i if wij − at

j→i < a t+1
i , andat+1

i→j =

a t+1
i otherwise.

(ii) Upon convergence, output estimatex̂: for each edge set
x̂(i,j) = 0, 1 or ? if (ai→j + aj→i) is respectively>,<
or = wij .

D. Theoretical guarantees for MWbM Max-product via LP

The special structure of the MWbM problem has strong
implications for the performance of max-product. In a
previous publication [13] we studied the convergence and
accuracy properties of max-product for weighted matching
and b-matching, and have found striking connections with
the linear programming (LP) relaxationof the corresponding
IP. The LP relaxation of MWbM replaces the constraint
xe ∈ {0, 1} with the constraint0 ≤ xe ≤ 1 for eache ∈ E.
For bipartite graphs it gives correct MWbM solutions, but in
general non-bipartite graphs, it can have fractional optima
– i.e. those that assign fractional mass to edges. In [13],
[14] we have established the following connection between
convergence of max-product and integrality and uniqueness
of the MWbM LP relaxation:

Theorem 1:(a) If the LP has a unique optimum that is
integral, then max-product will converge and the resulting
solution will be exactly the max-weightb-matching.

(b) Suppose the LP is loose, or has multiple optima. Then
for any edge, if there exists any optimum of LP that assigns
fractional mass to that edge, then the max-product estimate
for that edge will either oscillate or be ambiguous.

This theorem implies that max-product is equally powerful
to the LP relaxation. This gives a strong justification for using
max-product in distributed applications, where there is no
straightforward way to apply linear programming3, and it also
gives insight into situations in which max-product may or may
not be appropriate.

In our simulations in Section II-E we observe an even
stronger connection between LP relaxation and the damped
version of max-product, which also conveniently eliminates
the non-convergence issues for max-product. For ordinary
max-product we observe that it converges for the majority of
the edges and oscillates on a small subset of edges. While one
can run max-product for a fixed number of iterations, and then
terminate it, a better solution is to use a ’damped’ version of

3In our experiments we study distributed implementation of the coordinate
descent for the dual of the LP relaxation, and show that max-product is
preferable.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Original dense graph: pairs of sensors within distance R are linked
by an edge.

max-product with the message update:

at+1
i→j = λat

i→j + (1 − λ) max
k∈N (i)\j

(

wik − at
k→i

)

+

andλ ∈ [0, 1) is the damping factor, withλ = 0 corresponding
to no damping. We empirically observe that the damped
version of max-product withλ > 0 always converges and gives
the same solution as the linear programming relaxation (where
we map the non-informative max-product estimatesxe = ’?’
to value0.5).

E. Numerical experiments

We now study the behavior of max-product for distributed
sensor network formation on numerical simulations. For our
first experiment we randomly disperseN = 100 nodes in a
square region[−1, 1]× [−1, 1], and create an initial adjacency
graph for nodes that are close enough to communicate, we
set the threshold to beR = 0.4. The original dense graph is
displayed in Figure 1.

Next we set edge weights to be proportional to throughput,
we = d−2

e , and apply max-product to find the maximum
weight b-matching, with b = 5. We use an asynchronous
version where a node is chosen at random and it broadcasts
a message to all of its neighbors. We use moderate damping
α = 0.25. In Figure 2 we plot the weight of the max-weight
b-matching4 found aftern node updates of max-product. We
note that each update originates from a single node, so100
updates are required just to visit the whole graph once. Clearly,
max-product rapidly, within several passes through the graph,
finds a matching with close-to-optimal weight.

In Figure 3 we show the corresponding max-product match-
ing solution upon convergence. For almost all the edges
max-product converges to an informative solution, i.e. either
x̂(i,j) = 1 or 0, with the edge displayed or removed respec-
tively. However, for a small cycle in the center the edges are
non-informative:̂x(i,j) =?, as shown in red. Plain max-product

4 If in the intermediate steps the selected edges do not form ab-matching,
we throw away enough violated edges until the configuration is a valid b-
matching.

4

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

number of message updates

M
a
t
c
h
i
n
g

w
e
i
g
h
t

max−prod weight
LP upper bound

Fig. 2. Weight of theb-matching selected aftern node updates of max-
product.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Max-productb-matching solution. The original dense graph appears
in Figure 1. Most of the edges converge to the correct values (edges with
xe = 0 are removed, and ones withxe = 1 are shown in bold), while a
small cycle in the center converges to an uninformative solution (shown in
red).

would result in oscillations for these edges, but damped max-
product converges to uninformative values for these edges,
equivalent to the fractional solution of the LP relaxation.

a) Comparison to dual coordinate descent:Our next
experiment investigates the viability of another distributed
solution of the MWM problem, via coordinate descent (CD) on
the dual of the LP relaxation, and compares the performance of
dual coordinate descent to that of max-product. For claritywe
consider the simple MWM problem (b-matching withb = 1),
which has the following dual of its LP relaxation (e and(i, j)
denote the same edge):

DUAL : min
∑

i∈V

mi,

s.t. mi +mj ≥ wij for all e ∈ E,

mi ≥ 0 for all i ∈ V.

It has an intuitive interpretation of assigning massmi to node
i, and minimizing the total mass while satisfying that for each
edge the mass on its vertices exceedswe.

To solve the MWM LP relaxation, we first solve the dual,
and then use complementary slackness conditions to recover

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of message updates

M
a
t
c
h
i
n
g

w
e
i
g
h
t

max−prod weight
LP upper bound

Fig. 4. Max-product matching weight vs. node updates.

the optimal primal solution:

mi (
∑

e∈Ei

xe − 1) = 0

xe (mi +mj − we) = 0.

We consider only those MWM problems which have a unique
integral solution for their LP primal. Then the primal optimum
can be recovered by finding those edges that satisfymi+mj =
wij for the dual optimum. Furthermore, if we start with a sub-
optimal dual solution, then we also use this as a heuristic to
get sub-optimal primal solutions.

Coordinate descent on the dual starts from a feasible solu-
tion, e.g.mi = maxe we and at each step selects a node at
random and makes an updatemt+1

i = minj∈N (i)(wij−mt
j)+,

where(x)+ = max(x, 0). While the iterations are extremely
simple, we shall see that plain coordinate descent can converge
without reaching the global minimum. To alleviate this issue,
we also consider a smooth version of the dual problem:

SM.DUAL min

(

∑

i

mi − ǫ
∑

e∈E

log(mi +mj − wij)

)

s.t. mi ≥ 0 for all i ∈ V.

For problems where the LP primal has a unique integral
optimum, the primal solution can be recovered from the dual
solution, asǫ→ 0. We use coordinate descent onSM.DUAL,
which selects a node and updates it as follows:

mt+1
i = min

mi≥0



mi − ǫt
∑

j∈N (i)

log(mi +mt
j − wij)



 .

This is a simple one-dimensional optimization problem. We
gradually decreaseǫ as we run coordinate descent, asǫt+1 =
0.99ǫt, and keep it fixed after it reaches some fixed small
threshold e.g.10−6. We produce the matchings at intermediate
steps by relaxing the requirement thatmi + mj = wij to
mi +mj − wij ≤ 2α, whereα = mine(mi +mj − wij).

We apply max-product, plain dual CD, and smooth dual CD
to a MWM problem on a graph ofN = 40 nodes, where the
LP relaxation solution is integral. We plot the weight of the
matching selected aftern updates of max-product in Figure
4, the same graph for plain dual CD in Figure 5, and one

5

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of message updates

M
a
t
c
h
i
n
g

w
e
i
g
h
t

Dual−CD weight
LP upper bound

Fig. 5. Plain dual CD matching weight vs. node updates.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of message updates

M
a
t
c
h
i
n
g

w
e
i
g
h
t

Smooth dual−CD weight
LP upper bound

Fig. 6. Smooth dual CD matching weight vs. node updates.

for smooth dual CD in Figure 6. We fix intermediate invalid
matchings as described in footnote 4. The simple version
of dual CD converges extremely rapidly (in a few passes
through the graph), but very often gets stuck at very bad
solutions: in Figure 5 the resulting matching has about one
third of the weight of the optimal matching. Max-product
converges in about a dozen passes through the graph to the
optimal solution. The smooth dual CD solution takes much
longer to converge to the optimal solution, and in addition it
has the undesirable property of yielding very poor matchings
upon early termination. Thus, while smooth dual CD can also
find the optimal matchings for simple MWM problems, max-
product is considerably more efficient.

III. L OCATING FUSION CENTERS

A common model for sensor network aggregation is to have
the sensors forward their data to one or more fusion centers,
which then either process the data, store it for future reference
or transmit it to locations further away. The sensor network
operator/designer that decides to use fusion centers needsto
tradeoff between two requirements:

(a) having each sensor close to its assigned fusion center,
so that sensors can reliably forward their data with low
latency and power consumption.

(b) limit the total number, and cost, of opening fusion
centers. For example, it would be infeasible to open a
fusion center for every sensor.

A classical optimization problem that exactly captures this
tradeoff is the facility location problem. There are many
variants of this problem, each with differing requirements
on where the facilities can be placed, and what/how many
customers(in our case sensors) they can serve. Nice surveys
on this classical NP-hard problem can be found in [19], [20],
for example. We will concern ourselves with the uncapacitated
facility location problem, which we describe below.

This section has been inspired by the empirical success
of Affinity Propagation [18], for exemplar-based clustering.
The underlying motivation there is the same as ours, and
they too apply BP for their problem. However, they use a
different MRF, one that isnot equivalent to the uncapacitated
facility location problem described here. That said, many of
the simplifications we derive below are similar to the ones
derived in [18]. For our problem, we empirically observe
several interesting properties connecting the performance of
BP with the LP relaxation of uncapacitated facility location.

A. Uncapacitated Facility Location

We now paraphrase the standard uncapacitated facility loca-
tion problem to fit the setting of this paper. We are given a set
of sensorsV = {1, . . . , n}, and a set of edgesE connecting
them. For example, edges might represent the physical range
of communication. Any sensor can be possibly upgraded, at a
cost, to a fusion center. Any sensor that isnot a fusion center
has to be assigned to a neighbor that is a fusion center (for
the moment, we consider only this kind of “one hop” service).
We need to determine where to have the fusion centers, and
how to make the subsequent assignments.

The uncapacitated facility location problem puts this in a
cost minimization framework. Upgrading sensori ∈ V to
a fusion center incurs a costcii. Assigning sensori to a
fusion center atj ∈ N (i) incurs a costcij , (N (i) denotes
the neighborhood ofi). Our objective is to decide where to
locate the fusion centers, and then assign sensors to them,
so as to minimize the total cost. This problem can be stated
as the following integer program. There is a variablexij for
eachorderedpair of (i, j) ∈ E (the variablesxij andxji are
distinct). A valuexij = 1 means thati is assigned to a center
at j, andxij = 0 means that it is not. Also, for each nodej
there is a variableyj : yj = 1 means thatj has been upgraded
to a fusion center, andyj = 0 means it has not.

min

∑

(i,j)∈E

cijxij +
∑

j

cjjyj ,

s.t. yi +
∑

j∈N (i)

xij = 1 for all i ∈ V,

yj ≥ xij for all j ∈ V and i ∈ N (j)

xij , yj ∈ {0, 1}.

In words, we would like to minimize the total cost of
opening fusion centers, and assigning sensors, subject to the
constraints that(i) each sensor is either itself a fusion center,
or is assigned to a neighboring fusion center, and(ii) if any
sensori is assigned toj, thenj should be a fusion center.

6

The LP relaxation of this problem involves replacing the
integer constraints with interval constraintsxij , yj ∈ [0, 1].

B. Applying BP

We now formulate a Markov random field (MRF) such
that finding the MAP assignment of this MRF is equivalent
to solving the integer program above. We then use BP as a
distributed heuristic to find this MAP assignment. We also
show how the message updates can be significantly simplified,
involving two real numbers for every pair of nodes.

For every nodei, we have a variablesi ∈ {i ∪ N (i)},
which is to be interpreted as theidentity of the center thati
is assigned to. This center will be one of the neighbors ofi,
or i itself. Consider

p(s) ∝
∏

(i,j)∈E

fij(si, sj)
∏

i

e−cisi (7)

wherefij checks consistency:

fij =











0 if si = j but sj 6= j

0 if si 6= i but sj = i

1 else

It is easy to see thatp(s) > 0 only for those states corre-
sponding to a valid solution, and that for these states it will
be proportional toe−cost. Thus maximizingp(s) is equivalent
to solving the IP above.

BP for this problem involves sensors iteratively sending
messages to their neighbors. In standard form the message
from i to j consists ofk real numbers, wherek = |N (j)|+ 1
is the number of possible values thatsj can take. However,
these messages have tremendous amount of redundancy, and
can be radically simplified to the following update rules, which
we derive in the appendix:

Simplified Max-product for Facility Location

(o) Initially, r0i→j = a0
j→i = 0 for all (i, j) ∈ E.

(i) The messages are updated as follows:

D = max







−cii +
∑

k 6=j

rt
k→i , max

k 6=i,j
−cik + at

k→i







rt+1
i→j = max {0 , −cij −D}

at+1
i→j = −cii +

∑

k 6=j

rt
k→i −D

(ii) At time t, for each nodei:
– i is a fusion center if and only if

∑

k

rk→i > max
k

ak→i

– i is assigned to a center atj if and only if

aj→i >
∑

k

rk→i and aj→i > max
k 6=j

ak→i

– otherwise, the status ofi at t is undecided.

Note that in the above algorithm we have deliberately not
mentioned which edges are updated in any given iteration.

While the version with full synchronous message updates is
by far the most popular in the max-product literature, doing
full synchronous updates in wireless sensor networks will
lead to significant interference. Below we give an alternative
asynchronous broadcast implementation. Furthermore, we also
use damping, similar to the network formation section:

rt+1
i→j = λ (max {0 , −cij −D}) + (1 − λ)rt

i→j

at+1
i→j = λ



−cii +
∑

k 6=j

rt
k→i −D



 + (1 − λ)at
i→j .

C. Broadcast Implementation

In the implementation of max-product given above, each
node sends a separate message to every one of its neighbors.
However, if the wireless medium is broadcast, so that any
transmission byi is heard by all its neighbors, it is possible
to significantly reduce the number and complexity of the
transmissions. Suppose we want to update all the outgoing
messages from nodei. In the broadcast implementation, nodes
transmit asynchronously. Nodei broadcasts three numbers,
which are received by each of its neighbors. These numbers
are

s = −cii +
∑

k

rt
k→i

m1 = max
k 6=i

−cik + at
k→i

m2 = secondmax
k 6=i

−cik + at
k→i.

Consider now a neighborj of i which receives these three
numbers. Suppose also thatj: (a) knows the value ofcij , its
edge toi, and (b) has stored the values ofrt

j→i and at
j→i,

which areits most recent messages toi. Then,j can use the
three numbers above tocomputethe new messagesrt+1

i→j and
at+1

i→j that it should have received fromi in a vanilla (i.e. non-
broadcast) implementation.

To compute the new messages,j needs to be able to
compute the value ofD above. It is easy to see that

D = max
{

s− rt
j→i , u

}

,

where

u =

{

m1 if m1 > −cij + at
j→i,

m2 if m1 = −cij + at
j→i.

Note thatm1 ≥ −cij + at
j→i always.

D. Empirical Observations

Empirically, BP performs very well with damping. Figures
7 and 8 show a typical example: here a 100-node network was
optimally resolved within 20 iterations. We set the cost of an
edge to be inversely proportional to the square of its length,
and the cost of a fusion center to be the median cost of the
edges coming out of it.

Based on numerical experiments, we make the following
conjectures about the connection between the BP algorithm
described in this section, and the LP relaxation of uncapaci-
tated facility location.

7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 7. Initial node placement for fusion center problem.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8. Fusion center decision after 20 iterations.

1) In full-synchronous undamped BP, starting from the
uninformative5 initial condition, if nodei is estimated
to be a fusion center in two consecutive iterations, then
y∗i = 1 in the LP.

2) Any fixed point of BP corresponds to a valid solution.
That is, for any nodej, if any other node considersj to
be its fusion center thenyj = 1 at the fixed point.

3) Any fixed point reached from the uninformative starting
condition, and without damping, is the LP optimum
(which in this case is also integral).

APPENDIX

A. Simplified message updates for MWbM

In this section we show how to reduce the standard factor-
graph form max-product updates to obtain the simplified
message updates in (2). The standard max-product updates
are presented in the table below:

Max-Product for Weighted b-Matching
(o) Set t = 0 and initialize each message to 1.
(i) Iteratively compute new messages (factor to variable and

variable to factor messages) until convergence as follows:

mt+1
e→i[xe] = exp(xewe) × mt

j→e[xe] (8)

mt+1
i→e[xe] = max

xEi\e







ψi(xEi
)
∏

e′∈Ei\e

mt
e′→i[xe′]







(ii) Also, at each t compute beliefsnt
e[xe] and esti-

mates for each edgee x̂t ∈ {0, 1, ?} at time t:

5Uninformative IC means that all messagesa, r are set to0 initially.

nt
e[xe] = exp(wexe) × mt

i→e[xe] × mt
j→e[xe], and

x̂t
e = 1 if nt

e[1] > nt
e[0],

x̂t
e = 0 if nt

e[1] < nt
e[0],

x̂t
e =? if nt

e[1] = nt
e[0].

We now mend them into a form suitable for sensor net-
works. First, instead of passing messages between edges and
nodes we formulate a “node-to-node” protocol that is much
more amenable to implementation in a distributed application.
Let e = (i, j) be the edge connecting the neighborsi and
j, and e′ = (k, i). Combiningmt+1

i→e[xe] with mt+1
e→j [xe], we

have a node-to-node message update:

mt+1
i→j [xe] = exp(xewe) max

xEi\e







ψi(xEi
)

∏

k∈N (i)\j

mt
k→i[xe′]







.

For pedagogical purposes we derive the updates for simple
matching first, and then extend them tob-matching. The
constraint factorψi(xEi

) for MWM enforces that ifxe = 1
thenx′e = 0 for all e′ ∈ Ei\e. Hence

logmt+1
i→j [1] = we +

∑

k∈N (i)\j

logmt
k→i[0].

However, if xe = 0, then one of the neighboring edges can
have value1, hence,

logmt+1
i→j [0] =

∑

k∈N (i)\j

logmt
k→i[0]+

max
k

(

logmt
k→i[1] − logmt

k→i[0]
)

+
.

Now let

at
i→j = log

(

mt
i→e[0]

mt
i→e[1]

)

= log

(

mt
i→j [0]

mt
i→j [1]

)

+ wij ,

and after some simple algebra, we recover the simplified
message updates in (2):

at+1
i→j = max

k∈N (i)\j

(

wik − at
k→i

)

+
.

The same sequence of reductions leads to the simplified
algorithm for generalb-matching. There, the constraint factor
ψi(xEi

) enforces that ifxe = 1 then we can set at most
b − 1 neighboring edges to1, while if xe = 0 then we
can set b neighboring edges to1. Hence, the difference
between the two messages amounts to rank-b element in the
set {(logmt

k→i[1] − logmt
k→i[0])+ | k ∈ N (i)\j}, and the

simplified update rule is given by:

at+1
i→j = rankb

{

(wik − at
k→i)+ | k ∈ N (i)\j

}

.

B. BP for Facility Location

In this section we derive the simplified message update rules
given in Section III-B starting from the MRFp(s) in (7).
Recall thatmi→j(u) is the message fromi to j for the case
whensj = u, i.e. the state ofj is u. The standard max-product
update equation is

mt+1
i→j(sj) = max

si

fij(si, sj) e
−cisi

∏

k∈N (i)−j

mt
k→i(si).

8

Now we consider the various values thatsj can take. First, if
sj = i, thenfij(si, sj) = 1 only whensi = i, so

mt+1
i→j(i) = e−cii

∏

k∈N (i)−j

mt
k→i(i).

On the other hand, ifsj = j thenfij(si, sj) = 1 for any value
of si, so

mt+1
i→j(j) = max

si

e−cisi

∏

k∈N (i)−j

mt
k→i(si).

Finally, for any other valuesj 6= i, j, fij(si, sj) = 0 only for
si = j. Thus

mt+1
i→j(sj 6= i, j) = max

si 6=j
e−cisi

∏

k∈N (i)−j

mt
k→i(si).

Notice now that in the above equation, the value ofmt+1
i→j(sj)

is the samefor all values ofsj 6= i, j. This is the crucial
observation that allows us to obtain a much simpler update
rule. We will denote this value bymt

i→j(sj 6= i, j) In
particular, for each timet, define

rt
i→j =

mt
i→j(j)

mt
i→j(sj 6= i, j)

(9)

at
i→j =

mt
i→j(i)

mt
i→j(sj 6= i, j)

. (10)

Consider first the update forr. Using the update rules form
we have that

rt+1
i→j =

mt+1
i→j(j)

mt+1
i→j(sj 6= i, j)

= max

{

1 ,
e−cij

∏

k∈N (i)−j m
t
k→i(j)

maxsi 6=j e
−cisi

∏

k∈N (i)−j m
t
k→i(si)

}

= max







1 ,
e−cij

maxsi 6=j e
−cisi

∏

k∈N (i)−j

mt
k→i

(si)

mt
k→i

(j)







.

Now, as noted before, at timet we have thatmt
k→i(si) does

not depend on the particular value ofsi, for all valuessi 6= i, k.
Now j 6= i, k so this means thatmt

k→i(j) = mt
k→i(si 6= i, k).

Let us define

D = max
si 6=j

e−cisi

∏

k∈N (i)−j

mt
k→i(si)

mt
k→i(si 6= i, k)

, (11)

so thatri→j = max{1, e−cii

D
}. We now simplifyD. Suppose

first that the maximum in (11) is attained atsi = i. Note that
in this case

mt
k→i(si)

mt
k→i(si 6= i, k)

= rt
k→i

by the definition (9) of r. Thus in this caseD =
e−cii

∏

k∈N (i)−j r
t
k→i. Now suppose that the maximum in

(11) is attained by somesi = k∗ 6= i, j. In this case

D = e−cik∗
mt

k∗→i(k
∗)

mt
k→i(si 6= i, k∗)

∏

k∈N (i)−j−k∗

mt
k→i(k

∗)

mt
k→i(si 6= i, k)

.

Now for all k 6= i, k∗, we have that mt
k→i(k

∗)

mt
k→i

(si 6=i,k)
= 1. Also, by

the definition (10),m
t
k∗→i

(k∗)

mt
k→i

= at
k∗→i. Thus if the maximum

in (11) is attained by somek∗ 6= i, j thenD = e−cik∗at
k∗→i.

Combining the above reasoning, we get that

D = max







e−cii

∏

k∈N (i)−j

rt
k→i , max

k 6=i,j
e−cikat

k→i







. (12)

The simplification of the update rule forat+1
i follows along

similar lines, yielding

at+1
i =

e−cii
∏

k∈N (i)−j r
t
k→i

D
.

The update rules given in Section III can be obtained by
replacinga by log a, andr by log r.

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,”IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, Aug. 2002.

[2] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching via
max-product belief propagation,” inISIT, Sept. 2005, pp. 1763 – 1767.

[3] M. Bayati, C. Borgs, J. Chayes, R. Zecchina, “Belief-propagation for
weighted b-matchings on arbitrary graphs and its relation tolinear
programs with integer solutions,” online at arxiv.org/abs/0709.1190

[4] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver,
Combinatorial Optimization. John Wiley and Sons, 1998.

[5] S. Sanghavi and D. Shah, “Tightness of LP via max-product belief
propagation,” online at arxiv.org/abs/cs/0508097

[6] A. Braunstein, M. Mezard, R. Zecchina “Survey propagation: an algo-
rithm for satisfiability,” inRandom Structures and Algorithms27, 201-226
(2005)

[7] J. Edmonds, “Paths, trees and flowers,”Canadian Journal of Mathematics,
vol. 17, pp. 449–467, 1965.

[8] B. Huang and T. Jebara, “Loopy belief propagation for bipartite maximum
weight b-matching,” inArtificial Intelligence and Statistics (AISTATS),
March 2007.

[9] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphsand the sum-
product algorithm,”IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, Feb. 2001.

[10] X. Y. Li, P. J. Wan, Y. Wang, and O. Frieder, “Sparse powerefficient
topology for wireless networks,” inProc. IEEE Hawaii Int. Conf. on
System Sciences, Jan. 2002.

[11] D. Malioutov, J. Johnson, and A. Willsky, “Walk-sums andbelief
propagation in Gaussian graphical models,”Journal of Machine Learning
Research, vol. 7, pp. 2031–2064, Oct. 2006.

[12] J. Pearl. Probabilistic inference in intelligent systems. Morgan Kauf-
mann, 1988.

[13] S. Sanghavi, D. Malioutov, and A. Willsky. Linear programming analysis
of loopy belief propagation for weighted matching,NIPS, 2007.

[14] S. Sanghavi, D. Malioutov, and A. Willsky. Belief propagation and LP
relaxation for weighted matching in general graphs,submitted to IEEE
Trans. Inf. Theory., 2008.

[15] S. Tatikonda and M. Jordan, “Loopy belief propagation and Gibbs
measures,” inUncertainty in Artificial Intelligence, vol. 18, 2002, pp.
493–500.

[16] Y. Weiss and W. Freeman, “On the optimality of solutions ofthe max-
product belief-propagation algorithm in arbitrary graphs,” IEEE Trans. on
Information Theory, vol. 47, no. 2, pp. 736–744, Feb. 2001.

[17] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation
and its generalizations.Exploring AI in the new millennium, pages 239–
269, 2003.

[18] B. Frey and D. Dueck, “Clustering by passing messages between data
points,” Sciencevol. 315, pp 972-976.

[19] G. Cornuejols, G. Nemhauser and L. Wosley,The uncapacitated facility
location problem in P. Mirchandani and R. Francis, editors,Discrete
Location Theory, John Wiley and Sons, Inc., New York, 1990, pp 119-171

[20] D. Shmoys, E. Tardos and K. Aardal,Approximation algorithms for
facility location problems.Proc. 29th ACM symposium on Theory of
Computing (1997), pp. 265-274.

