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Abstract—This paper investigates the performance of belief in the sense that it converges to the correct answer in much
propagation (BP) as a distributed solution to two combinatorial  fewer updates
resource allocation problems arising in sensor networks: network
formation a_nd fusion center location. We model th_e_se prob!ems Il. DISTRIBUTED NETWORK EFORMATION
by max-weight b-matching and uncapacitated facility location, o o ) ]
respectively. Each of these is a classical optimization problem. In many distributed sensor network applications, in partic
For both problems, we (a) show how BP can be simplified for ular if the sensors are randomly deployed in bulk over an

implementation in distributed environments where transmissions  grea, as a first step they may be required to self-organize
are broadcast and can interfere,(b) derive a principled inter- into a network [1]. Such a network should be connected
pretation of estimates before convergence, an¢t) compare the " - . L
performance of BP to that of linear programming. be robust to occasional failing links, but at the same time
it should be sparse (i.e. have nodes with small degrees) due
to severe limitations on power available for communication
I. INTRODUCTION Furthermore, due to the nature of the application, the nétwo

There has been much recent interest in the use Of (the m&(mation |tse|f Sh0u|d occur in a diStl’ibuted fashion. §be
product form of) belief propagation (BP) as a distributelvsip  considerations are not fully met by any available approsiche
for a variety of optimization problems defined on graphs [5§uch as spanning trees, selectibgnearest neighbots or
[6]. While much of the interest in BP stems from its distrilmiteSImply connecting each node to its neighbors within some
and lightweight nature, in general, BP remains a heuristigistance 2. An interesting set of sparse planar subgraph
without additional assumptions on the problem it is difficulconstructions is proposed in [10] that requires the use of
to have a-priori guarantees on the quality of the outpufirectional information.

However, for some combinatorial optimization problems on Instead, we formulate sensor network formation as a
graphs, including the ones considered in this paper, rec¥fightedb-matching problem, a well-studied problem in com-
results [14], [3], [5] point to a connection between the atitp binatorial optimization. Our formulation only requireseth

of BP and the LP relaxation of the original problem. knowledge of distances between neighboring nodes, does not

Applying BP in sensor network settings poses some uniq[@guire planarity, and admits an efficient distributed gsofu
challenges. Typically, BP updates are executed until genvdia the max-product form of belief propagation. We describe
gence, i.e. until the numerical values of the messages do H#t b-matching problem next, its solution via max-product in
change much from iteration to iteration. Most of the anasiti Section II-B, and our experiments in Section II-E.
results on BP performance pertain to the final, converged
output. In sensor networks, it may not be possible to detett Weightedh-matching problem
convergence globally. It may also not be possible to waiil unt Given a graphG = (V, E') with non-negative weights, on
convergence; recovering good (but not necessarily optimék edges: € F, theweighted)-matching problenfMWbM) is
solutions from non-converged estimates is also importat. find the heaviest subset of edges such that not moretthan
Finally, most sensor network communications occur overeatiges share the same node. Such a subset of edges is called a
wireless medium, with every transmission broadcast to @imatching — each node is 'matched’ to at mbsither nodes.
neighbors of a node. Broadcasting causes interferenceebatwThe special case with = 1 reduces to the maximum weight
the messages that BP needs to pass between nodes. matching (MWM) problem, one of the most widely studied

In this paper we investigate the effectiveness of BP joroblems in combinatorial optimization.
solving two problems that arise in sensor network operation Weighted b-matching can be naturally formulated as an

(a) Network formation, integer program (IP). Let binary variahle € {0, 1} represent
(b) Locating fusion centers. whether the edgee € FE is part of theb-matching. Then
Each problem is well-modeled by a classical combinatoridfVPM is the solution of the following IP:
_optimization_problem. We provide _sim_plified,_ asynch_ronous P : max Zwexw
implementations of BP, that allow distributed implemeiatat B
in broadcast environments. We also show how to interpret ot Z v <b forallicV
intermediate messages, which have not converged, in a con- - € - ’

eckE;

[ . Finall I BP h I
sistent way. Finally, we also compare to smoothed dua 2. €{0,1} forallec E,

coordinate descent (since both share the sameupdate
complexity). Empirically, BP is seen to perform much better 1a p-nearest neighbors solution may lead to high degrees (moretha
due to asymmetry — if belongs to the set df nearest neighbors gf, then

Email: sanghavi@purdue.edu, dmm@microsoft.com, willsky@uhit.e the converse does not need to hold. Note thatnaatching solution disposes
This paper appears in the Allerton Conference, 2008 of this anomaly.



Here E; is the set of edges incident to nodeand the first A\B. Also, y; = max(0,y), rank(A) denotes theé-th rank

constraint enforces that the solution is a valithatching. element in the setl, and N (:) is the neighborhood of. An
The b-matching problem provides a very appealing view cfdge estimate;; = 1 corresponds to that edge being in the

the sensor network formation problem. The original grégh MWbM, “0” means it is not in the MWbM, and “?” means

represents the nodes that can communicate with each othedecided.

(e.g. nodes within some radiug). In a random deployment

scenario such a graph may have a very wide degree distnibutio Simplified Max-Product for Weighted b-matching

with the undesirable presence of large hubs. We assign ed@g Sett = 0 and initialize eachu? .. =0

weights to be proportional to the throughput of the link,(j) Update as follows o

which can be argued to decay as the received power, typically 1 . o

as d—7 with distance, wherep € [2,4] depending on the a;; = rank {(wix —ap_;)+ [k EN@\j} (2)
communications channel. We get= 2 for concreteness, and (i) For each edge seﬁfij) — 0,1 or?if (al_; +al_,)is

let the edge. wgights be. = d_ 7. Theb—matc_hing objective is respectively>, < or = w;;.
now to maximize the total throughput (received power) among
sparse subgraphs with degree at niost
The final requirement that the solution be distributed re-
quires some innovation. Thi&matching problem originally
comes from the combinatorial optimization literature, an
while in general, the IP problem can be solved in polynomial alti = max  (wi — Tjysi) , - (3)
time e.g. by Pulleyblank’s or Edmond’s algorithms, [4], tbe REN (NI
algorithms are not easily distributed. . :
Instead, we will view MWbM IP as a MAP estimationC' Broadcast implementation
problem in a graphical model, and apply the max-product-algo To further simplify the protocol for networks where the
rithm. The special structure of the problem allows us to makeimber of neighbors may be large, we describe an equiva-
strong statements about the convergence and correctntises ofent broadcast scheme, where a node broadcasts a summary

MP solution, and give a connection to a linear programmifigessage, and all the recipients can calculate their intende
relaxation of the IP, which we discuss in Section II-D. personal message based on the summary message and their

local information.
. For clarity we start with the broadcast scheme for simple

B. Max-product solution of MWbM matching, and the one fdr-matching immediately follows.

We now formulate weighted-matching onG as a MAP Suppose we are at nodeand we are interested in message
estimation problem by constructing a suitable probabilit,yﬁfj. Instead of calculating the maximum over the remaining
distribution in a Markov Random Field (MRF) form over theneighbors (i.e.k € N(i)\j) as in (3), we calculate the
valid matchings. This construction is naturally suggedtgd maximum overall the neighbors:
the form of the integer prograi®. Associate a binary random 41 .
variablez. € {0,1} with each edge: € E, and consider the A (D) (win — aj—;) )
following probability distribution:

We remark that for the matching problem= 1, and rank-
element is simply the maximum. The corresponding max-
groduct updates for MWM are:

and letk* denote the correspondingg max. If j # k* then
px) o [ vilae) [ exp(wen.), (1) the message is correet,’); = a@,""". While the recipient node
eV e€E j does not know the identity of*, it can find out whether

where the factors);(z5;,) for each nodei € V represent 7 = * bY comparingu;; —aj _, toa; . Otherwise, ifj = k*,

the b-matching constraints — that at mdsedges incident to we need to find the second-in-order value, i.e.

node: can be assigned the value “1": i.é;(zp,) = 1 if Qtiﬂ =  max (wm _a;ﬁi) (5)

> e, Te < b, and 0 otherwisé Note that we use to refer kEN (D)\k* *

both to the nodes of+ aqd factors ofp, ande to refer both 5,4 thenaffj _ thu_ This way, instead of sending a real-

to the edges of+ and variables of. It is easy to see that, for y5)yed message teachof its neighbors, the broadcast version

any z, p(z) o« exp(}_, wer.) if the set of edgeqelze =1} only requires broadcasting a single message consisting of

constitute @-matching inG, andp(x) = 0 otherwise. Thus the o real valuesz't! anda’}’. This results in a substantial

max-weightb-matching of; corresponds to the MAP estimatéreqyction in communications without sacrificing accuracy.

of p. ~ The extension forb-matching is immediate: instead of
Max-product for the MRF (1) above can be simplifiedending the maximum and the second-to-maximum values

to the following iterative update algorithm. We providgrom (w,;, — al_;), overk € N(i), we send theh-th and

the derivation of this scheme starting from the standa(g + 1)-th ranked values. Ifw;; — a;,ﬂ, exceeds the rank-

max-product message updates in the appendix. For tyQue, then it must have been included in the toglements,

setsA and B the set difference is denoted by the notatiognq to calculate the correct message we must remove it and
5 _ _ _ _ _ _ use the rankd + 1) element. Otherwise, we use the rank-
We will see in the next section that storing this (potenyialery large) . . .

factor as a table is never necessary, and message updateingibis factor  €lement. We summarize this scheme #ematching next.

reduce to simple maximization operations.



Broadcast Max-Product for Weighted b-matching .

(0) Sett =0 and initialize each_; =0 o8}
(i) Pick a node: at random, and compute the summary osl
message consisting of two real values: oal
a,tt = rank {(wir — af_;)+ | kEN(@)}  (6) o2r
"t = rank {(wi— af_)y | BN} i i
-0.2 <
. . N\ SRS I D
For etaclh nod(ta r1e9|p|ent nodge NV (z)t. ) " ol 7 ?;&&%Q =4
Seta; " = @, if wi; —af_; <@, anda;" = sl K
a,""! otherwise. e
(i) Upon convergence, output estimaitefor each edge set

T = 0,1 0r ?if (a;—; + a;_;) is respectively>, < - 05 0 0s !
or = wj;.

Fig. 1. Original dense graph: pairs of sensors within distaR are linked
by an edge.

D. Theoretical guarantees for MWbM Max-product via LP

The special structure of the MWbM problem has strongyax-product with the message update:
implications for the performance of max-product. In a s . .
previous publication [13] we studied the convergence and a’iJ—r»j = Aagi_; +(1=2A) ke%%?( ,(wik —akmh
accuracy properties of max-product for weighted matching NN
and b-matching, and have found striking connections witBndA € [0, 1) is the damping factor, with = 0 corresponding
the linear programming (LP) relaxatiomf the corresponding t0 no damping. We empirically observe that the damped
IP. The LP relaxation of MWbM replaces the constraintersion of max-product with > 0 always converges and gives
z. € {0,1} with the constraind < z. < 1 for eache ¢ E. the same solution as the linear programming relaxation (gvhe
For bipartite graphs it gives correct MWbM solutions, but ifveé map the non-informative max-product estimates="?"
general non-bipartite graphs, it can have fractional optinto value0.5).
— i.e. those that assign fractional mass to edges. In [13],
[14] we have established the following connection betweeé1

convergence of max-product and integrality and uniqueness
of the MWDbM LP relaxation: We now study the behavior of max-product for distributed

sensor network formation on numerical simulations. For our

Theorem 1:(a) If the LP has a unique optimum that igfirst experiment we randomly dispersé = 100 nodes in a
integral, then max-product will converge and the resultingduare region—1,1] x [-1, 1], and create an initial adjacency
solution will be exactly the max-weigltmatching. graph for nodes that are close enough to communicate, we

(b) Suppose the LP is loose, or has multiple optima. Th&gt the threshold to b& = 0.4. The original dense graph is
for any edge, if there exists any optimum of LP that assigésplayed in Figure 1.
fractional mass to that edge, then the max-product estimatd\ext we set edge weights to be proportional to throughput,
for that edge will either oscillate or be ambiguous. w. = d;?, and apply max-product to find the maximum

weight b-matching, withb = 5. We use an asynchronous

This theorem implies that max-product is equally powerfidersion where a node is chosen at random and it broadcasts
to the LP relaxation. This gives a strong justification foings @ message to all of its neighbors. We use moderate damping
max-product in distributed applications, where there is o= 0.25. In Figure 2 we plot the weight of the max-weight
straightforward way to apply linear programmingnd it also b-matching found aftern node updates of max-product. We
gives insight into situations in which max-product may orymanote that each update originates from a single nodel(go
not be appropriate. updates are required just to visit the whole graph once rigjea

In our simulations in Section II-E we observe an evefax-product rapidly, within several passes through thetyra
stronger connection between LP relaxation and the damgéifls @ matching with close-to-optimal weight.
version of max-product, which also conveniently elimisate In Figure 3 we show the corresponding max-product match-
the non-convergence issues for max-product. For ordindA@ solution upon convergence. For almost all the edges
max-product we observe that it converges for the majority §1ax-product converges to an informative solution, i.ehesit
the edges and oscillates on a small subset of edges. While éng) = 1 or 0, with the edge displayed or removed respec-
can run max-product for a fixed number of iterations, and théiely. However, for a small cycle in the center the edges are
terminate it, a better solution is to use a 'damped’ versibn 8on-informative:; ;, =7, as shown in red. Plain max-product

Numerical experiments

3In our experiments we study distributed implementation of therdinate 4 1f in the intermediate steps the selected edges do not fobrmatching,
descent for the dual of the LP relaxation, and show that magymt is we throw away enough violated edges until the configurat®m ivalid b-
preferable. matching.
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Fig. 2.  Weight of theb-matching selected aftet node updates of max- Fig. 4. Max-product matching weight vs. node updates.
product.

the optimal primal solution:

mi(Zaze—l) = 0
osf eel;
o1 ze (Mi+m; —w.) = 0.

We consider only those MWM problems which have a unique
integral solution for their LP primal. Then the primal optim
can be recovered by finding those edges that satisfiym,; =
wy; for the dual optimum. Furthermore, if we start with a sub-
optimal dual solution, then we also use this as a heuristic to
| get sub-optimal primal solutions.

Coordinate descent on the dual starts from a feasible solu-

tion, e.g.m; = max. w. and at each step selects a node at

Fig. 3. Max-produch-matching solution. The original dense graph appeal

I +1 _ i ) ot
in Figure 1. Most of the edges converge to the correct valedggs with fandom and makes an updam'é - I,anG_N(l) (w” my)+’
ze = 0 are removed, and ones with. — 1 are shown in bold), while a Where (z), = max(z,0). While the iterations are extremely

small cycle in the center converges to an uninformative smiufshown in simple, we shall see that plain coordinate descent can ogave
red). without reaching the global minimum. To alleviate this issu
we also consider a smooth version of the dual problem:

would result in oscillations for these edges, but damped-ma§M-DUAL min (Z m; —¢€ Z log(m; +mj — wz‘j))
product converges to uninformative values for these edges, i cel
equivalent to the fractional solution of the LP relaxation. s.t. m; >0 forallicV.

a) Comparison to dual coordinate descen®ur next For_ problems vyhere the_ LP primal has a unique integral
experiment investigates the viability of another disttéal optlmum, the primal solution can be recovered from the dual
solution of the MWM problem, via coordinate descent (CD) oflution, asc — 0. We use coordinate descent SM.DUAL,
the dual of the LP relaxation, and compares the performance’§lich selects a node and updates it as follows:
dual coordinate descent to that of max-product. For clavity
consider the simple MWM problenb{matching withb = 1), miT = min | m; — € Z log(m; +m}; — w;)

which has the following dual of its LP relaxation &nd (4, j) mi20 JENG)

denote the same edge): - . . . oo
ge) This is a simple one-dimensional optimization problem. We

DUAL : min Zmi’ gradually decrease as we run coordinate descent, és! =
i€V 0.99¢!, and keep it fixed after it reaches some fixed small
s.t. m; +mj > w;; foralleeck, threshold e.gl0~%. We produce the matchings at intermediate

m; >0 forallicV. steps by relaxing the requirement that + m; = w;; to

m; +mj —w;; < 2, wherea = min, (m; + m; — w;;).
It has an intuitive interpretation of assigning massto node We apply max-product, plain dual CD, and smooth dual CD
1, and minimizing the total.mass while satisfying that forhiaacto a MWM problem on a graph oV — 40 nodes, where the
edge the mass on its vertices exceeds LP relaxation solution is integral. We plot the weight of the
To solve the MWM LP relaxation, we first solve the dualmatching selected after updates of max-product in Figure
and then use complementary slackness conditions to reco¥ethe same graph for plain dual CD in Figure 5, and one



) A classical optimization problem that exactly captures thi
tradeoff is thefacility location problem There are many
variants of this problem, each with differing requirements
on where the facilities can be placed, and what/how many
customers(in our case sensors) they can serve. Nice surveys
on this classical NP-hard problem can be found in [19], [20],
for example. We will concern ourselves with the uncapagitat

facility location problem, which we describe below.
This section has been inspired by the empirical success
of Affinity Propagation [18], for exemplar-based clusterin

s % %0 e %o The underlying motivation there is the same as ours, and

nunber of message updat es they too apply BP for their problem. However, they use a
different MRF, one that isot equivalent to the uncapacitated
facility location problem described here. That said, mafy o
the simplifications we derive below are similar to the ones
derived in [18]. For our problem, we empirically observe
several interesting properties connecting the performanfc
BP with the LP relaxation of uncapacitated facility locatio

Mat chi ng wei ght

Fig. 5. Plain dual CD matching weight vs. node updates.

08 = Smooth dual-CD weight
—— LP upper bound

A. Uncapacitated Facility Location

We now paraphrase the standard uncapacitated facility loca
tion problem to fit the setting of this paper. We are given a set
of sensorsV” = {1,...,n}, and a set of edgeB connecting
them. For example, edges might represent the physical range
S unbar of message uphates | o of communication. Any sensor can be possibly upgraded, at a

cost, to a fusion center. Any sensor thahat a fusion center
Fig. 6. Smooth dual CD matching weight vs. node updates. has to be assigned to a neighbor that is a fusion center (for
the moment, we consider only this kind of “one hop” service).
We need to determine where to have the fusion centers, and
for smooth dual CD in Figure 6. We fix intermediate invalidhow to make the subsequent assignments.
matchings as described in footnote 4. The simple versionThe uncapacitated facility location problem puts this in a
of dual CD converges extremely rapidly (in a few passe&®st minimization framework. Upgrading sensore V' to
through the graph), but very often gets stuck at very bad fusion center incurs a cost;. Assigning sensor to a
solutions: in Figure 5 the resulting matching has about ofigsion center atj € A/(i) incurs a cost;;, (N (i) denotes
third of the weight of the optimal matching. Max-producthe neighborhood of). Our objective is to decide where to
converges in about a dozen passes through the graph toltdwate the fusion centers, and then assign sensors to them,
optimal solution. The smooth dual CD solution takes muctp as to minimize the total cost. This problem can be stated
longer to converge to the optimal solution, and in addition a&s the following integer program. There is a variablg for
has the undesirable property of yielding very poor matchingachorderedpair of (i, j) € E (the variablesr;; andz;; are
upon early termination. Thus, while smooth dual CD can alsbstinct). A valuex;; = 1 means that is assigned to a center
find the optimal matchings for simple MWM problems, maxat j, andz;; = 0 means that it is not. Also, for each noge
product is considerably more efficient. there is a variablg;: y; = 1 means thaj has been upgraded
to a fusion center, ang; = 0 means it has not.

Mat chi ng wei ght
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I11. L OCATING FUSION CENTERS

A common model for sensor network aggregation is to have min Z CijTij + Z CiiY5
the sensors forward their data to one or more fusion centers, (i.9)€EE J
which then either process the data, store it for future esfee st vi + zi; =1 forallieV,

or transmit it to locations further away. The sensor network
operator/designer that dec_ldes to use fusion centers rieeds y; >ay;  foralljeV andie N(j)
tradeoff between two requirements:

(&) having each sensor close to its assigned fusion center, %ig> Y5 € {0 1}
so that sensors can reliably forward their data with low In words, we would like to minimize the total cost of
latency and power consumption. opening fusion centers, and assigning sensors, subjebtito t
(b) limit the total number, and cost, of opening fusiortonstraints thafi) each sensor is either itself a fusion center,
centers. For example, it would be infeasible to opena is assigned to a neighboring fusion center, &idif any
fusion center for every sensor. sensor; is assigned tg, then;j should be a fusion center.

JEN (@)



The LP relaxation of this problem involves replacing th&/hile the version with full synchronous message updates is

integer constraints with interval constraints, y; € [0, 1]. by far the most popular in the max-product literature, doing
. full synchronous updates in wireless sensor networks will
B. Applying BP lead to significant interference. Below we give an altexmati

We now formulate a Markov random field (MRF) suchasynchronous broadcast implementation. Furthermore|see a
that finding the MAP assignment of this MRF is equivalentse damping, similar to the network formation section:
to solving the integer program above. We then use BP as a ;. ‘
distribute% heuristi?: topfin%l this MAP assignment. We also iy = Mmax{0, —c; = D}) + (1= Nri;
show how the message updates can be significantly simplified, 1 , .
involving two real numbers for every pair of nodes. a;’; A —ei + zrk—n' =D + (1 =XNaj_;.
For every nodei, we have a variable; € {i U N (4)}, k]
which is to be interpreted as théentity of the center that
is assigned toThis center will be one of the neighbors ©f C. Broadcast Implementation

or i itself. Consider In the implementation of max-product given above, each

(s g —cis; te message to every one of its neighbors.
p(s) o fii(siys e Cis (7) node sends a separa ge
=) H il ])H However, if the wireless medium is broadcast, so that any

(i.5)€E i o . . ) T .
i _ transmission byi is heard by all its neighbors, it is possible
where f;; checks consistency: to significantly reduce the number and complexity of the
0 if s;=jbuts, #j transmissions. Suppose we want to update all the outgoing

Fi=d0 if s £ibuts =i messages from nodeln the broadcast implementation, nodes
N 570 5=t transmit asynchronously. Node broadcasts three numbers,
1 else which are received by each of its neighbors. These numbers

It is easy to see that(s) > 0 only for those states corre-are
sponding t_o a valid solution, and _that_ for the_se sta_ltes it wil s = —cuot erkﬂi
be proportional ta:~¢°s*. Thus maximizingp(s) is equivalent B

to solving th'e IP above.' . ' ' my = max —ci, +al,_,
BP for this problem involves sensors iteratively sending ki
messages to their neighbors. In standard form the message my = secondnax —c;; + ak_;.
ki

from i to j consists ofk real numbers, wherk = [N ()| +1

is the number of possible values thgt can take. However, Consider now a neighboj of i which receives these three
these messages have tremendous amount of redundancy,namabers. Suppose also that(a) knows the value of;;, its
can be radically simplified to the following update rulesjeth edge toi, and (b) has stored the values of_; andd}_,,
we derive in the appendix: which areits most recent messagesitoThen,j can use the
three numbers above mwmmputethe new messag i}j and
al*l that it should have received froinin a vanilla (i.e. non-

i—

Simplified Max-product for Facility Location

(0) Initially, 79, =a9_; =0 for all (i,j) € E. broadcast) implementation.
() The messages are updated as follows: To compute the new messages,needs to be able to
compute the value oD above. It is easy to see that
D = max<{ —c¢; + Zrtk%i , 121712); —cin +ak_; D = max{s— ’I”;_)i Jul,
Py :
£+l 7 where
ri—»j = max {07 —Cij — D} u = mi if m1 > —Cij + a;_)w
aﬁilj = —ciu+ Zriéi -D my if my = —cij +al_,.
ki

Note thatm; > —¢;; + aﬁ-ﬂ. always.
(i) At time t, for each node:

— 4 is a fusion center if and only if D. Empirical Observations

Zrkﬂ' > max a—; Empirically, BP performs very well with damping. Figures
k 7 and 8 show a typical example: here a 100-node network was
— i is assigned to a center atif and only if optimally resolved within 20 iterations. We set the cost of a
edge to be inversely proportional to the square of its length
aj—i > Z”Hi and a;_; > I,?jf Af—i and the cost of a fusion center to be the median cost of the
k edges coming out of it.
— otherwise, the status afat ¢ is undecided. Based on numerical experiments, we make the following

conjectures about the connection between the BP algorithm
Note that in the above algorithm we have deliberately ndescribed in this section, and the LP relaxation of uncapaci
mentioned which edges are updated in any given iteratidated facility location.




nelre] = exp(weze) x mi_.[ze] x mj_.[z.], and
2L =1 if nL[1] > nk[0],
:E"é =0 if ni[1] <nl0],
=7 if nL[1] = nl[0].

We now mend them into a form suitable for sensor net-
works. First, instead of passing messages between edges and
nodes we formulate a “node-to-node” protocol that is much
more amenable to implementation in a distributed appbicati
Let e = (i,j) be the edge connecting the neighbeérand
Fig. 7. Initial node placement for fusion center problem. 4, ande’ = (k,i). Combiningm!*?! [z.] with m!T! [z.], we

i—e e—j

have a node-to-node message update:

”Sﬂ;%‘ % )(\ mii:_l] [xe} = exp(xewe) a{ga\x 'Q[Jz xE H mkﬁz xe

keN (i)\j

/ % )K% | For pedagogical purposes we derive the updates for simple

matching first, and then extend them tematching. The

constraint facton);(xg,) for MWM enforces that ifz, = 1

}\ K \ ] thenz, = 0 for all ¢’ € E;\e. Hence
AN /{ | ot =uet S logm ]
EEN (i)\j

Fig. 8. Fusion center decision after 20 iterations. . . .
However, if z. = 0, then one of the neighboring edges can

have valuel, hence,
1) In full-synchronous undamped BP, starting from the

t+1 t
uninformativé initial condition, if nodei is estimated logm;Z.;[0] = Z ?og i[O+
to be a fusion center in two consecutive iterations, then keN (i)\j ) t
y: = 1in the LP. max (logmk_n-[l] — logmkﬁi[O])Jr.
2) Any fixed point of BP corresponds to a valid solutionl\IOW let
That is, for any nodg, if any other node consideysto
be its fusion center thep; = 1 at the fixed point. ) mt_[0] . m;_,;[0] -
3) Any fixed point reached from the uninformative starting @i 08 ¢ 08 Hj[l] + Wij
condition, and without damping, is the LP optimum
(which in this case is also integral). and after some simple algebra, we recover the simplified

message updates in (2):

t+1 __

gty

APPENDIX A v (wik — aj_;) ,

A. Simplified message updates for MWbM The same sequence of reductions leads to the simplified
In this section we show how to reduce the standard fact@igorithm for generab-matching. There, the constraint factor
graph form max-product updates to obtain the simplifiedi(zx,) enforces that ifz. = 1 then we can set at most

message updates in (2). The standard max-product upddtes 1 neighboring edges td, while if z. = 0 then we

are presented in the table below: can setb neighboring edges td. Hence, the difference
between the two messages amounts to rfaekement in the
Max-Product for Weighted b-Matching set {(logmf,_;[1] —logmj_;[0]), | k € N(i)\j}, and the
(o) Sett =0 and initialize each message to 1. simplified update rule is given by
0) Itergtively compute new messages (factor to variable and filj = rank, {(wir — aj_;)+ | k € N(@)\j}.
variable to factor messages) until convergence as follows:
mfg:lz (2] = exp(zewe) X mﬁge[we] (8) B. BP for Facility Location
In this section we derive the simplified message update rules
mitlz.] = max{ Yi(zp,) H mt, [ given in Section IlI-B starting from the MRp(s) in (7).
FB\e e CB\e Recall thatm,_.;(u) is the message fromto j for the case

whens; = u, i.e. the state of is u. The standard max-product

(i) Also, at eacht compute beliefsn![z.] and esti- update equation is

mates for each edge ' € {0,1,?} at time &
t+1 _ —Cis;
m; 75 (s5) = max fij(si, s5) e 11 mkﬂ( i)
SUninformative IC means that all messages- are set ta0 initially. o keEN (i)—



Now we consider the various values thatcan take. First, if
s; =1, then f;;(s;,s;) = 1 only whens; = i, so

t+1

—Cii

mi—>j(i) = € H mk*ﬂ( )-
keN (i)—
On the other hand, i§; = j thenfi]-(si, sj) = 1 for any value
of s;, so
mi5() = maxe s [ mi_i(si)-
keN (i)—j
Finally, for any other value; # i, j, fi;(s:,s;) = 0 only for
s; = j. Thus
miZi(sy #0.0) = maxemen J] 0 mi(s).

keN (i)—j

Notice now that in the above equation, the valuerdf',(s;)
is the samefor all values ofs; # ¢,j. This is the crucial
observation that allows us to obtain a much simpler upd
rule. We will denote this value byn! (s; # i,7) In
particular, for each time, define

t .
t m;_.; (4)
/ mf—)j(sj #Zﬂj)

Consider first the update for. Using the update rules fon
we have that

t+1
e min @)
ST G #m)
TCi HkGN(z mk—)l(j)
= max< 1,
maxg,+; € er/\/(z (i)
e
= max 1’ . ,—Cis. 1«#(“1)
maxXs,+j € s er/\/ (0)—3 mt_ (5

Now, as noted before, at timewe have thain!_.(s;) does
not depend on the particular valuesf for all valuess; # i, k.
Now j # i, k so this means that},_,(j) = m}_.(s; #1,k).
Let us deflne

I

keEN (i)—j

mj_;(s:)

kﬁz(sl # k)

—Cjs,;
P54

D

max e
$i#J

(11)

so thatr;_; = max{1, <" }. We now simplify D. Suppose
first that the maximum in (11) is attained &t= 7. Note that
in this case .
my_(5i) -
mh_ . (s; #1,k) k=i

by the definition (9) of . Thus

in this caseD

e Cii erN(i)_j r1._,;. Now suppose that the maximum in

(11) is attained by some; = k* # 4, j. In this case

mh. . (k¥) H mi_,(k*)

D = efcik* 7k* . 7N k; .
mk*}i(sz # 2 ) k‘EN(i)—j—kt* mk*)i(sl # 2, )

Now for all k # i, k*, we have that- ’H(f(i )k

the definition (lO)M = a}._,,. Thus if the maximum

in (11) is attained by somg* #+14,] thenD =e Cikqal, .
Combining the above reasoning, we get that

[1

keEN (i)—j

=1 Also, by

— —Ciqq

D max . (12)

t —Cik ot
rhois maxe tal
s

The simplification of the update rule far "' follows along
similar lines, yielding '

—Cii t
e ¢ er/\/(i)—j Th—i
5 )

The update rules given in Section Il can be obtained by
replacinga by log a, andr by log r.

t+1
a;
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