
The University of Texas at Austin
Department of Electrical and Computer Engineering

EE381V: Large Scale Learning — Spring 2013

Assignment 1

Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013.

(Problems 1 and 2 have been adapted from Jure Leskovec’s course on ‘Mining Massive Datasets’)

1. Locality Sensitive Hashing

The first week of class discussed locality sensitive hashing. For some standard similarity
functions, like the Jaccard similarity, we showed that there corresponds a locality sensitive
hashing scheme. As it turns out, not all similarity functions have a locality sensitive hashing
scheme. This problem explores this issue.

Recall that a locality sensitive hashing scheme is a set F of hash functions that operate on a
set S of objects, such that for two objects x, y ∈ S,

Pr
h∈F

[h(x) = h(y)] = sim(x, y)

where sim(·) : S × S → [0, 1] is a pairwise function (the similarity function).

• Let d(x, y) = 1 − sim(x, y). Prove that for sim(·) to have a locality sensitive hashing
scheme, d(x, y) should satisfy the triangle inequality.

d(x, y) + d(y, z) ≥ d(x, z)

for all x, y, z ∈ S.

• Consider the following two similarity functions: The so-called Overlap similarity func-
tion,

simOver(A,B) =
|A
⋂
B|

min(|A|, |B|)
and the Dice similarity function,

simDice(A,B) =
2|A

⋂
B|

(|A|+ |B|)
,

where A and B are two sets.

Is there a locality sensitive hashing scheme for either? Prove, or disprove, giving a
counterexample.

Prove or disprove (give counterexamples). Let A,B be any two sets.

2. Approximate Near Neighbor Search using LSH

LSH has been used for nearest neighbor search, in numerous applications. This problems
explores this.

1

Given a data set A, along with a distance function d(·), the Nearest Neighbor problem says the
following: given a query point, z, return its nearest neighbors, w.r.t. d(·). The approximate
nearest neighbor problem is an approximation in two respects: it only requires us to know
the immediate neighborhood of any given point, and also, we need only return approximate
nearest neighbors, up to a dilation factor λ. More precisely, the (c, λ)-Approximate Near
Neighbor (ANN) problem is as follows: Given a query point, z, for which (we assume) there
exists a point x ∈ A with d(x, z) ≤ λ, return a point x′ from the dataset with d(x′, z) ≤ cλ.

We outline an approximate nearest neighbor algorithm, and then, through the parts of this
problem, show that with large probability, it outputs a c-approximate nearest neighbor, as
explained above.

Let A be a dataset with n points from a metric space with distance measure d(). Let H be
a (λ, cλ, p1, p2) locally sensitive family of hash functions for the distance measure d(). Let
G = Hk = {g = (h1, . . . , hk)|hi ∈ H}, where k = log1/p2(n) be an amplified family. Choose

L = nρ random members g1, . . . , gL ∈ G, where ρ = log(1/p1)
log(1/p2)

. We then do the following: (a)

hash all the data points and the query point z using all gi’s (1 ≤ i ≤ L); (b) retrieve at
most 3L data points from the buckets gj(z) (1 ≤ j ≤ L), and (c) report the closest one as a
(c, λ)-ANN.

• Define Wj = {x ∈ A|gj(x) = gj(z)} (1 ≤ j ≤ L) as the random set of data points x
hashed to the same bucket as the query point z by the hash function gj . Let T = {x ∈
A|d(x, z) > cλ}. Prove:

Pr

 L∑
j=1

|T
⋂
Wj | > 3L

 < 1

3
.

• Let x∗ ∈ A be a data point such that d(x∗, z) ≤ λ. Prove:

Pr [gj(x
∗) 6= gj(z), ∀1 ≤ j ≤ L] <

1

e
.

• Find a bound on δ, the probability that the reported point is an actual (c, λ)-ANN.

3. This problem tests empirically how nearest-neighbor search using LSH compares to linear
search. For this, we provide a dataset of images. Each column in the dataset is a vectorized
20×20 image patch. Download the image set and matlab code here: http://http://users.
ece.utexas.edu/~cmcaram/LSL2013/lsh.zip

1 and see the ReadMe.txt file for instruction
on using the code, and in particular, the functions lsh and lshlookup.

In this problem we use the `1 distance measure. The LSH function is run with L = 10, k = 24,
where L is the number of hash tables generated and k is the length/number of bits of the
hash key.

1This is the same as that provided from the problem’s source, Jure Leskovec’s course on Mining Massive Data
Sets. The dataset and code are adapted from Brown University’s Greg Shakhnarovich

2

http://http://users.ece.utexas.edu/~cmcaram/LSL2013/lsh.zip
http://http://users.ece.utexas.edu/~cmcaram/LSL2013/lsh.zip

• Consider the image patches zj , of column 100 × j, for j ∈ {1, 2, . . . , 10}. Find the top
3 nearest neighbors for these image patches, (excluding the original patch) using both
LSH and linear search.

Compare the average search time for LSH and linear search. (If the bucket contains less
than 3 points, rehash till you get enough neighboring points).

• For each zj (1 ≤ j ≤ 10) let {xij}3i=1 denote the approximate near neighbors of zj found
using LSH, and {x∗ij}3i=1 to be the actual top 3 near neighbors of zj found using linear
search. Compute the following error measure:

error =
1

10

10∑
j=1

∑3
i=1 d(xij , zj)∑3
i=1 d(x∗ij , zj)

Plot the error value as a function of L (for L = 10, 12, 14, . . . , 20, with k = 24). Then
plot the error values as a function of k (for k = 16, 18, 20, 22, 24 with L = 10).

• Plot the top 10 near neighbors found using the two methods (using the default L =
10, k = 24) for the image patch in column 100, together with the image patch itself.
Use functions reshape() and mat2gray() to convert the matrices to images, then use the
functions imshow() and subplot() to display the images. Compare them visually.

4. K-Mean vs. EM for Gaussian Mixture Models

Consider samples being generated from a Gaussian mixture model with the following pdf

p(x|z = k) =
1

2π|Σk|1/2
exp

[
−1

2
(x− µk)TΣ−1k (x− µk)

]
, k ∈ {1, . . . ,K}

p(x) =
1

K

K∑
k=1

p(x|z = k)

where x, µk ∈ R2, z ∈ {1, . . . ,K}, K = 3, Σk ∈ R2×2 are the covariance matrices.

Let µ1 = [5, 5]T , µ2 = [10, 20]T , µ3 = [16, 8]T and

Σ1 = σ2
[

1 0
0 1

]
, Σ2 = σ2

[
1.2 0
0 1.2

]
, Σ3 = σ2

[
.28 .42
.42 1.4

]

• We want to cluster the points generated from the distribution p(x) using the EM al-
gorithm. Generate a sample set S = {xi}ni=1 of size n = 300 from the distribution

p(x), using σ2 = 2. Starting with initial estimates of the means as µ̂
(0)
1 = [0, 0]T , µ̂

(0)
2 =

[10, 15]T , µ̂
(0)
3 = [16, 0]T and covariance Σ̂

(0)
k = I, the 2× 2 identity matrix, find the final

estimates of the means µ̂k and covariances Σ̂k, k ∈ {1, 2, 3} of the three components of
p(x) using the EM algorithm. Now using the MAP estimates ẑi = arg maxk P (zi = k|S),
obtained by the EM algorithm, cluster the sample set S in 3 clusters. Plot the clusters
using the matlab function scatter() using separate colors for each cluster (or plot each
cluster in separate graphs).

3

• Define the set Eπ = {xi : π(ẑi) 6= zi}, for a particular permutation π of the labels of
the clusters. Define error set E = Eπ0 , where π0 = arg minπ |Eπ|. Hence set E contains

the sample points that fall in the wrong cluster. The error fraction is given by e = |E|
n .

Define the probability of error PA(E, σ2) for a particular clustering algorithm A as the
average e over several sample sets S drawn from the same distribution p(x). Now gen-
erate several sample sets varying σ2 between 1 and 30 (also many sample sets for each
σ2) and cluster using both EM and K-mean algorithms starting with same set of initial
mean estimates as given in part (a). Plot the probability of error PA(E, σ2) as a function
of σ2 for both the algorithms. Also plot the average run-time of both the algorithms for
different σ2.

• Define the algorithm B as follows. First run the K-mean algorithm to obtain mean
estimates µ̂′k. Then run the EM algorithm using µ̂′k as the initial mean estimates. Plot
probability of error PB(E, σ2) vs. σ2 for algorithm B.

5. A few details about spectral clustering.

• Suppose that {u1, . . . , uk} and {û1, . . . , ûk} are any two orthonormal bases for the same
k-dimensional null-space of a matrix L. Let U and Û denote the n× k matrices whose
columns are the respective orthonormal bases. Show that there is an orthonormal k× k
matrix Q, for which Û = UQ. Converseley, show that if U is an n × k orthonormal
matrix, and Q a k × k orthonormal matrix, then Û = UQ is also orthonormal.

• Recall that if we have a graph with k connected components, then the Laplacian has a
k-dimensional subspace, spanned by k vectors, {u1, . . . , uk}, where ui has support only
on the elements corresponding to the nodes in the ith connected component. Hence, if
we let U be the matrix with these vectors as columns, and then let {y1, . . . , yn} be the
rows of U , then if we normalize each yi, each point maps to the standard basis element
ec(i), with c(i) corresponding to the index of the connected component of i.

Show that if instead of {u1, . . . , uk} we have any other orthonormal basis of the nullspace,
{û1, . . . , ûk}, then if we form the matrix Û in the same way, and let ŷi be rows of Û ,
then again, xi = yi/‖yi‖ will be one of k distinct, orthonormal vectors.

6. Recall the example we did in class via direct calculation:

A =

(
0 0
0 ε

)
, ∆ =

(
0 β
β 0

)
.

Let E0 denote the smallest eigenvalue of A and F0 the smallest eigenvalue of (A + ∆). Use
the sin-theta theorem to bound dp(E0, F0).

4

