The University of Texas at Austin Department of Electrical and Computer Engineering

EE381V: Large Scale Learning — Spring 2013

Assignment 3

Caramanis/Sanghavi

Due: April 8, 2013 (Monday, 10am)

1. Consider a collection of (arbitrary) points: $\mathbf{x}_1, \ldots, \mathbf{x}_n$ in *p*-dimensional Euclidean space, \mathbb{R}^p . Assume that these points are centered, i.e., $\sum_i \mathbf{x}_i = 0$. For V a *k*-dimensional subspace, let P_V denote the orthogonal projection onto V. Then the approximation error of V with respect to our points is given as:

$$\sum_{i=1}^{n} \|\mathbf{x}_{i} - P_{V}(\mathbf{x}_{i})\|_{2}^{2}.$$

- (a) Write this optimization problem explicitly, and show that it is non-convex.
- (b) Show that the top k singular vectors of the empirical covariance matrix of the points $\{\mathbf{x}_i\}$ give the optimal solution.
- 2. Suppose a $m \times n$ matrix A has a low-rank approximate factorization:

$$\|A - CB\| \le \varepsilon,$$

where C is $m \times k$ and B is $k \times n$.

- (a) Use this factorization to come up with an approximate QR-factorization. How many flops does it take?
- (b) Use this factorization to come up with an approximate *SVD*-factorization. How many flops does it take?
- 3. The power method for finding the leading eigenvector of a square matrix A proceeds as follows:

$$\tilde{v}_{t+1} = Av_t
v_{t+1} = \tilde{v}_{t+1} / \|\tilde{v}_{t+1}\|$$

Let v^* be the true leading eigenvector and v_0 the initial iterate.

a) What happens when v_0 is orthogonal to v^* ?

b) Give an upper bound on $||v_t - v^*||$ in terms of $||v_0 - v^*||$. Your bound should depend on t and the two leading singular values σ_1 and σ_2 .

4. Show that for any $m \times n$ matrix M, $||M||_F^2 = \sum_{i=1}^{\min(m,n)} \sigma_i(M)^2$, where $\sigma_i(M)$ is the *i*th singular value of M.

5. Suppose we have a $n \times d$ matrix A where each element A_{ij} is drawn i.i.d. to be $\frac{1}{\sqrt{n}}$ w.p. 1/2, and $-\frac{1}{\sqrt{n}}$ otherwise. Find a lower bound on n so that the matrix A satisfies (ϵ, s) RIP w.p. at least $1 - \delta$. Your bound should depend on s, d, ϵ, δ .

Follow the steps in the proof of Theorem 4 in the paper "Compressed Sensing: Basic results and self contained proofs" by Shai Shalev-Shwartz. (this paper is available on the class webpage). You can use any lemmas therein, provided you refer to them appropriately.

- 6. The adjacency matrix A of a graph G = (V, E) is a 0 1 matrix where $a_{ij} = 1$ if and only if $(i, j) \in E$, and 0 otherwise. By convention $a_{ii} = 0$. The Laplacian L of a graph is L = D A where D is a diagonal matrix with d_{ii} equal to the degree of node $i, i \in V$.
 - a) Show that L is positive semi-definite.
 - b) Show that the smallest eigenvalue $\lambda_n(L) = 0$, for any graph with n nodes.
 - c) Show that if the graph has k components, then $\lambda_n(L) = \lambda_{n-1}(L) = \ldots = \lambda_{n-k+1}(L) = 0$. [i.e. L has k eigenvalues equal to 0]
- 7. Consider a $m \times n$ matrix A. Consider the sparsification technique where we sample $E \subseteq [m] \times [n]$ entries of the matrix A. In particular, let us consider the sampling-with-replacement model, where we form matrix Y such that

$$Y = \begin{cases} A_{ij}/p, & \text{with probability } p, \\ 0 & \text{with probability } 1-p. \end{cases}$$

We set p = |E|/mn so that the expected number of entries sampled equals |E|.

Let Q_k denote the top left singular vectors of Y. In this exercise you will show that there exists a universal constant c such that if $m \leq n$, and $|E| \geq cn \log n$, then with probability at least $1 - n^{-3}$,

$$\|A - Q_k Q_k^{\mathsf{T}} Y\| \le \|A - A_k\| + cA_{\max}\sqrt{mn}\sqrt{\frac{n}{|E|}}$$

To simplify the expression, suppose m = n, and $A_{\text{max}} = 1$.

As discussed in class, there is a common approach to many problems like this. The tools we have seen in class control the deviations of sums of zero-mean independent random matrices. Therefore, we need to make the error look like a sum of zero-mean independent matrices. This exercise proceeds in a very similar way as our proof for the column-sub-selection case we did in class.

(a) Show that for any two matrices, A and B (of compatible dimensions)

$$||A - B_k||_2 \le ||A - A_k||_2 + 2||A - B||_2.$$

(Recall that we are using M_k to denote the best k-rank approximation of a matrix). In our setting, this lemma says that to control $||A - Y_k||$, we have to control ||A - Y||.

- (b) Let X = Y A, and write it as a sum of mn independent matrices.
- (c) Now bound the key parameters R and σ^2 in Bernstein's Theorem.
- (d) Use this, to show that

$$\mathbb{P}(\|X\|_2 \ge t\sqrt{n/p}) \le 2n \cdot \exp\left(-\frac{t^2}{12}\right).$$

- (e) Choose an appropriate t, and conclude the proof of the theorem.
- 8. Show that if a matrix W satisfies $(\epsilon, 2s)$ -RIP (as defined in class), for some $\epsilon < 1$, then there cannot exist two s-sparse solutions to the system of equations y = Wx.