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1. Consider a collection of (arbitrary) points: x1, . . . ,xn in p-dimensional Euclidean space, Rp.
Assume that these points are centered, i.e.,

∑
i xi = 0. For V a k-dimensional subspace, let

PV denote the orthogonal projection onto V . Then the approximation error of V with respect
to our points is given as:

n∑
i=1

‖xi − PV (xi)‖22.

(a) Write this optimization problem explicitly, and show that it is non-convex.

(b) Show that the top k singular vectors of the empirical covariance matrix of the points
{xi} give the optimal solution.

2. Suppose a m× n matrix A has a low-rank approximate factorization:

‖A− CB‖ ≤ ε,

where C is m× k and B is k × n.

(a) Use this factorization to come up with an approximate QR-factorization. How many
flops does it take?

(b) Use this factorization to come up with an approximate SV D-factorization. How many
flops does it take?

3. The power method for finding the leading eigenvector of a square matrix A proceeds as follows:

ṽt+1 = Avt

vt+1 = ṽt+1/‖ṽt+1‖.

Let v∗ be the true leading eigenvector and v0 the initial iterate.

a) What happens when v0 is orthogonal to v∗ ?

b) Give an upper bound on ||vt − v∗|| in terms of ||v0 − v∗||. Your bound should depend on t
and the two leading singular values σ1 and σ2.

4. Show that for any m × n matrix M , ||M ||2F =
∑min(m,n)

i=1 σi(M)2, where σi(M) is the ith

singular value of M .
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5. Suppose we have a n× d matrix A where each element Aij is drawn i.i.d. to be 1√
n

w.p. 1/2,

and − 1√
n

otherwise. Find a lower bound on n so that the matrix A satisfies (ε, s) RIP w.p.

at least 1− δ. Your bound should depend on s, d, ε, δ.

Follow the steps in the proof of Theorem 4 in the paper “Compressed Sensing: Basic results
and self contained proofs” by Shai Shalev-Shwartz. (this paper is available on the class
webpage). You can use any lemmas therein, provided you refer to them appropriately.

6. The adjacency matrix A of a graph G = (V,E) is a 0− 1 matrix where aij = 1 if and only if
(i, j) ∈ E, and 0 otherwise. By convention aii = 0. The Laplacian L of a graph is L = D−A
where D is a diagonal matrix with dii equal to the degree of node i, i ∈ V .

a) Show that L is positive semi-definite.

b) Show that the smallest eigenvalue λn(L) = 0, for any graph with n nodes.

c) Show that if the graph has k components, then λn(L) = λn−1(L) = . . . = λn−k+1(L) = 0.
[i.e. L has k eigenvalues equal to 0 ]

7. Consider a m × n matrix A. Consider the sparsification technique where we sample E ⊆
[m]× [n] entries of the matrix A. In particular, let us consider the sampling-with-replacement
model, where we form matrix Y such that

Y =

{
Aij/p, with probability p,
0 with probability 1− p.

We set p = |E|/mn so that the expected number of entries sampled equals |E|.
Let Qk denote the top left singular vectors of Y . In this exercise you will show that there
exists a universal constant c such that if m ≤ n, and |E| ≥ cn log n, then with probability at
least 1− n−3,

‖A−QkQ
>
k Y ‖ ≤ ‖A−Ak‖+ cAmax

√
mn

√
n

|E|
.

To simplify the expression, suppose m = n, and Amax = 1.

As discussed in class, there is a common approach to many problems like this. The tools we
have seen in class control the deviations of sums of zero-mean independent random matrices.
Therefore, we need to make the error look like a sum of zero-mean independent matrices.
This exercise proceeds in a very similar way as our proof for the column-sub-selection case
we did in class.

(a) Show that for any two matrices, A and B (of compatible dimensions)

‖A−Bk‖2 ≤ ‖A−Ak‖2 + 2‖A−B‖2.

(Recall that we are using Mk to denote the best k-rank approximation of a matrix). In
our setting, this lemma says that to control ‖A− Yk‖, we have to control ‖A− Y ‖.

(b) Let X = Y −A, and write it as a sum of mn independent matrices.

(c) Now bound the key parameters R and σ2 in Bernstein’s Theorem.

(d) Use this, to show that

P(‖X‖2 ≥ t
√
n/p) ≤ 2n · exp

(
− t

2

12

)
.
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(e) Choose an appropriate t, and conclude the proof of the theorem.

8. Show that if a matrix W satisfies (ε, 2s)-RIP (as defined in class), for some ε < 1, then there
cannot exist two s-sparse solutions to the system of equations y = Wx.
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