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Abstract

In this paper, the problem of splitting a given matrix into sparse and low-rank matrices is investigated. The problem is when and
how we can exactly do this decomposition. This problem is ill-posed in general and we need to impose some (sufficient) conditions
to be able to decompose a matrix into sparse and low-rank matrices. This conditions can be categorized into two general classes:
(a) deterministic conditions and (b) probabilistic conditions. Deterministic conditions guarantee the success of decomposition for
a given fixed matrix. In contrast, proabilistic conditions guarantee the success of the decomposition with certain probability for a
certain class of random matrices. We improved the best existing result for deterministic conditions in this paper by introducing
alternative projection method for dual matrix construction.

I. INTRODUCTION

Decomposition of matrices arises in analysis of complex systems. Decomposing a matrix (system) into matrices (sub-systems)
with certain properties provides the opportunity to understand a complex system by understanding simpler pieces. More recently,
sparse and low-rank decomposition became more interesting to researchers due to their applications in different areas such as
but not limited to

Graphical Models In statistical learning of graphical model, the problem of learning a graphical model can be viewed as a
sparse and low-rank matrix decomposition problem. Sparse matrix corresponds to the Gaussian graphical model of a number
of variables with low dependencies and low-rank matrix corresponds to the hidden random variables that potentially have high
correlation with all other variables. See [1] for more information.

Matrix Completion It has been shown that the low-rank assumption for matrix completion is a valid assumption. This
assumption can be improved if we allow a small purturbation to the low-rank matrix. This purturbation can be modeled as a
sparse matrix and the whole problem will be a sparse and low-rank decomposition problem.

Graph Clustering If we add the identity matrix to the adjacency matrix of a graph that we want to cluster, decomposing the
modified adjacency matrix into sparse and low-rank matrices is equivalent to find the edges between clusters (in sparse matrix)
and edges inside clusters (in low-rank matrix) [2].

The sparse and low-rank matrix decompostion problem can be considered as a deterministic problem, where we want to answer
the question of when and how we can exactly recover a particular sparse and low-rank problem from their sum [3]. On the
other hand, it can be considered as a probabilistic problem, where we want to answet the question of with what level of
confidence can we make sure that the recovery of a sparse and low-rank matrix from their sum is possible given that they are
drawn from certain probability distributions [4].

In both deterministic and probabilistic research papers, the authors propose an algorithm for decomposition, mainly based on
convex optimization, and then try to show that their algorithm succeed under certain conditions. Since the problem is ill-posed,
as a sparse matrix can be low-rank and vice versa, we need to impose extra conditions to make the problem tractable. The
main result of both research trends is to impose weaker (and consequently more general) sufficient conditions that guarantee
– in deterministic or probabilistic sense – the success of the proposed decomposition algorithm.

In this paper, we mention improved conditions for the deterministic case for the algorithm proposed in [3], [5]. This algorithm
is based on the minimization of the combination of nuclear norm of the low-rank matrix and `

1

norm of the sparse matrix.
We improve the deterministic conditions both in low-dimensional regimes, by increasing the constant upper-bound, and high-
dimensional regime, by improving the scaling of the rank and sparsity with the size of the matrix.



The rest of the paper is organized as follows: Problem setup and main result are discussed in Section II. The three step proof
technique is included in Section III. The paper is concluded in Section IV.

II. PROBLEM SETUP AND MAIN RESULT

Suppose matrix C 2 Rn1⇥n2 is the sum of a sparse matrix A⇤ 2 Rn1⇥n2 and a low-rank matrix B⇤ 2 Rn1⇥n2 . We consider
the following problem: given C, when and how can we exactly recover A⇤ and B⇤ ? Clearly this will not always be possible,
since there exist matrices that are both sparse and low-rank. The general problem, as stated, is fundamentally ill-posed. As
discussed in [3], [5], one thus needs to impose additional conditions on A⇤ and B⇤ to ensure exact recovery. Thus, [3]
imposes deterministic conditions that ensure exact recovery with convex optimization, while [6] considers random ensembles
and recovery with high probability for large matrices with similar imposed conditions. This paper establishes new deterministic
conditions, weaker and thus more general than those in [3], for exact recovery via a natural convex program.

The Algorithm: In this paper we are interested in the performance of the following convex program

(

ˆA, ˆB) = argmin

A,B
�kAk

1

+ kBk⇤

s.t. A+B = C,
(1)

where, kBk⇤ =

P
i �i(B) is the nuclear norm, defined to be the sum of the singular values of the matrix, and kAk

1

=

P
i,j |aij |

is the elementwise `
1

norm. Intuitively, the nuclear norm acts as a convex surrogate for the rank of a matrix, and `
1

norm as
a convex surrogate for its sparsity. We are interested in characterizing when the optimum recovers the underlying truth, i.e.
when (

ˆA, ˆB) = (A⇤, B⇤
). Towards this end we need some definitions; these are the same as those made in the literature [3],

[6]–[9] and we just include them for completeness.

Sparse Matrix Setup: Given a matrix A 2 Rn1⇥n2 , let the support of A to be Supp(A) = {(i, j) : Ai,j 6= 0}. Define the
sub-space of sparse matrices with respect to the matrix A⇤ to be ⌦ = {A : Supp (A) ✓ Supp (A⇤

)}. The orthogonal projection
of a matrix M 2 Rn1⇥n2 to the space ⌦ is the matrix whose (i, j)th entry is given by

(P
⌦

(M))i,j =

(
Mi,j (i, j) 2 Supp (A⇤

)

0 ow
.

Let ⌦? be the orthogonal complement sub-space with projection P
⌦

? (M) = M � P
⌦

(M). As discussed in [3], for exact
recovery the matrix A⇤ needs to be not only sparse but also ”spread out”, i.e. to not have any row or column with too many
non-zero entries. Correspondingly, we say a given matrix A⇤ is (⌘, d)-spread for some d 2 {1, ···,max(n

1

, n
2

)} and ⌘ 2
⇥
1

d , 1
⇤

iff (i) it has at most d non-zero entries on each row/column, and, (ii) kA⇤k  ⌘dkA⇤k1; where kA⇤k = �
max

(A⇤
) is the

operator norm of the matrix and is defined to be the largest singular value of the matrix and kA⇤k1 = maxi,j |a⇤ij | is the
elementwise maximum magnitude of the elements of the matrix.

Low-Rank Matrix Setup: Suppose the matrix B⇤ with rank r  min (n
1

, n
2

) has the singular value decomposition U⌃V ⇤,
where U 2 Rn1⇥r, V 2 Rn2⇥r and ⌃ 2 Rr⇥r. Let T = {B = UX⇤

+ Y V ⇤
: X 2 Rn2⇥r, Y 2 Rn1⇥r} be the sub-space

spanned by matrices that share the same column space, or the same row space, as B⇤. The orthogonal projection of a matrix
M 2 Rn1⇥n2 to the sub-space T is

PT (M) = UU⇤M +MV V ⇤ � UU⇤MV V ⇤.

Let T ? be the orthogonal complement sub-space with projection PT ? (M) = M � PT (M). As discussed in [3], for exact
ecovery, we need the low-rank matrix to have incoherent – both left and right – eigen vectors with respect to standard
basis. This guarantees that the low-rank matrix is not too sparse. We say a given matrix B⇤ is (r, µ)-incoherent for some
r 2 {1, · · ·,min(n

1

, n
2

)} and µ 2
h
1, max(n1,n2)

r

i
iff (i) rank(B⇤

) = r, and, (ii)

max

i
kU⇤eik 

r
µr

n
1

max

i
kV ⇤eik 

r
µr

n
2

kUV ⇤k1 
r

µr

n
1

n
2

,

where, ei’s are standard basis vectors with proper length. Here k · k represents the 2-norm of the vector and should not be
mistaken by operator norm defined before.



Remark 1. The smaller the parameter µ is, the more spread out the singular vectors are. Also, since UU⇤ and V V ⇤ are
orthogonal projections to the column spaces of U and V , respectively, B⇤ is µ-incoherent low-rank matrix iff

kUU⇤k1,2 := max

i
kUU⇤eik 

r
µr

n
1

kV V ⇤k1,2 := max

i
kV V ⇤eik 

r
µr

n
2

kUV ⇤k1 
r

µr

n
1

n
2

.

(2)

Existing deterministic conditions: It has been shown (see Corrolary 3 in [3]) that if ⌘d
q

µr
min(n1,n2)

 1

6

then there exist a

range of � 2 R+ such that A⇤
=

ˆA and B⇤
=

ˆB can be exactly recovered from their sum. As we see, using this existing
bound, n (for square matrices) should scale with d2r in order to guarantee the exact recovery. In this paper, we want to improve
this bound in two senses: one is to find a better scaling for parameters r, n and d and two is to find a better constant (on the
left hand-side of the inequality) that guarantees the recovery for a larger set of matrices.

Main Result: The improved conditions for deterministic sparse and low-rank matrix decomposition – namely, the main result
of this paper – is stated in the following theorem.

Theorem 1. Suppose
p
⌘d

q
µr

min(n1,n2)

⇣
1 +

q
min(n1,n2)

max(n1,n2)
+

q
⌘d

max(n1,n2)

⌘
 1

2

and � 2
h

1

1�2↵

q
µr

n1n2
, 1�↵

d �
q

µr
n1n2

i
,

where, ↵ =

q
µr ⌘d
n1

+

q
µr ⌘d
n2

. Then, the solution to the problem (1) is unique and equal to (A⇤, B⇤
).

Remark 2. Notice that if ⌘d
q

µr
min(n1,n2)

 1

6

then the condition of Theorem 1 is satisfied. This shows that our result is an
improvement of the result in [3] in the sense that this result guarantees the recovery of a larger set of matrices A⇤ and B⇤.
Moreover, this bound implies that n (for square matrices) should scale with dr which is another improvement compare to the
d2r scaling in [3].

III. PROOF

The proof follows along the lines of that in [3] and has three steps: (a) writing down a sufficient optimality condition, stated in
terms of a dual certificate, for (A⇤, B⇤

) to be the optimum of the convex program (1), (b) constructing a particular candidate
dual certificate, and, (c) showing that under the imposed conditions this candidate does indeed certify that (A⇤, B⇤

) is the
optimum. Part (b) is the ”art” in this method; different ways to devise dual certificates can yield different sufficient conditions
for exact recovery. Indeed this is the main difference between this paper and [3].

A. Optimality conditions

For the sake of completeness, we restate here a first-order sufficient condition that need to be satisfied for (A⇤, B⇤
) to be the

optimum of (1). The reader is referred to [3] for a proof.

Lemma 1 (A Sufficient Optimality Condition). The pair (A⇤, B⇤
) is the unique optimal solution of (1) if

(a) ⌦ \ T = {0}.
(b) There exists a dual matrix Q 2 Rn1⇥n2 satisfying

PT (Q) = UV ⇤ kPT ?(Q)k < 1

P
⌦

(Q) = �sgn(A⇤
) kP

⌦

?(Q)k1 < �,
(3)

where, sgn(·) is the element-wise signum function.

Condition (a) guarantees that the sparse matrices and low-rank matrices can be distinguished without ambiguity. In other words,
any given matrix can not be both sparse and low-rank except the zero matrix. The following lemma gives a sufficient guarantee
for the condition (a). We construct the dual matrix Q in the next subsection and prove condition (b) afterwards.

Lemma 2. If ↵ < 1 then ⌦ \ T = {0}.



Proof: It is clear that {0} 2 ⌦ \ T . In contrary assume that there exists a non-zero matrix M 2 ⌦ \ T . By idempotency
of orthogonal projections, we have M = P

⌦

(M) = PT (P
⌦

(M)) and hence

kPT (P
⌦

(M))k1 = kUU⇤P
⌦

(M) + P
⌦

(M)V V ⇤ � UU⇤P
⌦

(M)V V ⇤k1
 kUU⇤P

⌦

(M)k1 + k(I � UU⇤
)P

⌦

(M)V V ⇤k1
 max

i
kUU⇤eik kP⌦

(M)k+ kI � UU⇤k kP
⌦

(M)kmax

i
kV V ⇤eik

 ↵kP
⌦

(M)k1 = ↵kPT (P
⌦

(M)) k1.

(4)

Hence, kMk1 = 0 or equivalently, M = 0. This is a contradiction.

B. New Dual Certificate

We now describe our main innovation, a new way to construct the candidate dual certificate Q. This procedure is different
from the ones in [3], [6], [9]. As a first step, consider two matrices Qa and Qb defined as follows: with M⇤

= �sgn(A⇤
) and

N⇤
= UV ⇤, let

Qa = M⇤ � PT (M
⇤
) + P

⌦

(PT (M
⇤
))� PT (P

⌦

(PT (M
⇤
))) + · · ·

Qb = N⇤ � P
⌦

(N⇤
) + PT (P

⌦

(N⇤
))� P

⌦

(PT (P
⌦

(N⇤
))) + · · ·

Lemma 3 below establishes that Qa and Qb as described above are well-defined, i.e. it establishes that the infinite summations
converge, under the conditions of the theorem. Note that when this is the case, we have that

PT (Qb) = UV ⇤ PT (Qa) = 0

P
⌦

(Qa) = �sgn(A⇤
) P

⌦

(Qb) = 0.
(5)

Motivated by these properties, if we let Q = Qa +Qb, it is easy to see that the equality conditions in (3) are satisfied. In the
next subsection, we will show that the inequality conditions are also satisfied under the assumptions of the theorem 1.

Lemma 3. If ↵ < 1, then Qa and Qb converge.

Proof: For any matrix W 2 Rn1⇥n2 , let SW = W + PT (P
⌦

(W )) + PT (P
⌦

(PT (P
⌦

(W )))) + · · ·. It suffices to show
that SW converges for all W since Qa = M⇤ � P

⌦

?
�
SPT (M⇤

)

�
and Qb = SN⇤�P⌦(N⇤

)

. Notice that kPT (P
⌦

(W)) k1 
↵kP

⌦

(W )k1  ↵kWk1 as shown in (4) and hence SW geometrically converges.

C. Certification

Considering Q = Qa + Qb as a candidate for dual matrix, we need to show the conditions in (3) are satisfied under the
conditions of the theorem. As we showed in the previous subsection, the equality conditions are satisfied by construction of
Qa and Qb. To prove the inequality conditions, we first bound the projection of Q into orthogonal complement spaces in next
lemma.

Lemma 4. If ↵ < 1 then

kP
⌦

?(Q)k1  1

1� ↵

✓r
µr

n
1

n
2

+ ↵�

◆

kPT ?(Q)k  ⌘d

1� ↵

✓r
µr

n
1

n
2

+ �

◆
.

Proof: Using the definition of SW for any matrix W 2 Rn1⇥n2 , we gat kSW k1  1

1�↵ kWk1, because of the geometrical
convergence. Thus, we have

kP
⌦

?(Q)k1 = kP
⌦

?
�
SN⇤�PT (M⇤

)

�
k1  kSN⇤�PT (M⇤

)

k1

 1

1� ↵
kN⇤ � PT (M

⇤
)k1  1

1� ↵
(kN⇤k1 + kPT (M

⇤
)k1)

 1

1� ↵
(kN⇤k1 + ↵kM⇤k1)  1

1� ↵

✓r
µr

n
1

n
2

+ ↵�

◆
.



For the second part, since kI� UU⇤k  1 and kI� V V ⇤k  1, we have

kPT ?(Q)k = kPT ?
�
M⇤ � P

⌦

�
SN⇤�PT (M⇤

)

��
k

= k (I� UU⇤
)

�
M⇤ � P

⌦

�
SN⇤�PT (M⇤

)

��
(I� V V ⇤

) k
 kM⇤ � P

⌦

�
SN⇤�PT (M⇤

)

�
k  ⌘dkM⇤ � P

⌦

�
SN⇤�PT (M⇤

)

�
k1

 ⌘d
�
kM⇤k1 + kSN⇤�PT (M⇤

)

k1
�
 ⌘d

✓
� +

1

1� ↵

✓r
µr

n
1

n
2

+ ↵�

◆◆

 ⌘d

1� ↵

✓r
µr

n
1

n
2

+ �

◆
.

This concludes the proof of the lemma.

Finally to satisfy (3), we require

kPT ?(Q)k  ⌘d

1� ↵

✓r
µr

n
1

n
2

+ �

◆
<1

kP
⌦

?(Q)k1  1

1� ↵

✓r
µr

n
1

n
2

+ ↵�

◆
<�

.

Combining these two inequalities, we get 1

1�2↵

q
µr

n1n2
< � < 1�↵

d �
q

µr
n1n2

as stated in the assumptions of the theorem.

IV. CONCLUSION

In this paper, using the alternating projection method, we found an improved deterministic condition for the sparse and low-
rank matrix decomposition problem. This result outperforms the previous results both by providing better scaling and better
constant limits.

REFERENCES

[1] S. L. Lauritzen, Graphical Models. Oxford University Press, 1996.
[2] “Graph clustering via convex optimization.”
[3] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. S. Willsky, “Rank-sparsity incoherence for matrix decomposition,” Submitted, 2009.
[4] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections and universal encoding strategies,” vol. 52, no. 12, pp. 5406–5425, 2006.
[5] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. S. Willsky, “Sparse and low-rank matrix decompositions,” in 15th IFAC Sypmposium on System

Identification (SYSID), 2009.
[6] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Available at http://www-stat.stanford.edu/ candes/papers/RobustPCA.pdf,

2009.
[7] E. J. Candes and B. Recht, “Exact matrix completion via convex optimzation,” Foundation of Computational Math, vol. 9, pp. 717–772, 2009.
[8] E. J. Candes and T. Tao, “The power of convex relaxation: Near-optimal matrix completion,” IEEE Transaction on Information Theory, 2009.
[9] D. Gross, “Recovering low-rank matrices from few coefficients in any basis,” Available at arXiv:0910.1879v4, 2009.


