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Abstract

We show that a simple spectral algorithm for learning a mixture of k£ spherical Gaussians in
R™ works remarkably well — it succeeds in identifying the Gaussians assuming essentially the
minimum possible separation between their centers that keeps them unique (solving an open
problem of [1]). The sample complexity and running time are polynomial in both n and k.
The algorithm can be applied to the more general problem of learning a mixture of “weakly
isotropic” distributions (e.g. a mixture of uniform distributions on cubes).

1 Introduction

Learning a mixture of distributions is a classical problem in statistics and learning theory (see
[10, 14]); more recently, it has also been proposed as a model for clustering. In the basic version of
the problem we are given random samples from a mixture of k distributions, Fi, ..., Fj. Each
sample is drawn independently with probability w; from the i’th distribution. The numbers
wi, ..., w are called the mixing weights. The problem is to classify the random samples
according to which distribution they come from (and thereby infer the mixing weights, means
and other properties of the underlying distributions).

An important case of this problem is when each underlying distribution is a Gaussian. In
this case, the goal is to find the mean and covariances of each Gaussian (along with the mixing
weights). This problem seems to be of great practical interest and many heuristics have been
used to solve it. The most famous among them is the EM algorithm [5]. Unfortunately EM is
a local search heuristic that can fail.

A special case of the problem is when the Gaussians are assumed to be spherical, i.e. the
variance is the same in any direction. In recent years, there has been substantial progress
in developing polynomial-time algorithms for this special case, by making assumptions on the
separation between the means of the Gaussians. This separation condition is crucial, so we
proceed to make it explicit. Let Fi,..., F} be spherical Gaussians over R” with mean vectors
M1, -,k and variances of,...,or. We will refer to o;\/n as the radius of F; and ||p; — ]|
as the separation between F; and Fj. If the pairwise separation is larger than the radii, then
points from different Gaussians are isolated in space and easy to classify. On the other hand, if
the separation is very small, then the classification problem might not have a unique solution.

1.1 Previous work

Dasgupta [3] used random projection to learn a mixture of spherical Gaussians provided they
are essentially non-overlapping, i.e. the overlap in probability mass is exponentially small in n.
His algorithm is polynomial-time provided the smallest mixing weight wmin is ©2(1/k) and the
separation is )

i — il = Cmax{oi, 05}n>
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for a constant C'. In other words, the separation is proportional to the larger radius (the
algorithm also required all the variances to be within a bounded range). Shortly thereafter, it
was shown by Dasgupta and Schulman [4] that a variant of EM works with a smaller separation
(along with some technical conditions on the variances):

\|1i = pjl| > € max{oi, 0;}nt log® (n/wmin) (1)

This separation is the minimum at which random points from the same Gaussian can be dis-
tinguished from random points from two different Gaussians based on pairwise distances. So
points from the Gaussian with (approximately) the smallest variance have the smallest pairwise
distances. They can be identified and removed and this can be repeated on the remaining points.
Arora and Kannan [1] independently proved similar results for non-spherical Gaussians. They
used isoperimetric theorems to obtain distance concentration results for the non-spherical case.
At this separation, their algorithm simply identifies all points at roughly the minimum distance
from each other as coming from a single Gaussian, removes them and repeats on the remaining
data. They also give a version that uses random projection. Learning a mixture of spherical
Gaussians at a smaller separation (when distance concentration results are no longer valid) has
been an open problem.

1.2 Our results

In order for the solution to the classification problem to be well-defined (i.e. unique with
reasonable probability) we need a separation of at least

[lwi — pj]l > C max{o;, 05}

At this separation the overlap in the probability mass is a constant fraction. So in particular,
distance concentration results are no longer applicable.

In this paper, we show that a simple spectral algorithm can learn a mixture of k& Gaussians
at this minimum separation in time polynomial in k°*) and n. Our main result is that with a
slightly larger separation of

[lwi — 1]l > C max{o;, o5} ((klog (n/wmin))1/4 + (log (n/wmin))1/2) (2)

the algorithm is polynomial in both k& and n. Note that this condition is almost independent of
n and is much weaker than (1) as the dimension (n) gets larger than the number of Gaussians

The main step of the algorithm is to project to essentially the top k right singular vectors of
the sample matrix (i.e. its k principal components). This is the rank & subspace that maximizes
the squared projections of the samples. The key observation is that with high probability this
subspace lies very close to the span of the mean vectors of the underlying distribution. In section
3 we first prove this for the expected best subspace. This result holds for any weakly isotropic'
distribution.

Definition 1. A distribution with mean p is said to be weakly-isotropic if for a random sample
X € R"® we have

El(w- (X - w)? =0® VweR",|jul| = L. (3)

In other words, the variance of any 1-dimensional projection is 2.
In section 4 we show that with high probability the best subspace is close to the span of the
means when the underlying distributions are Gaussians.

!The term isotropic [9] also requires that the mean is zero and the variance is 1 along any direction. Here we are
allowing a radial scaling and translation for each distribution in the mixture.



On projection, the separation between the mean vectors is preserved. On the other hand,
the radius of the distribution projected to any k-dimensional subspace drops by a factor of \/% .
Together this has the surprising effect of amplifying the ratio of the separation to the radii
while reducing the dimension! After projection, we can apply distance concentration to classify
points from the distributions. We prove this for Gaussians in section 5 but these results hold for
any weakly isotropic distribution that has good concentration bounds on the distance between
sample points.

It is worth noting that this is a problem for which direct random projection does not work
(see Figures 1,3). Indeed on random projection to d-dimensions, the inter-center distances and
the radii scale at the same rate, namely \/g . So in terms of the dimension, the separation
condition gets worse.

2 The Spectral Algorithm

The first step of the algorithm is based on the singular value decomposition of a matrix. Any
m X n matrix A can be written as
n
A= Z )\ZUZUlT
i=1

where Ay > A2... > A, are the singular values of A and wu;,v; are the left and right singular
vectors corresponding to the ¢’th singular value ;. The projection to the top r right singular

vectors is
.
Z T
AT = )\iuivi .
=1

The key property of the decomposition is that the subspace spanned by the top r right singular
vectors is the one that maximizes the norm of the projection of A among all r-dimensional
subspaces. The algorithm below for learning mixtures of weakly isotropic distributions uses this
projection.

Algorithm.

1. Compute the singular value decomposition of the sample matrix.

2. Let r = max{k,Clog(n/nmin)}. Project the samples to the rank r
subspace spanned by the top r right singular vectors.

3. Perform a distance-based classification in the r-dimensional

space.

The classification algorithm in step (3) is spelled out in full detail in section 5 for the case
of mixtures of spherical Gaussians. In this case, it suffices to set C' = 1344 in step (2); the
exact constant will vary depending on the underlying distributions. We should also note that
this algorithm “learns” the mixture of distributions in the sense that it correctly classifies the
samples. Learning other properties of a mixture of Gaussians can be done from a correct
classification.

3 The Expected Best Subspace

In this section, we show that in expectation, the subspace spanned by the top k singular vectors
of the sample matrix is the same subspace spanned by the mean vectors of the distributions.
The results of this section hold for any mixture of weakly isotropic distributions.

Intuitively, this is true for a single weakly isotropic distribution. Since the distribution is
spherically symmetric, it is clear that any vector that passes through the mean maximizes the



sum of squared projections. Similarly, any k-dimensional subspace passing through the mean

would be optimal. Thus, for a mixture, any subspace that passes through all the means would

be the best subspace; in particular, the best k-dimensional subspace is the one spanned by the

k means. In what follows, we prove this formally for mixtures of weakly isotropic distributions.
It is easy to verify that (3) is equivalent to the following;:

1. For each coordinate i, E[(X; — u;)?] = o2.
2. Each pair of coordinates i, j are uncorrelated, i.e. E[X;X;] = E[X;]E[X]].

Suppose we sample a random point X from such a distribution with mean vector p and
variance o2 in every direction. Then we have the following:

Lemma 1. For any v € R?,
E[(X -0)’] = (1 v)* + 0?|Jv].

Proof.

E[(X -v)’] = E[(Z Xwi)?] = E[ Z XiXjviv]
zn: E[Xin]’Ui’Uj.

ij=1

Using the assumption that E[X;X;] = E[X;]E[X]],

n

> E[XJJE[X;Jviv; — Z E[X;]*v} + Z E[X?]v

ij=1
n

= (EIX]-0)* + ) viof = (u-0)* +o*|lo] .

i=1
Corollary 1. For all v € R” such that ||v|| = ||u||,

E[(X - 1)*] > E[(X -v)?].

The corollary says that the best rank 1 subspace for a distribution is the one that passes
through its mean.

Proof. By the above lemma,

E[(X -] = (n-w)®+0"|lull*.
B[(X )] = (n-v)”+ 0?0l
So E[(X - p)?] = E[(X -v)?] = (- pw)* — (u-v)? > 0, and we have the desired result. O

Next, we consider the projection of X to a higher dimensional subspace. We write ||proj, X ||?
to denote the squared length of the projection of X onto a subspace V. For an orthonormal
basis {vi ...v,} for V, this is just > ;_, (X - v;)%

Lemma 2. Let V C R" be a subspace of dimension r with orthonormal basis {vy ...v,}. Then

E[l[projy X[[*] = [[projy B[X]||* + ro™.



Proof.

r

E[[|projy X|*] = E[Z (X - wioil P = B[ Y (X - 03)?].

i=1
The equalities follow from the fact that {v;...v,.} is an orthonormal basis. By linearity of
expectation and Lemma 1, the above is

”

S B 0] = 3 0)? +0° = llrojy BIXI? + 7o

i=1
O
Now consider a mixture of k distribtuions Fj ... Fj, with mean vectors y; and variances o?.

Let A € R™*"™ be generated randomly from a mixture of distributions Fj ... F}, with mixing
weights w; ... wy. For a matrix A, and any subspace V, let ||proj-Al|? = 31", ||projy Ai|[*.

Theorem 2. Let V C R" be a subspace of dimension r with an orthonormal basis {vy ... v, }.
Then

k
E[|[projy A||*] = |[projy BIA]||* + m > w; - ro;.
i=1
Proof.
Elllprojy AlI"] = Y E[l|projy Ail’]
=1
k
= > > E[llprojy Aill’].
I=1 i€ F,

The second equality follows from linearity of expectation. In expectation, there are w;m samples
from each distribution. By applying Lemma 2, we have

k k

Yo > lprojvEAlP +rof = m Y w; ([lprojyuill® +rof)

=1 i€ Fy =1

k
||projy E[A]|]” +m Y w; - ro7.

i=1
Here and throughout this paper, by E[A] we mean the matrix with w;m rows that are p;, and
not the matrix each of whose rows are ) w;s;. O

From this it follows that the expected best subspace for a mixture of & distributions is simply
the subspace spanned by the mean vectors of the distributions.

Corollary 2 (Expected Best Subspace). Let V C R” be a subspace of dimension k, and let
U =span{y; ... pur}. Then,

E[[[projy Al[*] > E[l|projy A[*].

Proof. By Theorem 2 we have,

E[||projy All*] — E[l|projy Al|*] |Iprojy BIA]|[* — ||projy E[A]||*

|[E[A]l]* — [lprojy E[A]||* > 0.



4 The Likely Best Subspace

In this section, we show that for a sufficiently large sample from a mixture of Gaussians, with
high probability the subspace found by SVD is very close to the one spanned by the mean
vectors.

We begin with a concentration lemma.

Lemma 3 (Concentration). Let V' be a subspace of R" of dimension r, with an orthonormal

basis {vy ...v,.}. Let A € RM*" be generated randomly from Gaussians Fy, ... , F}, with mizing
weights wy, ... ,wi. Assume that A contains at least m rows from each Gaussian. Then for any
1>e>0:

ezmr
1. Pr (|lprojy Al|? > (14 ¢)E[||projy A|[*]) < ke™—%

e“mr

2. Pr (|lprojy All? < (1 - O)E[[[projy Al[]) < ke~

Proof. Let £ be the first event in consideration. We further condition £ on the event that
exactly m; rows are generated by the ith Gaussian.

Note that ||projy A||? = Ele Y icr |Iprojy-Ail[*. Therefore, we have the following bound
on the probability of the conditioned event:

Pr(&/(my...my)) < km?xPr (Z lprojy Ai||> > (1 + €)E[ Z ||pr0jVAi||2]> .

i€Fy icFy

Let B be the event that:
|lprojy B> > (1 + €)E[||projy B|[’]

where B € R™ *" ig a matrix containing the rows of A that are generated by Fj, an arbitrary
Gaussian. We bound the probability of £/(m; ... my) by bounding the probability of B.

Let Yj; = (B; - vj). Note that ||projy B||> = Y2/, >7_, Y;3. We are interested in the event
B=3" 30 Y > (L+ e)E[|[projy B?]. Note that Yj; is a Gaussian random variable with
mean (y - v;) and variance Ulz. We can write Y;; = 0,X;;, where X;; is a Gaussian random
variable with mean %
event

and variance 1. Rewriting in terms of X;;, we are interested in the

my r
B=Y"S"(01Xij)? > (1 + o)E[||projy B [*].
i=1 j=1

Since Efl[projy BI[?] = X—, mu((u - v;)? + 07), we have:

B § g (I Tl )+ o)

2
0y

i=1 j=1

By Markov’s inequality,

Blexp (¢ 7 Y, X2)]

t1+e) 35 mz((uz~vj)+«fl2)) '

Pr(B) <
o (T

Note that Z = 3™, 377, X7, is a chi-squared random variable with noncentrality parameter

2
P mivi)” and myr degrees of freedom. The moment generating function for Z is (see e.g.

m

”

m .0.)2
Elef S S5o1 X351 = (1 — 26)~™17/2 exp Zml(’” vi) [ ! ]

o 1—2¢

Jj=1



So we obtain the bound on Pr(B):

Pr(B) < (1 —2t)"™"/?exp (t (—(1 + e)ymyr — (e — 2t(e + 1)) Z]:(i 71%2()/:)10'211]') )) .
i

Using the fact that 5 < 2+ and setting ¢ = <, we have € — 2t(e + 1) > 0, and so

myr

e(2t+4t%) 7

2
g
Prib) < g SO

Therefore, we obtain the following bound on £/(my ... my,)

2
627717’

Pr(E/(my...mg)) < kmlaxe_é 5 < ke F

Since this is true regardless of the choice of mq,... ,my, the probability of £ itself is at most
the above. |

We can extend this concentration lemma to show that the probability that any subspace of
dimension r has the property that the projection of a sample matrix onto the subspace lies far
from its expectation is small.

Lemma 4. Suppose A € RM*" has at least m rows from each of the k Gaussians Fi ... Fy.
Then, for any 1 > € > 0, ﬁ > a >0, and any r such that 1 < r < n, the probability that there
exists a subspace W of dimension r that satisfies

lIprojy All* < (1 — €)E[[projy All*] — (6rv/na)E[||A]]*]

2\ s
(—) ke s .
«@

Proof. Let W be the set of all r-dimensional subspaces. Let S be a finite set of r dimensional
subspaces, with |S| = N, such that for any W € W with orthonormal basis {w; ...w,}, there
exists a W* € S with orthonormal basis {w} ...wy}, such that for all i and j, |wi; — w};| < a,
component-wise. Then for any W € W, and any a € R"”,

1s at most

[projy-all® = > (a-wp)?
=1
s
= Y- (] —wi+w))?
=1
r
< S(a-w)? + (a- () —w)? +2(a- (w) —wi))(a-w;)
=1
2
r n
= projwall® + 3 | S Jajllw); —wil | +

i=1 \j=1

T n n
2> | Y lagllws; —wi| | { D lajllwi]
i=1 \j=1 j=1

|[projyral|® + rna?||al|? + 2rv/nal|al?
||projy-al|® + 3rnal|al|?

IN A



The last line follows from a < ﬁ The above also gives us a bound on the projection of
matrices:

|Iprojuw Al* > [|projuw. Al — 3rv/nalA|[.
The same sequence of inequalities starting with E[||projy;, A||?] can be used to show:
E[l[projuw All*] < E[|lprojy . A[I*] + 3rv/naB[||A[]?].
Combining these two we get
[Iprojy All* — (1 = €)E[llprojy All*] > |lprojy- AlI* -

(1 = OE[llprojy- AlI*] = (3rv/na) (||A[]* + (1 = B[ A]]*).
Using Lemma 3 and the union bound, we get that
Pr (3W,|[projy Al* < (1 — €)E[[projy Al|*] = (6rv/na)E[|A]|*])
is at most (N + l)kefﬁsm. Here we have used that the probability that ||A||?> > (1+ €)E[||A]|*]

is much lower than the probability above. A simple upper bound on N +1 is (%)’"", the number
of grid points in the cube [—1,1]"" with grid size a. The lemma follows. O

We now proceed to prove the main theorem. The intuition is as follows: from Lemma 3
above, we know that the norm of a sample matrix projected to a particular subspace stays
close to its expectation. From Theorem 2, we know that in expectation, the subspace that
maximizes the norm of the projection of the sample matrix is exactly the span of the mean
vectors. If a subspace is “far” from the span of the mean vectors, then the expected norm of
the projection of the sample matrix is much smaller than the expected norm of the projection
onto the mean vectors. By considering a net of these subspaces that are “far” away, in addition
to the concentration lemma, we show that it is unlikely that the subspace spanned by the top
r singular vectors is “far” away.

Theorem 3. Let the rows of A € R™*™ be picked according to a mizture of Gaussians Fy, ..., F
with mizing weights wy, . . ., Wk, means iy . . . g and variances o . .. U,%. Letr = max{k, 96 In (4Tm) 1,
and let V C R™ be the r-dimensional subspace spanned by the top r right singular vectors, and let
U be ar dimensional subspace that contains the mean vectors py ... ug. Then for any % >e>0,

with I ||2 )
5000 n L 1
> - (n (ln (E) +In (miax 012 >> + e In (S))

we have with probability at least 1 — 0,

k
lIprojE[A]|]* — ||projy E[A]l* < em(n —r) Y " wio}.

i=1

Proof. We lower bound the probability of the desired event by upper bounding the probability
of the opposite event,

k
€ = |lprojy B[A]|P — [lprojy E[A]|]® > em(n —r) Y~ wio}.
i=1

In particular, we consider a weaker event in terms of the orthogonal subspaces. This will allow
us to bound the probability of £ in terms of the concentration lemmas we have proven where
the deviation depends on the wvariances of the distributions, instead of the means. First, note
that:

[IprojuELA]|I” — [[projy E[A]|[” = [|projpBLA]|1? — ||projzBLA]|1



where U is the orthogonal subspace. This holds because, for any subspace V' we have:
||A][> = [Iprojy Al|* + [[projy-A||*.

Therefore, if V maximizes ||projy A||? for all r dimensional subspaces, then V minimizes ||projA||*
for all n—r dimensional subspaces. We weaken £ by considering the probability that some n—gq
dimensional subspace W has the property that ||projsA||> < ||[projzA|[*> (note that V' would
achieve the minimum such value) and

k
IprojgELA]II — [lprojgELA]l2 > em(n — 1) 3 wia?. (4)
i=1
We can relate (4) to the concentration lemmas. By Theorem 2,

I1” I* =

|IprojwE[A]l]* — [|projpE[A]l]* = E[l|projwAl|*] — Ell[projzA||*]
Now, ||proj7E[A]||> = 0, since U and U are orthogonal subspaces. Also,

k
[IprojgBLAP +m(n — 1) 3" wo?

i=1
k
= m(n—r) Zwiaf.
i=1

So, Pr (&) is at most the probability that there exists W such that |[projwAl|* < ||projzAl|?
and the following event & happens

E[|lprojzA|l*]

E[llprojrAll] > (1 + e)E[l[projz-Al[*]
Note that we can rewrite ||projyzAl|* < ||[projzA|* as:
E[[[projwA|[*] = |lprojgzAl|* + [lprojzAll* — E[llprojzAl*] > E[||projg-Al|*] — E[l[projzAll*]

The required probability is thus at most the sum of the probabilities of the following two events
(one of the following must occur for £ to occur):

A = TIW: & and

|IprojzAll” — E[l[projzA|*] > 5 _ 5 (ElllprojwAl[*] — Ell[projzA|[*))
B = 3IW:& and
(ElllprojgzAl "] — E[l[projzAl )

DN =

E[llprojwAll*] — [[projgAll* >

The probability of A is at most the probability that there exists W such that ||projzAll> —
E[|lprojzAl|?] > 1 ((1 + €)E[||projzAl|?] — E[||projgA|[?]), which is at most

2
—e“m wpip(n=r)
32

. € .
Pr(A) < Pr ([IprojgAll* > (1 + SE[projzAl ]) < e

The last inequality follows from Lemma 3, and the fact that each distribution generates at least
Ymia rows (the probability this does not happen is much smaller than 6). Now the probability
of B is at most

— . . 1 1 .
Pr(®) < Pr(3W 6 and proseal < BllproiealP] - 5 ((1- 13 ) BlloroiAl1) )
T - s A2 _ € A2
Pr (3 : & and [[projipAl* < (1 - 1) ElllprojyAl )

. € .
Pr (I : [lprojyp-All* < (1 - £)ElllprojiwAl Y] - LE[llprojpAll*])

IN

IN



Here we used the fact that € < % By applying Lemma 4 with

_ cEf|lprojyAl?
18 /n(n — r)E[|[A]P]

B2 (0 (2) L 1k
eznna n—rn6

samples from each Gaussian, we have that the probability of B, and therefore £ is at most 4,
which is the desired result. O

(07

and

As a result, we have that with enough samples, the distance between the original mean
vectors and the projected mean vectors is not large.

Corollary 3 (Likely Best Subspace). Let ui,...,u; be the means of the k Gaussians in
the mizture and Wy, the smallest mizing weight. Let p}, ... ,p). be their projections onto the
subspace spanned by the top r right singular vectors of the sample matrix A. With a sample of
size of m = O*(—2—) we have with high probability

€2 Wmin

k k

Yo willlwall? = [1l?) < e(n =) Y wio}.

i=1 i=1

Proof. Let V be the optimal rank r subspace. Let m be as large as required in Theorem 3. By
the theorem, we have that with probability at least 1 — 4,

k

E[l|projyAll*] - Elllprojy-Al*] < em(n —r) Y wio?
i=1

which is equivalent to

k k
m Yy wil|lall* = ||1f][*) < em(n —r) Y wio}.

i=1

4.1 Random projection vs. spectral projection: examples

As mentioned in the introduction, random projection does not preserve the distance between
the means. The following figures illustrate the difference between random projection and the
SVD-based projection for a mixture of Gaussians.

L L L L L L _ L L L L L
95 100 105 110 115 120 125 130 a5 -140 -135 -130 -125 -120 -115

Figure 1: RP1 Figure 2: SVD1



Figure 1 and figure 3 are 2-dimensional random projections of samples from two different
49-dimensional mixtures (one with & = 2, the other with k¥ = 4). Figure 2 and figure 4 are the
projections to the best rank 2 subspaces of the same data sets.

L L L L L L L L ~ L L L L L L
50 52 54 56 58 60 62 64 66 68 62 64 66 68 70 72 74 76

Figure 3: RP2 Figure 4: SVD2

5 After Projecting to the Best Subspace

To see the main idea, first project the sample matrix to the top r right singular vectors. Let

2
i

D = max; ; o7 If D is small, we can apply Corollary 3 with € < ﬁir) so that for every ¢,
7

i = pil | = Ml = i < €. ()

Therefore, for any pair 7,7 after projection,
;= w51l > i — pjl| = €(oi + 0).

Now the projection of a Gaussian distribution onto any subspace remains a Gaussian distri-
bution and so the radius is now o;+/r. With such a large radius, and a separation as in (2), we
can use distance concentration to correctly classify a random subsample of size poly(n)/wmin.
The details will be clear in what follows, but the idea is that points from any distribution with
approximately the smallest radius will be separated from the rest of the sample. We can identify
such a distribution and repeat the procedure.

Now let us consider the general case (when D is large or unknown) for a mixtures of spherical
Gaussians. We first start with a distance concentration lemma.

Lemma 5. Let X € F,, and Y € F;, where Fs, F; are r dimensional Gaussians with means

wh, py, and variances o2,07. Then for a > 0, the probability that

X =Y = E[IX - Y|][ > o ((03 + o)V + 2, — pilly/o? +03)>

is at most de—2"/8.

Proof. We consider the probability that
IX = Y|P = E[|X = Y] > al(oF + 07)Vr +2|lu — mill\/ o3 + o).
The other part is analogous. We write || X —Y||? = 31, (/02 + 07 Z; + (psi — puti))?, where

the Z; are N(0,1) random variables. Therefore, we can rewrite the above event as:

r

> (Vo2 + 0 Zit (uhy—pi) > (03407 )r+ |y —pf||*+a ((03 + oIV + 2|l — pplly 0% + 0?) :

i=1



The probability of this occurring is at most the sum of the probabilities of the following events

A=) (03 +03)Z} > (07 +07)(r + av/r)

i=1

”

B=Y"20i — w02 + 072 > a (2||u; o+ a%) .

=1

Simplifying, we get:

Pr(A) < Pr (Z ZI>r +a\/1_"> < e=o"/8
i=1

,
2
Pr(B) < Pr (Z(Hsi — i) Zi > |y — Mi”) <em /R

i=1
The above inequalities hold by applying Markov’s inequality and moment generating functions
as in the proof of Lemma 3. O

With this distance concentration lemma in hand, we can learn the mixture of Gaussians by
the following implementation of step (3) of the algorithm. In the description of the algorithm
below, S is the set of m projected points.

Algorithm.

(a) Let R = max,esmingeg ||z —yll.

(b) Discard all points from S whose closest point lies at squared
distance at most 3¢éR? to form a new set S'.

(c) Let z,w be the two closest points in the remaining set, and
let H be the set of all points at squared distance at most

am
= ||z —w|2(1+8y/ 225 from .

(d) Report H as a Gaussian, and remove the points in H from S'.
Repeat step (c) till there are no points left.

(e) Output all Gaussians learned in step (d) with variance greater
than 3eR?/r.

(f) Remove the points from step (e) from the original sample S,
and repeat the entire algorithm (including the SVD calculation
and projection) on the rest.

We show that each Gaussian output in step (e) of the algorithm above is correct with high
probability, i.e. it is exactly the subsample of points from a single Gaussian. Further, at least
one Gaussian is output during every iteration. The general idea is that on projection, the
center of a Gaussian with a large variance does not move much relative to its variance. By first
removing points from Gaussians with small variance from the sample set, we can classify points
from the largest Gaussians by distance concentration.

Theorem 4. With a sample of size




and initial separation

i — jl] > 14max{oi, 07} (rln (T»

the algorithm correctly classifies all Gaussians with probability at least 1 — 0.

Proof. First, let us apply Corollary 3 with € = % Let o2 be the largest variance. It follows
that,
k k

S willll2 = ) < wniné S wio? < wpinéo®.

i=1 i=1
So in particular, for all 7,

i = i = Nl P = Wi * < &0,

This implies that for any Gaussian F; with variance larger than é02, we have that for all j:

4 1/4 A 1/4
| — ,u;|| > l40; (r In (Tm)> — 2V/eéo; > 120, <r1n <Tm>>

provided that € < 1. By applying Lemma 5 with this separation between mean vectors and

a=4/241n (477”), we obtain the following with probability at least 1 — %:
e For any Gaussian F; and any two points z,y drawn from it,

4 4
2071 — 4074 /6rln (Tm> <l —yl|* <207r +4074[6rln <Tm> (6)

It will also be helpful to have the following bounds on ||z — y||* in terms of only o7:

oir < |lz —yl* < 3ofr (7)

This follows by upper bounding the deviation term 4674/6rIn () by o7r. This holds by
applying r > 96 In (47’").

o For any Gaussians F; # F}j, with 07 > 0% and 07 > é0” and any two points z from F; and
y from Fj,

4
Iz = yl* > (o? + o) + 3807 [6r1n (Tm) ®
This follows from lemma 5, which states that:
e =9Il > (0F + o3 i = 1 = ((0F + VT + 2l = il fo? + )

With o = 4/241n (%), || — ]| > 120, (rIn (22))"* and r > 961n (42), we obtain the

above bound. We can also obtain a lower bound only in terms of o7 as we did above for

two points from the same Gaussian by the same upper bound on the deviation term:
Iz —yl|* > 1207r. (9)

Using these bounds, we can classify the smallest Gaussian using (6), since inter-Gaussian
distances are smaller than intra-Gaussian distances. However, this only holds for Gaussians
with variance larger than éo?. We first show that the first step in the algorithm removes all
such small Gaussians, and then show that any Gaussians classified in step (e) are complete
Gaussians. The next few observations prove the correctness of the algorithm, conditioned on
Lemma 5 to obtain (6), (7), (8) and (9).



1. Let y € S’ be from some Gaussian F;. Then o? > ¢
2. Let « € F};, H be the point and set used in any iteration of step (c). Then H = S’ N Fj,
i.e. it is the points in S’ from Fj.

3. For any Gaussian F; with o7 > 3¢R?/r, we have F; C S, i.e. any Gaussian with sufficiently
large variance will be contained in S'.

We proceed to prove 1-3.

1. Let = be any point from F', the Gaussian with largest variance, and let w be any other point.
By (7) and (9), ||z — w||* > o®r, so R?> > o?r.

Now suppose by way of contradiction that o? < éo?. We will show that if this is the case, y
would have removed from S, contradicting its membershlp in S’. Let z be another point in S
from F;. Then by (7) we have that:

ly —=2II* < 3ofr
< 3éo’r < 3¢R?
Since y’s closest point lies at a distance at most 3éR?, this contradicts y € S'.
2. First, we show that z,w in step (c) of the algorithm belong to the same Gaussian. If not,

suppose without loss of generality that w € Fj, and that o; < ;. But then by (6) and (8), there
exists a point z from F} such that:

4m
||z — z||* < 2afr+4af”6rln (T)

4
||z — w|*> > 2077 + 38074 /6r1n (Tm>

However,

This contradicts the fact that xz,w are the two closest points in S’.
With the bounds on ||z — wl||* for z,w € F}; from (6), we obtain the following bounds on I,
our estimate for the furthest point from x that is still in Fj:

[ f 4
20%r + do? 6r1n <l<20r+280 6rln m

The lower bound on [ ensures that every point in F; and S’ is included in H.

The upper bound on [ ensures that any point z € F; # F; will not be included in H. If
o; > o0j, this follows from the fact that the upper bound on [ is less than the lower bound on
||z — z||? in (8). Now suppose o; < ;. Since z,w are the closest points in S’, it must be the
case that:

4m
||z —w||* < 207r + 4074 /6r1n (T)

since otherwise, two points from F; would be the two closest points in S’. Since ||z — w|]* >
203r — 4034 /6rln (42), we have that

4
oir > af-r - 40]2 6r1In (Tm>
Applying this to (8), we have that:

4
|l — z||” > 2077 + 34074 [6r]n <Tm>



As this is larger than the upper bound on I, we have that F; NS = H.
3. Let z € F;, with 0? > 3¢R?/r. We want to show that = € S’, so we need to show that step
(b) never removes z from S. This holds if:

Vz, ||z — z||* > 3¢R?

which is true by (7) and (9).

We have just shown that any Gaussian with variance at least 3¢ R?/r will be correctly clas-
sified. By setting € < %, at least the largest Gaussian is classified in step (e), since R? < 302r
by (7). So we remove at least one Gaussian from the sample during each iteration.

It remains to bound the success probability of the algorithm. For this we need
e Corollary 3 holds up to k times,
e Steps (a)-(e) are successful up to k times

The probability of the first event is at least (1 — %)k > 1 —§/2. The probability of the latter
event is just the probability that distance concentration holds, which is (1 — %) > (1- %)
Therefore, we have the probability that the algorithm succeeds is: (1— &)k(l —-0/2) >1-4. O

Note that if we assume only the minimum possible separation,
|li — pjll > Cmax{oi, 05},
then after projection to the top k right singular vectors the separation is
lpi = w51l > (C' — 2¢) max{o, 05}

which is the radius divided by vk (note that we started with a separation of radius divided by
v/n). Here we could use an exponential in k algorithm using O(ML) samples from the Gaussian
to obtain a maximum-likelihood estimation. First, project the samples to the k right singular

k
vectors of the sample matrix. Then, consider each of the O (ML) partitions of the points

into k clusters. For each of these clusters, we can compute the mean and variance, as well as
the mixing weight of the cluster. Since the points were generated from a spherical Gaussian,
and we know the density function F' for a spherical Gaussian with a given mean and variance,
we can compute the likelihood of the partition. Let x be any point in the sample, and let [(x)
denote the cluster that contains it. Then the likelihood of the sample is:

z€eS

By examining each of the partitions, we can determine the partition that has the maximum-
likelihood, obtaining estimates of the means, variances, and mixing weights of the mixture.

6 Remarks

The algorithm and its guarantees can be extended to mixtures of weakly-isotropic distributions,
provided they have two types of concentration bounds. For a guarantee as in Theorem 3, we
require an analog of Lemma 3 to hold, and for a guarantee as in Theorem 4, we need a lemma
similar to Lemma 5. A particular class of distributions that possess good concentration bounds is
the class of logconcave distributions. A distribution is said to be logconcave if its density function
f is logconcave, i.e. for any z,y € R, and any 0 < a < 1, f(az + (1 — a)y) > f(z)*f(y)! 2.
Examples of log-concave distributions include the special case of the uniform distribution on a
weakly isotropic convex body, e.g. cubes, balls, etc. Although the weakly isotropic property
might sound restrictive, it is worth noting that any single log-concave distribution can be made
weakly isotropic by a linear transformation (see, e.g. [11]).



We remark that the SVD is tolerant to noise whose 2-norm is bounded [13, 12, 2]. Thus
even after corruption, the SVD of the sample matrix will recover a subspace that is close to one
spanning the mean vectors of the underlying distributions. In this low-dimensional space, one
could exhaustively examine subsets of the data to learn the mixture (the ignored portion of the
data corresponds to the noise).

We also note that the classical algorithm for SVD takes O(mn?) time for an m X n matrix.
It is worth investigating whether the faster randomized methods of [8, 6] can be used in this
setting.

The spectral approach does not seem to directly apply to distributions that are not weakly
isotropic, e.g. non-spherical Gaussians. It is an open question as to whether it can be general-
ized /adapted.
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