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Abstract—Orthogonal matching pursuit (OMP) is the canonical
greedy algorithm for sparse approximation. In this paper we
demonstrate that the restricted isometry property (RIP) can
be used for a very straightforward analysis of OMP. Our main
conclusion is that the RIP of order � � � (with isometry constant
� �

�

�

�
�

) is sufficient for OMP to exactly recover any �-sparse
signal. The analysis relies on simple and intuitive observations
about OMP and matrices which satisfy the RIP. For restricted
classes of �-sparse signals (those that are highly compressible),
a relaxed bound on the isometry constant is also established. A
deeper understanding of OMP may benefit the analysis of greedy
algorithms in general. To demonstrate this, we also briefly revisit
the analysis of the regularized OMP (ROMP) algorithm.

Index Terms—Compressive sensing, greedy algorithms, orthog-
onal matching pursuit (OMP), redundant dictionaries, restricted
isometry property (RIP), sparse approximation.

I. INTRODUCTION

A. Orthogonal Matching Pursuit

O RTHOGONAL matching pursuit (OMP) is the canonical
greedy algorithm for sparse approximation. Letting de-

note a matrix of size (where typically ) and de-
note a vector in , the goal of OMP is to recover a coefficient
vector with roughly nonzero terms so that

equals exactly or approximately. OMP is frequently used
to find sparse representations for signals in settings
where represents an overcomplete dictionary for the signal
space [1]–[3]. It is also commonly used in compressive sensing
(CS), where represents compressive measurements of a
sparse or nearly-sparse signal to be recovered [4]–[6].

One of the attractive features of OMP is its simplicity. The
entire algorithm is specified in Algorithm 1, and it requires ap-
proximately the same number of lines of code to implement in a
software package such as Matlab. Despite its simplicity, OMP is
empirically competitive in terms of approximation performance
[3], [7].
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Theoretical analysis of OMP to date has concentrated pri-
marily on two fronts. The first has involved the notion of a co-
herence parameter , where denotes
column of the matrix . When the columns of have unit
norm and , it has been shown [3] that OMP will re-
cover any -sparse signal from the measurements .
This guarantee is deterministic and applies to any matrix
having normalized columns and .

The second analytical front has involved the notion of prob-
ability. Suppose that with
and that is drawn from a suitable random distribution (inde-
pendently of ) with rows. Then with high
probability, OMP will recover exactly from the measurements

[6]. It is not guaranteed, however, that any such fixed
matrix will allow recovery of all sparse simultaneously.

Algorithm 1 Orthogonal Matching Pursuit

input: , , stopping criterion

initialize: , , ,

while not converged do

match:

identify:
(if multiple maxima exist, choose only one)

update:

end while

output:

B. Restricted Isometry Property

As an alternative to coherence and to probabilistic analysis, a
large number of algorithms within the broader field of CS have
been studied using the restricted isometry property (RIP) for the
matrix [8]. A matrix satisfies the RIP of order if there
exists a constant such that

(1)

holds for all such that . In other words, acts as
an approximate isometry on the set of vectors that are -sparse.
Much is known about finding matrices that satisfy the RIP. For
example, if we draw a random matrix whose entries
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are independent and identically distributed sub-Gaussian
random variables, then provided that

(2)

with high probability will satisfy the RIP of order [9], [10].
When it is satisfied, the RIP for a matrix provides a suf-

ficient condition to guarantee successful sparse recovery using
a wide variety of algorithms [8], [11]–[19]. As an example, the
RIP of order (with isometry constant ) is a suffi-
cient condition to permit -minimization (the canonical convex
optimization problem for sparse approximation) to exactly re-
cover any -sparse signal and to approximately recover those
that are nearly sparse [11]. The same RIP assumption is also a
sufficient condition for robust recovery in noise using a modi-
fied -minimization [11].

Despite the considerable attention that has been paid to both
OMP and the RIP, analysis of OMP using the RIP has been rel-
atively elusive to date. However, several alternative greedy al-
gorithms have been proposed—all essentially modifications of
OMP—that are apparently much more amenable to RIP-based
analysis. The regularized orthogonal matching pursuit (ROMP)
[13], [14] and subspace pursuit (SP) [16] algorithms differ from
OMP in the identification step, while the compressive sampling
matching pursuit (CoSaMP) [15] and DThresh [17] algorithms
differ from OMP in both the identification and the update steps.
For each of these algorithms it has been shown that the RIP of
order (where is a constant depending on the algo-
rithm) with adequately small is sufficient for exact recovery
of sparse signals.

C. Contributions

Our contributions in this paper are twofold. First, we begin in
Section II with some very simple observations regarding OMP.
Many of these facts are known to practitioners in the field but
may not be obvious to a novice, and we feel that such readers
may find value in a short exposition.

Critically, these observations also set the stage for our main
results in Section III, in which we demonstrate that the RIP can
be used for a very straightforward analysis of OMP. Our anal-
ysis revolves around three key facts: (1) that in each step of the
algorithm, the residual vector can be written as a matrix times
a sparse signal, (2) that this matrix satisfies the RIP, and (3) that
consequently a sharp bound can be established for the vector
of inner products. Our main conclusion, Theorem 3.1, states that
the RIP of order (with ) is sufficient for OMP
to exactly recover any -sparse signal in exactly iterations.
However, for restricted classes of -sparse signals (those with
sufficiently strong decay in the nonzero coefficients), a relaxed
bound on the isometry constant can be used. We discuss such
extensions of our results in Section IV. A deeper understanding
of OMP may also benefit the analysis of greedy algorithms in
general. To demonstrate this, we briefly revisit the analysis of
the ROMP algorithm in Section IV.

D. Context

Let us place Theorem 3.1 in the context of the OMP literature.
Using the RIP as a sufficient condition to guarantee OMP per-
formance is apparently novel. Moreover, the fact that our bound
requires only the RIP of order is apparently unique among
the published CS literature; much more common are results re-
quiring the RIP of order [12], [11], [13], [16],
[18], [15], and so on.1 Of course, such results often permit
the isometry constant to be much larger.2

If one wishes to use the RIP of order as a sufficient con-
dition for exact recovery of all -sparse signals via OMP (as we
have), then little improvement is possible in relaxing the isom-
etry constant above . In particular, there exists a matrix
satisfying the RIP of order with for which there
exists a -sparse signal that cannot be recovered ex-
actly via iterations of OMP (this is conjectured in [16] with
a suggestion for constructing such a matrix, and for the case

we have confirmed this via experimentation).
Unfortunately, from (2) we see that finding a matrix satis-

fying the RIP of order with an isometry constant
will likely require random measure-
ments. If one wishes to guarantee exact recovery of all -sparse
signals via OMP (as we have), then there is little room for further
reducing . In particular, it has been argued in a recent paper
concerned with uniform guarantees for greedy algorithms [21]
that when , for most random matrices
there will exist some -sparse signal that cannot be
recovered exactly via iterations of OMP.

It is also worth comparing our RIP-based analysis with coher-
ence-based analysis [3], as both techniques provide a sufficient
condition for OMP to recover all -sparse signals. It has been
shown [6] that in a random matrix, the coherence pa-
rameter is unlikely to be smaller than . Thus, to
ensure , one requires , which
is roughly the same as what is required by our analysis. We note
that neither result is strictly stronger than the other; we have con-
firmed experimentally that there exist matrices that satisfy our
RIP condition but not the coherence condition, and vice versa.

Finally, we note that the aforementioned modifications of
OMP (the ROMP, SP, CoSaMP, and DThresh algorithms) all
have RIP-based guarantees of robust recovery in noise and
stable recovery of nonsparse signals. Until recently, no such
RIP-based or coherence-based guarantees had been established
for OMP itself. However, there has been recent progress in
using the RIP and similar conditions to analyze the perfor-
mance of OMP on nonsparse signals [22]. The results of [22]
can be adapted to provide a guarantee of exact recovery for
sparse signals, but the assumptions required are stronger than
the assumptions made in this work. Furthermore, a number of
open questions remain concerning the performance of OMP on

1After the submission of this manuscript, it was shown in [20] that the RIP of
order � with � � ����� is a sufficient condition for recovery via � minimiza-
tion in the absence of noise.

2In general, it is important to note that a smaller order of the RIP is not neces-
sarily a weaker requirement if the required constant is also significantly smaller.
For example, Corollary 3.4 of [15] implies that if � satisfies the RIP of order
� �� with constant �, then � also satisfies the RIP of order �� with constant
��.
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nonsparse signals, and performance in the presence of noise
has yet to be addressed. We speculate that our perspective may
help to further the general understanding of OMP and perhaps
provide a route to such guarantees. At present, however, this
remains a topic of ongoing work.

E. Notation

Before proceeding, we set our notation. Suppose
. We let . By we mean

the length vector containing the entries of indexed by .
By we mean the matrix obtained by selecting

the columns of indexed by , and by we mean the
range, or column space, of . We will assume throughout that

when , is full rank, in which case we let
denote the Moore-Penrose pseudoinverse of .

We denote the orthogonal projection operator onto

by . Similarly, is the orthogonal
projection operator onto the orthogonal complement of .
We note that any orthogonal projection operator obeys

.
Finally, we define . This matrix is the result of

orthogonalizing the columns of against . It is, there-
fore, equal to zero on columns indexed by .

II. OBSERVATIONS

Let us begin with some very simple observations regarding
OMP as presented in Algorithm 1. The key idea is to try to itera-
tively estimate a set that contains the locations of the nonzeros
of by starting with and then adding a new element to
in each iteration. In order to select which element to add, the al-
gorithm also maintains a residual vector that repre-
sents the component of the measurement vector that cannot be
explained by the columns of . Specifically, at the beginning
of the iteration, is our current estimate of , and
the residual is defined as where .
The element added to is the index of the column of that
has the largest inner product with .

Our first observation is that can be viewed as the orthogo-
nalization of against the previously chosen columns of . To
see this, note that the solution to the least squares problem in the
update step is given by

and (3)

Thus, we observe that

Note that it is not actually necessary to explicitly compute in
order to calculate .

Our second observation is that, in the matching step, one may
correlate either with the columns of or with the columns
of . To see this equivalence, observe that

and so

(4)

Incidentally, along these same lines, we observe that

From this, we note that it is not actually necessary to explicitly
compute in order to calculate the inner products during the
matching step; in fact, the original formulation of OMP was
stated with instructions to orthogonalize the remaining columns
of against those previously chosen and merely correlate the
resulting vectors against [1], [2]. Additionally, we recall that,
in , all columns indexed by will be zero. It follows that

(5)

and so, since with

(6)

Our third observation is that, in the case of noise-free mea-
surements , we may write

Again recalling that all columns of indexed by are zero,
we thus note that when , , and from (3) we
also know that exactly. It will also be useful to note that
for the same reason, we can also write

(7)

where

and (8)

III. ANALYSIS

Our analysis of OMP will center on the vector . In light of
(4) and (7), we see that plays a role both in constructing
and in analyzing the residual vector. In Lemma 3.2 below, we
show that the matrix satisfies a modified version of the RIP.
This allows us to very precisely bound the values of the inner
products in the vector .

We begin with two elementary lemmas whose proofs are
given in the Appendix and are also available in [23]. Our first
result, which is a straightforward generalization of Lemma 2.1
of [11], states that RIP operators approximately preserve inner
products between sparse vectors.

Lemma 3.1: Let be given, and suppose that a
matrix satisfies the RIP of order
with isometry constant . Then

(9)

One consequence of this result is that sparse vectors that are
orthogonal in remain nearly orthogonal after the application
of . From this observation, it was demonstrated independently
in [24] and [16] that if has the RIP, then satisfies a modi-
fied version of the RIP.
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Lemma 3.2: Suppose that satisfies the RIP of order with
isometry constant , and let . If then

(10)

for all such that and .
In other words, if satisfies the RIP of order , then acts

as an approximate isometry on every ( )-sparse vector
supported on . From (7), we recall that the residual vector in
OMP is formed by applying to a sparse vector supported
on . Combining the above results, then, we may bound the
inner products as follows.

Lemma 3.3: Let and suppose
with . Define

(11)

Then if satisfies the RIP of order with isometry
constant , we have

(12)

for all .
Proof: From Lemma 3.2, we have that the restriction of
to the columns indexed by satisfies the RIP of order

with isometry constant
. By the definition of , we also know that

where denotes the vector from the cardinal basis. Now,
suppose . Then because and

, we conclude from Lemma 3.1 that

Noting that , we reach the desired conclusion.

With this bound on the inner products , we may derive a
sufficient condition under which the identification step of OMP
will succeed.

Corollary 3.1: Suppose that , , meet the assumptions
specified in Lemma 3.3, and let be as defined in (11). If

(13)

we are guaranteed that
Proof: If (12) is satisfied, then for indices , we

will have [recall from (5) that for
]. If (13) is satisfied, then there exists some

with . From (12), and the triangle inequality,
we conclude that for this index , .

By choosing small enough, it is possible to guarantee that
the condition (13) is satisfied. In particular, the lemma below
follows from standard arguments.

Lemma 3.4: For any ,

Putting these results together, we can now establish our main
theorem concerning OMP.

Theorem 3.1: Suppose that satisfies the RIP of order
with isometry constant . Then for any with

, OMP will recover exactly from in
iterations.

Proof: The proof works by induction. We start with the first
iteration where and note that . Because

, Lemma 3.4 states that . One can also

check that implies that . Therefore, we are
guaranteed that (13) is satisfied, and so from Corollary 3.1 we
conclude that .

We now consider the general induction step. Suppose that we
are at iteration and that all previous iterations have succeeded,
by which we mean that . From (8), we know that

and that . From (6), we
know that . By assumption, satisfies the RIP of order

. Finally, using
Lemma 3.4, we have that

From Corollary 3.1, we conclude that
and, hence, .

IV. EXTENSIONS

A. Strongly-Decaying Sparse Signals

For even moderate values of the isometry constant there
exist sparse signals that we can ensure are recovered exactly.
For example, if the decay of coefficients is sufficiently strong in
a sparse signal, we may use Lemma 3.3 to ensure that the signal
entries are recovered in the order of their magnitude.

For any with we denote by the
entries of ordered by magnitude, i.e.,

with .

Theorem 4.1: Suppose that satisfies the RIP of order
with isometry constant . Suppose with
and that for all

If

(14)

then OMP will recover exactly from in iterations.
Proof: The proof again proceeds by induction. At each

stage, OMP will choose the largest entry of . To see this,
note that by (12) we have . The
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nonzero entries of will be comprised of
. Thus

Now, for the specific index at which has its largest entry,
we have

(15)

while for all other values of we have

(16)

From (14), it follows that (15) is greater than (16).

B. Analysis of Other Orthogonal Greedy Algorithms

We now demonstrate that the techniques used above can also
be used to analyze other orthogonal greedy algorithms. We
focus on ROMP [13], [14] for the purpose of illustration, but
similar methods should be able to simplify the analysis of other
orthogonal greedy algorithms such as SP [16].3

We first briefly describe the difference between ROMP and
OMP, which lies only in the identification step: whereas OMP
adds only one index to at each iteration, ROMP adds up to
indices to at each iteration. Specifically, ROMP first selects
the indices corresponding to the largest elements in magni-
tude of (or all nonzero elements of if has fewer than
nonzeros), and denotes this set as . The next step is to regu-
larize this set so that the values are comparable in magnitude. To
do this, define

, and set

i.e., is the set with maximal energy among all regularized
subsets of . Finally, setting , the remainder
of the ROMP algorithm is identical to OMP.

In order to analyze ROMP, we will need only two prelim-
inary lemmas from [13], which we state without proof. Note
that Lemma 4.1, which is essentially a generalization of Lemma
3.3, is stated using slightly weaker assumptions than are used in

3Some of the greedy algorithms that have been proposed recently, such as
CoSaMP [15] and DThresh [17], do not orthogonalize the residual against the
previously chosen columns at each iteration, and so the techniques above cannot
be directly applied to these algorithms. However, this orthogonalization step
could easily be added (which in the case of CoSaMP yields an algorithm nearly
identical to SP). Orthogonalized versions of these algorithms could then be
studied using these techniques.

[13] and, to be consistent with the rest of our paper, uses the
quadratic form of the RIP (whereas [13] uses the nonquadratic
form). However, the present version can easily be obtained using
the same proof techniques.

Lemma 4.1 [(1) in Prop. 3.2 of [13]]: Let
and be given. Then if satisfies the RIP of order

with isometry constant , we have

Lemma 4.2 (Lemma 3.7 of [13]): Let , , be
arbitrary. Then there exists a subset such that

for all and

Using these lemmas, we now provide a simplified proof of
the main result of [13] concerning the recovery of sparse signals
using ROMP.4

Theorem 4.2: Suppose that satisfies the RIP of order
with isometry constant . Then for any

with , ROMP will recover exactly from
in at most iterations.

Proof: The proof works by showing that at each iteration

(17)

If (17) is satisfied for , then at iteration , we have
that

(18)

It follows that, before exceeds , we will have
. Because satisfies the RIP of order , at termina-

tion, will be full rank. From (3) we conclude that
exactly.

To prove (17), we again proceed by induction. Hence, we
assume that (17) holds for , and thus (18) holds
for iteration . We next assume for the sake of a contradiction
that (17) does not hold for iteration , i.e., that

(19)

Define the sets and
, where is defined as in (8). Recall that we can write

. Thus, using the assumption that
and the facts that and , one can show that

(20)

We now observe that

(21)

4Note that we assume that � satisfies the RIP of order �� with constant
� � ����� ��� � . Using Corollary 3.4 of [15], we can replace this
with the assumption that � satisfies the RIP of order �� with constant
� � ��	�� ��� � .
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which follows from Lemma 4.2 and the fact that is the max-
imal regularizing set. From the maximality of and the fact
that , we have that , so that by
combining (20) and (21), we obtain

(22)

Note that and since ,
from Lemma 3.2, we have that satisfies the RIP of order at
least with constant , thus Lemma 4.1 implies that

Since , , and thus

Hence

(23)

On the other hand, since ,
from (18), we obtain that . Thus,

. Furthermore,
satisfies the RIP of order .
Since , we have that satisfies the RIP of order
at least with constant . Thus, Lemma 4.1
also implies that

(24)

This is a contradiction whenever the right-hand-side of (23)
is greater than the right-hand-side of (24), which occurs
when . Since ,
we can replace this with the slightly stricter condition

.

Observe that when , this proof (as well as the proofs
in [13] and [14]) break down since Lemma 4.2 does not apply.
However, when the ROMP algorithm simply reduces
to OMP. In this case we can apply Theorem 3.1 to verify that
ROMP succeeds when provided that satisfies the RIP
of order 2 with isometry constant .

APPENDIX

1) Proof of Lemma 3.1: We first assume that
. From the fact that

and since satisfies the RIP, we have that

From the parallelogram identity, we obtain

Similarly, one can show that , and thus
. The result follows for , with arbi-

trary norm from the bilinearity of the inner product.

2) Proof of Lemma 3.2: From the definition of , we
may decompose as . Since is an
orthogonal projection, we can write

(25)

Our goal is to show that , or equivalently, that
is small. Towards this end, we note that since

is orthogonal to

(26)

Since is a projection onto there exists a
with such that . Furthermore, by
assumption, . Hence , and from the
RIP and Lemma 3.1

Combining this with (26), we obtain

Since we trivially have that , we can combine this
with (25) to obtain

Since , we can use the RIP to obtain

which simplifies to (10).
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