
EE 381V: Large Scale Learning Spring 2013

Lecture 11 — February 19

Lecturer: Caramanis & Sanghavi Scribe: Ryan Buckley

11.1 Overview

In this lecture we continue our discussion of spectral clustering of Gaussian mixtures, which
has been the topic of the last two lectures. We then discuss a different way of doing dimen-
sionality reduction, using the Johnson-Lindenstrauss lemma.

11.2 Review: Clustering Isotropic Gaussians

The last two lectures focused on the algorithms and analysis of spectral clustering for
Gaussian mixtures in the isotropic case, in which the i-th Gaussian has the distribution
Xi ∼ N (µi, σ

2
i I). Note that the covariance matrix is simply a multiple of the identity

matrix, so each Gaussian is distributed spherically, as depicted in figure 11.1. Recall that
in this case, we reduced dimension by projecting onto the subspace spanned by the top r
components of the SVD.

Figure 11.1. Three Isotropic Gaussians

11.3 Anisotropic Distributions

In this lecture we consider mixtures of Gaussians which are not spherically distributed.
Instead, the distributions we consider will have a high variance orthogonal to the direction
between the means of the distributions. Nevertheless, we will still require that the variance

11-1

EE 381V Lecture 11 — February 19 Spring 2013

Figure 11.2. Parallel Pancakes: the distributions may contain directions of high variance, but the distance
between their means is greater than the variance in that direction.

along the direction between the means be smaller than the distance between the means, and
that for each cluster, there is a hyperplane which separates it from all the other clusters.

This problem, which we will call the “pancake problem,” is still a Gaussian mixture
model, but we will need a new algorithm in order to reduce the dimension. Suppose we
attempted to reduce the dimension using the procedure developed for the isotropic case, in
which we took the top r components of the SVD of the points in figure 11.2. This would be
a disaster, since the top vectors of the SVD point in the directions of highest variance. In
this case, that would mean projecting onto the vertical direction, which would project the
two distributions onto each other.

We know that the best direction for projection is the direction between the means of
the distributions. To find this direction, we use an algorithm by Brubaker and Vempala [1].
The algorithm as discussed here is simplified to assume that the direction of high variance is
orthogonal to the direction between the means. The algorithm consists of five steps, listed
in algorithm 1.

11-2

EE 381V Lecture 11 — February 19 Spring 2013

Algorithm 1 Algorithm for Pancake Problem

1: Isotropy: First we make the overall distribution isotropic (i.e. the covariance matrix is
I). For this we need a linear map from Rn to Rn which makes the variance equal in
all directions. We calculate the empirical covariances of sample points xi, for which we
define

Σ̂ =
1

N

N∑
i=1

= (xi − µ̂)(xi − µ̂)T , (11.1)

where the µ̂ is the sample mean: µ̂ = 1
N

∑
xi. We perform the mapping using the

equation
y = Σ̂−1/2(x− µ̂). (11.2)

Observe that with this mapping the points yi are distributed according to a Gaussian
with mean zero and covariance I.

2: Reweight: Give each point y a weight w according to

w(y) = e−‖y‖
2/α. (11.3)

Note that points close to the origin will be given higher weight than points far from the
origin.

3: Form the reweighted covariance matrix

M̂ =
1

N

N∑
i=1

w(yi)yiy
T
i . (11.4)

The best spectral direction will be the top singular vector of M̂ , which we denote by h.
4: Project all the points yi onto h.
5: Use some algorithm to cluster the points now that dimensionality has been reduced.

11.3.1 Intuition

Figure 11.3 depicts the output of the transformation in step 1, the isotropy step. We apply a
linear transformation and the output is another Gaussian mixture model, but with the same
variance in every direction. Note that this uniformity of variance makes the SVD useless.

Note that if our input data is consists of highly separated, very tight clusters (i.e. very
good data for clustering), the isotropy step will still result in distributions that look roughly
like those in figure 11.3, and can actually make the data worse. Fortunately, the transformed
data is still good enough to cluster.

Figure 11.4 shows the result of the weighting step. After weighting is applied, the variance
is concentrated along the direction between the distributions.

Since the horizontal direction has the most weight along it, the algorithm will therefore
select it as the best direction, and will project along this direction.

11-3

EE 381V Lecture 11 — February 19 Spring 2013

Figure 11.3. Points output by the algorithm’s isotropy step

Figure 11.4. Weighted Pancakes: Points close to the origin have higher weight, so there is effectively more
variance along the direction between the distributions

11.3.2 Analysis of Algorithm

We begin the analysis of the algorithm with a small caveat. In step 1 of the algorithm,
we said that the Gaussians underwent a linear mapping. In fact, the mapping is not quite
linear since it depends on the points that are being mapped. To illustrate why this map
is not linear, we consider a one-dimensional example. Let X be a random variable with
X ∼ N (0, σ2). If we define a Y = αX where α is a constant, then clearly Y is a Gaussian;
its distribution is N (0, α2σ2). Now suppose the scaling factor α is a function of a realization
of X, and y = α(x)x. This mapping is no longer linear, so Y will not be a Gaussian.

A formal analysis of this algorithm depends on the mapping being linear, so for such an
analysis one can choose a few sample points, construct the linear map, and apply the map
to the other points. In practice, the algorithm works well even without a truly linear map.

The following theorem shows that the algorithm correctly partitions the space, with high
probability.

11-4

EE 381V Lecture 11 — February 19 Spring 2013

Theorem 1. Let two Gaussians be distributed according to N (µ1,Σ1) and N (µ2,Σ2). If
there exists a direction v such that

‖projv(µ1 − µ2)‖ ≥ c
(√

vTΣ1v +
√
vTΣ2v

)
log

(
1

δ
+

1

n

)
,

then with probability greater than 1 − δ, the algorithm partitions the space with errors in
≤ η fraction of points, using a number of samples N such that N > d log d log 1/δ.

If there are more than two clusters, then we apply the algorithm recursively. Of course,
we still require that for each cluster, some hyperplane separates that cluster from all the
others.

One surprising result of this algorithm is that huge amounts of noise have no effect
on clustering, provided the noise does not prevent us from separating the clusters with
hyperplanes.

11.4 Johnson-Lindenstrauss Lemma

For the second part of the lecture, we turn to the Johnson-Lindenstrauss lemma.
In previous lectures we saw that dimensionality reduction via random projection did not

work well for spectral clustering on Gaussian mixture models. There are many applica-
tions, however, where random projection is effective. For those cases, the result stated in
the Johnson-Lindenstrauss lemma allows us to do dimensionality reduction without losing
structure. Specifically, the lemma says that there is a random projection onto a space of
lower dimension which preserves all pairwise distances simultaneously.

Lemma 1. There exists a map f : Rd → Rk where k ≥ 4 logn
ε2/2−ε2/3 such that

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

Somewhat remarkably, nothing in this lemma depends on the ambient space d. In ad-
dition to the lower bound on k provided in the lemma, k ∈ O(log n/ε2), it is known that
k ∈ o(log n/ε2) does not suffice. That is, this lemma and its simple proof provide a fairly
tight bound on k [2].

The proof of this lemma consists of two major steps. First we show that with high
probability, the squared length of a random vector will be tightly concentrated around its
mean when projected into a random k-dimensional subspace. Second, we do a union bound
over all pairs.

Part 1: The length of a fixed unit vector projected onto a random subspace has the same
distribution as the length of a uniform random unit vector projected onto a fixed subspace.
We form Xi ∼ N (0, 1) and X = (X1, X2, . . . , Xd). Then Y = X

‖X‖ , so Y is a uniform random
unit vector. We can project onto any k-dimensional subspace we choose, so we choose the
subspace spanned by the first k components of Y . Define L = |y1|2 + |y2|2 + . . .+ |yk|2. Then
E[L] = k/d.

11-5

EE 381V Lecture 11 — February 19 Spring 2013

Lemma 2. Let k < d. Then

• If B < 1, then

Pr

[
L ≤ βk

d

]
≤ βk/2

(
1 +

(1− β)k

d− k

)(d−k)/2

≤ exp

(
k

2
(1− β + ln β)

)
(11.5)

• If B > 1, then

Pr

[
L ≥ βk

d

]
≤ βk/2

(
1 +

(1− β)k

d− k

)(d−k)/2

≤ exp

(
k

2
(1− β + ln β)

)
(11.6)

To use the lemma we fix any pair vi, vj and let their projections onto Rk be v′i, v
′
j,

respectively. Then the probability of the

Pr
[
‖v′i − v′j‖2 ≤ (1− ε)(k/d)‖vi − vj‖2

]
≤ exp

(
k

2
(1− (1− ε) + ln (1− ε))

)
(11.7)

≤ exp

(
−kε

2

4

)
(11.8)

≤ exp (−2 lnn) (11.9)

= 1/n2. (11.10)

Similarly,
Pr
[
‖v′i − v′j‖2 ≥ (1 + ε)(k/d)‖vi − vj‖2

]
≤ 1/n2. (11.11)

Therefore, the probability of a bad event for two points vi, vj is less than or equal to 2/n2.
By taking a union bound over all points, the probability of having a bad pair is less than(
n
2

)
2/n2 = 1 − 1/n. So the probability of success is 1/n. If we repeat the projection O(n)

times, we can increase the probability of success to the desired constant.

Bibliography

[1] S. Charles Brubaker and Santosh S. Vempala, “Isotropic PCA and Affine-Invariant Clus-
tering.” 49th Annual IEEE Symposium on Foundations of Computer Science, 2008.

[2] Sanjoy Dasgupta and Anupam Gupta, “An Elementary Proof of a Theorem of Johnson
and Lindenstrauss,” Random Structures & Algorithms, vol. 22, no. 1, pp. 60–65, 2002.

11-6

