
EE 381V: Large Scale Learning Spring 2013

Lecture 12 — February 21

Lecturer: Caramanis & Sanghavi Scribe: Samer Chucri

12.1 Last Few Lectures

In the last few lectures, the following has been covered:

1. Linear Dimensionality Reduction (via PCA)

2. Dimensionality Reduction for clustering (Spectral Clustering)

3. Dimensionality reduction via Random Embedding (JohnsonLindenstrauss)

In this lecture we are going to explore dimensionality reduction from local geometry, a form
of non-linear dimensionality reduction.

12.2 Non-linear dimensionality Reduction

12.2.1 High level description

Given a non-linear manifold in High Dimensional space, we want to:

1. Preserve distance between points

2. Preserve manifold distance: Whether 2 points are far or not should be determined by
the manifold as shown in Figure 12.1.

Our goal is to map the points in high dimensional space to a lower dimensional space while
preserving (1) & (2).

12.2.2 Problem statement

We are given the following:

1. m Points in ambient space xi ∈ RN

2. Only specific dij are known for some pairs, where dij = ||xi − xj||2

Note that another scenario equivalent to (2.) is where only near neighbor distances are re-
liable, as shown in the manifold example. In this case, we have some radius of confidence
around each point, and points that fall in the sphere are considered near neighbors.

12-1

EE 381V Lecture 12 — February 21 Spring 2013

Figure 12.1. Manifold in high dimension where x1 and x2 should not be considered close.

Task:

Find x̂i ∈ Rd, such that near neighbor distances are preserved

12.2.3 Technique 1

Multidimensional Scaling (MDS)- MAP

The main idea of MDS starts by forming the square distance matrix Dm×m:
(D)ij = d2ij
Remember, we are only given some of the entries since dij is not known for some pairs, or
only a selected number of dij’s are reliable.

Theorem 12.1. Suppose xi ∈ Rd and d2ij = ||xi − xj||2 is known for all pairs (i, j), then D
has rank at most d+ 2

Proof: Start by forming matrix Xm×d as follows:

X =


x1

x2
...

xm

 (12.1)

It’s easy to see that D can be written as follows:

D = −2XXT + a1T + 1aT (12.2)

where ai = ||xi||2
This is so since d2ij = ||xi||2 + ||xj||2 − 2xTi x

T
j

Now we know that XXT has rank at most d, a1T has rank 1, and 1aT has rank 1.
It follows that D has rank at most d+ 2 �

This tells us that the full matrix D is indeed low rank, so we need to find a way to fill the
missing entries in D while also preserving this property.

12-2

EE 381V Lecture 12 — February 21 Spring 2013

One suggestion Fill the missing values in D with 0, and perform an SVD.
It turns out that this method is a bad idea, because typically we are only given the small
entries, and SVD tries to to approximate small entries as close as possible and assign 0 for
the others.

Second Approach

1. Form a graph G by representing each point xi as a vertex i, and edge (i, j) exists if we
are given dij as shown in Figure 12.2

2. Form matrix D̂ where D̂ij = Dij if (i, j) ∈ Ω, where Ω is the observed set. For the

remaining entries D̂ij = Graphical shortest path, if one exists.

Figure 12.2. Continuous line represents a given value dij whereas a dotted line represents a missing dij

Note that we need our graph G to be connected, otherwise the best we can do is embed
each connected component independently.

After forming D̂, we need to ensure that rank(D̂) is consistent with the low rank require-
ment that we set initially. Unfortunately in many cases, D̂ will not be low rank because the
missing distances are approximate (based on the triangle inequality).
We will present a solution to this problem, but first let’s state a fact about rigid motion:

Fact 1. X and X̂ are connected by Rigid Motion ⇔ P⊥(XXT − X̂X̂T)P⊥ = 0
where P⊥ = Im×m − 1

m
11T

Note: P⊥ simply removes translation by centering the points

P⊥X = X − 1

m

m∑
i=1

xi (12.3)

P⊥XXTP⊥ = XcentX
T
cent (12.4)

Rotation is taken care of since our algorithm depends on XXT which takes care of any
multiplication by a unitary matrix

12-3

EE 381V Lecture 12 — February 21 Spring 2013

We will restate the problem:
Given some dij, our task is to find a corresponding point x̂i ∈ Rd for every xi ∈ RN , such
that these distances are preserved.

Complete Algorithm

1. Compute D̂ via shortest path

2. Compute Q = −1
2
P⊥D̂P⊥

3. Decompose Q = UΛUT

4. X̂ = UdΛ
1
2
d , where Ud corresponds to top d eigenvectors

Note that P⊥DP⊥ = −2XcentX
T
cent

12.3 Analysis of Algorithm

Setup

We have m points in [−1, 1]d chosen uniformly at random.

12.3.1 Model 1

In this model we assume that dij is known ⇔ dij ≤ r.
This is known as a geometric random graph in d dimensions where two vertices i and j are
connected if and only if dij ≤ r

Fact 2. Let r0 = C1

(
logm
m

) 1
d

If r > r0 then the geometric random graph is connected with probability 1−m−α, where α
depends on C1.

Lemma 1. For r > r0, the following sequence of inequalities holds with high probability:

d2ij ≤ d̂2ij ≤ d2ij(1 +
c2r0
r

) (12.5)

Remarks

1. Recall that r is our threshold of trust, and by increasing the number of samples m we
end up needing a smaller r. This is so since increasing m reduces r0, which allows us
to reduce r.

2. The higher r is the better our bound is. This is intuitive since increasing r means we
have more knowledge of the underlying geometry.

12-4

EE 381V Lecture 12 — February 21 Spring 2013

12.3.2 Model 2

In this model we assume that d′ij =

{
1 if dij ≤ r
0 o.w.

In this case D̂ is created by performing shortest path search on rD′, where D′ij = d′ij.
Lemma 1 does not apply anymore, but rather a variant of it.

Lemma 2. For r > r0, the following sequence of inequalities holds for all (i, j) with high
probability:

d2ij ≤ d̂2ij ≤ d2ij(c2r +
c3r0
r

) (12.6)

Remark

Note that in this case increasing r is not always advantageous. By increasing r too much
we lose information of closeness of points, and at the limit we lose all information about the
graph.

12.4 Locally Linear Embedding (LLE)

Setup

Given a set of points {x1, ..., xm} in ambient space (not only distances) and a radius of trust
r, our task is to find a lower dimensional embedding {ŷ1, ..., ŷm} that preserves the local
geometry (local is defined by r)

Idea

1. Represent each point as a linear combination of its near neighbors

2. Take the coefficients of the linear combination and use that to find low dimensional
points

12.4.1 Algorithm

1. Ŵ = arg min
W

∑m
i=1 ||xi −

∑
j∈Ni

Wijxj||2

2. Ŷ = arg min
Y s.t.

∑
yi=0, 1

m

∑
yiyi=I

∑m
i=1 ||yi −

∑
j∈Ni

ŵijyj||2 , where yi is the ith row of Ym×d

In step 1, Ŵ tells us what the local geometry is, and in step 2, we try to find low dimensional
points that are consistent with that local geometry.

12-5

EE 381V Lecture 12 — February 21 Spring 2013

Remarks

Finding Ŷ reduces to the following problem:

Ŷ = arg min
Y s.t. Y Y T=I

Y TMT , where M = (I − Ŵ)(I − Ŵ)T

Notice that the solution to this optimization problem Ŷ , is nothing but the matrix formed
by the eigenvectors corresponding to the lowest d eigenvalues of M .

12-6

