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Lecturer: Caramanis & Sanghavi Scribe: Gezheng Wen

15.1 Large Scale Linear Algebra

15.1.1 Direct vs Iterative Methods

• Direct Methods: Direct methods are widely used for matrix inversion, matrix fac-
torization.

– High cost to perform ∼ O(n3);

– Typically do not exploit special matrix structure (e.g., sparsity)

• Indirect Methods: Interative Algorithms

– Often approximate to the true covariance;

– Often inexpensive at each step(involve at most matrix-vector product)

Note: This naturally exploits sparsity. Typical examples include power iteration and
Lanczos algorithm.

15.1.2 Lanczos Review

Recall the key ideas of Lanczos algorithm are as follows: Given Qk = [q1, q2, ...qk] where qi
are orthonormal vectors, Mk , λ1(Q

T
kAQk) = max

06=y∈Rk×1

(Qky)
TA(Qky)
yT y

approximates to λ1(A).

Given a vector q ∈ Rn and A ∈ Sn, the Krylov subspace K (A, q, k) is given by: K (A, q, k) =
span

{
q, Aq,Aq2, . . . Aqk−1

}
.

The Krylov matrix K (A, q, k) is given by: K (A, q, k) =
[
q Aq Aq2 . . . Aqk−1

]
.

One property of the Krylov space is span{q1, q2, ..., qk} = span{q1, Aq1, ..., Ak−1q1}.

Here is the summary of Lanczos iterations:

• The algorithm produces orthonormal basis for the Krylov space K (A, q, k) iteratively.

• From the Kaniel-Pagie Theory, we know: λ1(Q
T
kAQk) ≈ λ1(A), λk(Q

T
kAQk) ≈ λn(A).

• QT
kAQk = Tk, where Tk is a tri-diagnoal and symmetric matrix.
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All these nice properties of Lanczos iterations lead to the following consequences:

• Qk and Tk are very easy to compute iteratively.

• After the Lanczos iteration, the eigenvalues of Tk are also easy to compute

In homework, we will prove:

1. It is possible to implement Lanczos iterations with a single matrix-vector multiplica-
tion.

2. If A ∈ Rn×n is a s-sparse per row, then each Lanczos iteration requires about O(n · s).

15.1.3 Solving Ax = b by Lanczos Iterations

There are two classes of fundamental problems in Linear Algebra

1. Finding the eigenvalues/eigenvectors of a matrix, or singular values/singular vectors
of a matrix

2. Solving min ‖Ax− b‖2, or Ax = b.

For the second class, if we let Φ(x) = 1
2
xTAx− xT b, where A is positive semidefinite matrix,

then it is easy to see that OΦ(x) = Ax− b⇒ x∗ = A−1b. Thus, solving min ‖Ax− b‖2 and
solving Ax = b is essentially the same problem.

Now let us find out how we may use iterations to solve this problem.

Qk = [q1, q2, ..., qk] (15.1)

xk = x0 +Qkyk (15.2)

(QT
kAQk)yk = QT

k (b− Ax0) (15.3)

To make this iteration algorithm efficient and easy to compute, we need solve three problems:

1. find an easy way to find qk+1

2. find an easy solution to 15.3

3. find a Fast way to update xk

Let us exploit Lanczos Alogrithm by recalling the Theorem: After k steps of Lanczos, we

have AQk = QkTk + rke
T
k , where Tk =


α1 β1 0

β1
. . . β2
. . . . . . . . .

βk−2
. . . βk−1

0 βk−1 αk

 and Qk = [q1 · · · qk].
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Problem 1: Find qk+1

Use Lanczos iteration

Problem 2: Solve (QT
kAQk)yk = QT

k (b− Ax0)

Based on the theorem, we can solve 15.3 by solving Tkyk = QT
k (b−Ax0). Since Qk is gener-

ated visa Lanczos iterations, Tk is symmetric and tri-diagonal. Thus, Tk can be factorized
as:

Tk = LkDkL
T
k , (15.4)

where Lk =


1 0

µ1
. . .
. . . . . .

µk−2
. . .

0 µk−1 1

, and Dk =


d1

d2
. . .

dn

.

By comparing the entries of the matrices, we can find the entries of Lk and Dk by iterations,
and all Lk and Dk are easy to obtain from Lk−1 and Dk−1.

d1 = α1, (15.5)

µi−1 =
bi−1
di−1

, i = 2, 3, ..., k (15.6)

di = αi − βi−1µi−1, i = 2, 3, ..., k (15.7)

Problem 3: Update xk = x0 +Qkyk

Then we need to figure out the fast way to update xk. Recall that each Lanczos iteration
needs one matrix-vector product.

• Question: Can we avoid all the above matrix-vector products?

• Answer: Yes, it is possible to do again with only one matrix-vvector iteration per
step.

One of the algorithms to accomplish the task is called Conjugate Gradient Method.
Define: Ck ∈ Rn×k, pk ∈ Rk via

CkL
T
k = Qk (15.8)

LkDkL
T
k = QT

k (b− Ax0) = QT
k r0, (15.9)
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where r(x̂) = b−Ax̂, r0 = b−Ax0. Setting r0 = b−Ax0, we can define the update of xk via
Ck and pk because:

xk = x0 +Qkyk

= x0 +Qk(QkAQ
T
k )−1 ∗QT

k (b− Ax0)
= x0 +QkT

−1
k QT

k r0

= x0 +Qk(LkDkL
T
k )−1QT

k r0

= x0 + Ckpk (15.10)

Now write Ck = [Ck−1 ck], where ck is the kth column of Ck. From CkL
T
k = Qk, we can find ck:

ck = qk − µk−1ek−1 (15.11)

Now pk ∈ Rk ⇒ pk = (ρ1, ρ2, ...ρk)
T .

Recall pk is defined by: LkDkL
T
k = QT

k r0. This is equivalent to:

[
Lk−1Dk−1 0

0 · · · 0 µk−1dk−1 dk

]

ρ1
ρ2
...

ρk−1
ρk

 =


qT1 r0
qT2 r0

...
qTk−1r0
qTk r0


Thus, the update of xk can be expressed as:

xk = x0 + Ckpk

= x0 + [Ck−1 ck]

[
pk−1
ρk

]
= (x0 + Ck−1pk−1) + ckpk

= xk−1 + ckpk (15.12)

Now we can update x via vector-scalar multiplication.

Since Lk−1Dk−1pk−1 = QT
K−1r0, we have ρk = (qTk r0 −

µk−1dk−1ρk−1

dk
).

xk = x0 +Qkyk = x0 + Ckpk

= x0 + Ck−1pk−1 + ρkck = xk−1 + ρkck (15.13)

In summary:

1. Lanczos:

Tk−1 → Tk (αk−1βk−1 → αkβk)

qk−1 → qk
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2. LDLT factorizatoin of Tk gives:

µk−1 =
βk−1
dk−1

dk = αk − βk − 1µk−1

3. xk update

ck = qk − µk−1Ck−1

ρk =
(qTk r0 − µk−1dk−1ρk−1)

dk
xk = xk−1 + ρkck

15.2 Spiked Covariance

An important problem in multivariate statistical analysis is the estimation of the covariance
matrix. An interesting question to ask here would be how many samples are needed to
estimate the covariance.

More precisely, if Xi ∼ µ, i.i.d,Xi ∈ Rp, then the empirical covariance Σ can be calculated
as Σ̂ = 1

n

∑n
i=1XiX

T
i , where n is the number of samples. Note here that the expectation of

XiX
T
i equals to the actual covariance (i.e., E[Xi(XI)

T ] = Σ). In addition, from the standard
Law of Large Numbers, we know Σ̃ ∼ Σ as n→∞.

Now let us consider this problem in high-dimensional settings. There are multiple possible
scenarios when the number of dimension p and the number of samples s increase. Three
typical examples of the relations are shown in (Figure 15.2). For this lecture, we are par-
ticularly interested in the cases that p

n
→ c (i.e., the number of samples increases in the

approximately same rate as the dimensionality of the sample data points increases). We
want to know what the empirical covariance Σ̂ looks like.
Let us consider two cases:

• Case 1: The samples only contain noise. That means Σ = I

• Case 2: The samples contain both signal and noise. That means Σ = I + σwT

15.2.1 Case 1: noise only

Assume n → ∞, p → ∞, and p
n
→ c, where p is the dimensionality of the samples,n is the

number of samples and c is a constant. What do eigenvalues of the covariance matrix look
like?
If the noise is Gaussian with zero means and identity covariance matrix , and all the samples
Xi (i = 1, 2, ...n) are drawn independently from this p-variate Gaussian distribution, then
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Figure 15.1. p
n shows the relation between dimensionality and sample size

the matrix Σ̂ = 1
n

∑n
i=1XiX

T
i is also called a (random) Wishart matrix. And the Wishart

distribution describes the probability distribution of this random Wishart matrix. In statis-
tics, the Wishart distribution is a generalization to multiple dimensions of the chi-squared
distribution, or, in the case of non-integer degrees of freedom, of the gamma distribution.

Theorem 15.1 (Marceenko-Pastur). If n,p→∞, and p
n
→ c < 1, then

Gp(t) =
1

p
#{li : li ≤ nt} → G(t) (15.14)

G′(t) = g(t) =
γ

2πt

√
(b− t)(t− a), (15.15)

where a = (1 −
√
c)2, b = (1 +

√
c)2 and Gp(t) describes the fraction of eigenvalues that is

less than a particular nt.

In particular: all eigenvalues are contained in the interval: [(1−
√
c)2, (1 +

√
c)2].

One of the related results of the theorem is given by Tracy-Widom Distribution.

Theorem 15.2 (Tracy-Widom). With appropriate centering and scaling, the logistic trans-
form l1 is approximately Tracy-Widom distributed.

l1 − µnp
σnp

d→ W1 ∼ F1 (15.16)

where µnp = (
√
n− 1 +

√
p)2, σnp = (

√
n− 1 +

√
p)( 1√

n−1 + 1√
p
)
1
3 .
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If we take the number of samples closes to the dimension (i.e, n ≈ p), this says that standard

deviations are of order p
1
3 ,instead of p

1
2 .

More related results are given by Wigner semi-circle law and other random matrix ensembles.

The key idea here is that the top eigenvalue is l-Lipschitz and Lipschitz functions concentrate
about their mean.

Back to the spiked covariance model: yi ∼ N(0, I +σvvT ). If the number of samples n→∞
while p is fixed, then Principle Component Analysis (PCA), a.k.a SVD of empirical covari-
ance matrix Σ̂ = 1

n

∑n
i=1XiX

T
i will recover v,∀σ > 0.

What about for p
n
→ c < 1? It turns out there is a phase transition.

Theorem 15.3. For p
n
→ c < 1, then ŝ1 the largest eigenvalue of the empirical covariance

matrix Σ̂ behaves as follows:

ŝ1 = { (1 +
√
c)2 σ1 ≤ 1 +

√
c

σ1 + cσ1
σ1−1 σ1 > 1 +

√
c

(15.17)
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