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Lecture 16 — March 7

Lecturer: Caramanis & Sanghavi Scribe: Tianyang Bai

16.1 Topics Covered

In this lecture, we introduced one method of matrix completion via SVD-based PCA. Specif-
ically, we covered the following topics.

1. Introduction: problem formation and applications

2. One toy example: recovering a matrix of rank 1

3. SVD-based algorithm

4. Proof for the effectiveness of the algorithm

16.2 Introduction

We would like to motivate the matrix completion problem through the example of col-
laborative filtering. Imagine that each of m customers watches and rates a subset of
the n movies available through a website. This yields a dataset of customer-movie pairs
(i, j) ∈ E ⊆ [m] × [n]. For each such pair, a rating Mij ∈ R is known. The objective of
collaborative filtering is to predict the rating for the missing pairs as to provide suggestions,
based on the previous rating results. In addition, another application of matrix completion
is localization from distance measurements, a topic we discussed previously.

16.2.1 Mathematical Model

A mathematical model is made to solve the collaborative filtering problem as follows. We
denote by M the matrix whose entry (i, j) ∈ [m] × [n] corresponds to the rating from user
i to movie j. Out of the m× n entries of M , only a subset E ⊆ [m]× [n] is known. We let
ME be the m× n matrix defined as

ME
i,j =

{
Mi,j if (i, j) ∈ E,
0 otherwise.

The set E is uniformly chosen from [m]× [n] given its size |E|. Furthermore, we also assume
M has low rank r � m,n for the following reasons.

1. Empirical datasets show that M has low rank.

16-1



EE 381V Lecture 16 — March 7 Spring 2013

Table 16.1. Matrix Completion Algorithm
1: Trimming: Trim ME, and let M̄E be the output.

2: Compute the SVD of M̄E. Let M̄E =
∑min(m,n)

i=1 σixiy
T
i , where σ1 ≥ σ2 ≥ ... ≥ 0.

3. Projection: Compute the recovered matrix M as M = Pr(M̄
E) = mn

|E|
∑k

i=1 σixiy
T
i .

2. The clustered nature of the matrix M suggests low rank. Namely, users of similar
interests are more likely to give similar ratings to the films of similar features.

16.2.2 A Toy Problem: Recovering a matrix of rank 1

In the class, we first discussed the problem of how to complete a matrix of rank 1 to illustrate
the key ideas of matrix completion. The toy problem is formatted as follows.

Suppose M = UV , where U is an m × 1 unknown vector, and V is an n × 1 unknown
vector. Hence M has rank 1. We want to recover M , i.e. to find appropriate vector U and
V from ME, which is the matrix containing all observed entries as defined in the previous
section.

Firstly, note that the solution of U and V is not unique. The reason is that if U∗ and V ∗

satisfy the constraints, then for any constant c 6= 0, cU∗ and 1
c
V ∗ are also a proper pair of

solutions. Hence without loss of generosity, we assume U1 = 1.

Next, ∀j ∈ [n], if (1, j) ∈ E, we can recover Vj =
ME

1,j

U1
. In the similar way, having

known Vj, we can further recover Ui =
ME

i,j

Vj
as long as (i, j) ∈ E. Hence, if the matrix ME

is ”connected”, we can iteratively recover all the entries of U and V . We say a matrix is
connected in this problem if the bipartite constructed in the following way is a connected
graph.

Consider a bipartite graph formed by two disjoint subsets X and Y . X has m vertices,
while Y has n vertices. The vertix Xi is connected to Yj by an edge if ME

i,j > 0. If the
bipartite is connected, then we can recover M through the iterative method introduced
above.

Lastly, note that ME is connected with high probability if O(n log n) number of its entries
are nonzero (revealed).

16.3 SVD-based Matrix Completion Method

The algorithm is shown in the Table 16.1. Details of the steps are discussed in the following
paragraphs.

16.3.1 Trimming

The operation of trimming is defined as follows.
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Trimming: Set to zero all columns in ME with more than 2|E|
m

nonzero entries; Set to

zero all rows in ME with more than 2|E|
n

nonzero entries.

Note that the average number of nonzero entries in each column (row) of ME is |E|
m

( |E|
n

).
So we just discard all the columns and rows that have more than twice the average number
of nonzero entries through trimming.

In fact, if the size of revealed entries |E| = O(nr log n), trimming is not necessary.
However, if |E| = O(nr), the performance without the step of trimming is poor. The reason
is that when |E| = O(nr), the maximum number of revealed (nonzero) entries in a row has
the order of O( logn

log logn
), while the average number is constant. These over-represented rows

(columns) will alter the spectrum of ME artificially. Thus we drop these rows (columns) to
avoid poor performance.

16.3.2 Projection

If ignore the scaling constant |E|
mn

, Pr(M
E) is the orthogonal projection of ME onto the set of

rank-r matrices. The scaling constant compensates the smaller average size of the nonzero
entries of ME with respect to M . Namely, the scaling constant is obtained from the following
equations. For ∀x ∈ Rm×1,y ∈ Rn×1,

E
[
xTMEy

]
= E

[∑
i,j

xiMi,jyj1(i,j)∈E

]

=
|E|
mn

∑
i,j

xiMi,jyj

=
|E|
mn

xTMy.

16.4 Proof of Effectiveness

The effectiveness of the proposed algorithm is provided in the following theorem.

Theorem 16.1. Assume M to be a rank r matrix of dimension m × n which satisfies
|Mi,j| ≤Mmax for all i, j. Then with probability larger than 1− 1/n3,

1

n2M2
max

∣∣∣∣M −Pr(M̄
E)
∣∣∣∣2

F
≤ C

rn

|E|
,

for some constant C.

Theorem 16.1 can be proved using the following lemmas.
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Lemma 16.2. There exists a constant C > 0 such that, with probability larger than 1 −
1/n3, ∣∣∣∣√mn|E| σq − Σq

∣∣∣∣ ≤ CMmax

√
n

|E|
,

where σq is the qth largest singular value of M̄E, and Σq the qth largest singular value of
M/
√
mn.

Note that for q > r, Σq = 0. Hence for q > r, σq ≤ C ′Mmax

√
|E|/n.

Lemma 16.3. There exists a constant C > 0 such that, with probability larger than 1−1/n3∣∣∣∣∣∣∣∣ |E|mn
M − M̄E

∣∣∣∣∣∣∣∣
2

≤ CMmax

√
|E|
n
.

We prove Theorem 16.1 as follows.

Proof: (Theorem 16.1) Note that for any matrix A of rank at most r, ||A||F ≤
√

2r||A||2.
Hence it follows that

||M −Pr(M̄
E)||F ≤

√
2r||M −Pr(M̄

E)||2. (16.1)

Next, by triangle inequality

||M −Pr(M̄
E)||2 ≤ ||M − mn

|E|
M̄E||2 + ||mn

|E|
M̄E − Pr(M̄

E)||2

≤ mn

|E|
C1Mmax

√
|E|
n

+ ||mn
|E|

M̄E − Pr(M̄
E)||2 (16.2)

≤ C2Mmaxn
3/2 1√

|E|
+
mn

|E|
σr+1

≤ C2Mmaxn
3/2 1√

|E|
+ C3

mn

|E|
Mmax

√
|E|/n (16.3)

≤ C4Mmaxn
3/2 1√

|E|
, (16.4)

where (16.2) is from Lemma 16.3, (16.2) is from Lemma 16.2, and C1−C4 are some positive
constants. Finally, we complete the proof by substituting (16.4) for (16.1). �

Lastly, we provide the proof for Lemma 16.2 as follows.

Proof: (Lemma 16.2) Observe that

σq = min
H,dim(H)=n−q+1

max
y∈H,||y||=1

||M̄Ey|| (16.5)

= max
H,dim(H)=q

min
y∈H,||y||=1

||M̄Ey||. (16.6)
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By (16.5), if denote H∗ as the orthogonal complement space of span(v1, ..., vq−1), it follows

σq ≤ max
y∈H∗,||y||=1

||M̄Ey||

= max
y∈H∗,||y||=1

||M̄Ey − |E|
mn

M +
|E|
mn

M ||

≤ |E|√
mn

max
y∈H∗,||y||=1

|| 1√
mn

My||+ max
y∈H∗,||y||=1

||( |E|
mn

M − M̄E)y||

≤ |E|√
mn

Σq + CMmax

√
|E|
n
,

where the last step is from Lemma 16.3.
Similarly using (16.6) and letting H∗ = span(v1, ..., vq), the lower bound follows

σq ≥ min
y∈H∗,||y||=1

||M̄Ey||

≥ |E|√
mn

min
y∈H∗,||y||=1

|| M√
mn
|| − max

y∈H∗,||y||=1
||( |E|
mn

M − M̄E)y||

≥ |E|√
mn

Σq − CMmax

√
|E|
n
.

�
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