
EE 381V: Large Scale Learning Spring 2013

Lecture 17 — March 19

Lecturer: Caramanis & Sanghavi Scribe: Xinyang Yi

17.1 Quick Review

In the previous lectures, we mainly talked about algorithms and related theorem in machine
learning. Linear algebra based methods play an important role in multiple cases. For large
scale problems in machine learning, computation cost becomes a critical issue. For instance,
in linear methods, suppose A ∈ Rm×n, x ∈ Rn, cost of multiplication Ax is O(m × n);
A ∈ Rnn, cost of multiplication AA is O(n3). For some other operations like inversion, SVD,
eigenvalue decomposition, the cost is generally O(n3).

We also introduce some iterative methods such as Lanczos’ algorithm in order to get
approximate solutions. Note that these algorithms are still deterministic. Characteristics of
these methods include:

1. Inexpensive cost in single iteration.

2. Being able to exploit special structure:matrix sparsity.

3. Work less hard but still get theoretical guarantee.

From this lecture, we will start to discuss Randomized linear Methods which is able to
exploit special structure.

17.2 Randomized Linear Algebra

In particular, we concerned a factorization approximation problem. Given a matrix A ∈
Rm×n, its SVD could be denoted as A = UΣV ∗. We are willing to do this approximately.
Here, we assume that A is low rank. Suppose there exists a matrix Q ∈ Rm×k such that
rank(A) ≈ rank(Q), k � m,n. If A ≈ QQ∗A, then after doing SVD on Q, the left k
singular values of Q will be close to left k singular values of A.

Several most common randomized approximation schemes have been introduced in last
lecture:

1. Sparsification: A→ Y = AΩ, where the set Ω is randomly chosen.

2. Column Selection: A→ Y = [Ai1 , Ai2 , ..., Ail]. The columns are randomly chosen.

3. Dimention Reduction: A → Y = A × Ω, where Ω is a low rank matrix with random
entries.

17-1

EE 381V Lecture 17 — March 19 Spring 2013

4. Approximation by submatrices.

Generally, the peformance of algorithms depends on following points:

1. Structure of data. For instance, the way data is stored and presented/ the sparsity of
data.

2. Computing resources available. For instance, the speed of processors w.r.t speed of
read and write/computation parallization.

The main reference for this lecture is [1].

17.2.1 Linear Algebra Background

QR-factorization
Any real square matrix A may be decomposed as

A = QR (17.1)

where Q is an orthogonal matrix (QTQ = I) and R is an upper triangular matrix (also called
right triangular matrix).
Partial Decomposition

For partial decomposition, instead of doing exact QR factorization, we may be interested
in approximate solution: A = QR+E,where ‖E‖F is small. Note that Lanczos algorithm is
in this category.

17.2.2 Randomized algorithm

The basic problem of designing randomized algorithm is that how can we find a l-column
matrix Q so that A ≈ QQ∗A, i.e., ‖(I − QQ∗A)‖ ≤ ε. How well can we do for a fixed l?
How can a randomized solution do as well by allowing l = k + p > k?

A first algorithm: Dimension Reduction

Step 1: Draw a Gaussian random matrix Ω ∈ Rn×l.
Step 2: Compute Y = AΩ. Y ∈ Rm×l

Step 3: Do QR factorization on Y : Y = QR.
Note that if l � n, the computation cost is O(mn), i.e., the cost of QR factorization

could be omitted. Especially, we are interested in the following two types error bound:

1. A priori error bound

2. A posterior error bound

17-2

EE 381V Lecture 17 — March 19 Spring 2013

Computing ‖(I − QQ∗)A‖ is expensive.Note that the operator norm can also be expressed
as

sup
‖w‖=1

‖(I −QQ∗)Aw‖ (17.2)

We have the following theorem.

Theorem 17.1.

‖(I −QQ∗A)‖ ≤ 10

√
2

π
max

i=1,2,...,r
‖(I −QQ∗Aw(i))‖ (17.3)

with probability at least 1− 10−r. Where w(1), w(2), ..., w(r) ∼ N(0, 1)

Priori bound: Let Ω be random matrix

A = U

[
Σ1

Σ2

] [
V ∗1
V ∗2

]
(17.4)

Ω1 = V ∗1 Ω, Ω2 = V ∗2 Ω

Theorem 17.2.
‖A−QQ∗A‖2

∗ ≤ ‖Σ2‖2
∗ + ‖Σ2Ω2Ω∗1‖2

∗ (17.5)

where ‖ · ‖∗ = ‖ · ‖or‖ · ‖F
Further, we assume Ω ∼ Guassian with l = k + p columns, we have:

1.

E‖A−QQ∗A‖F ≤ (1 +
k

p− 1
)
1
2 (
∑
j>k

σ2
j)

1
2 (17.6)

2.

E‖A−QQ∗A‖ ≤ (1 +

√
k

p− 1
)σk+1 +

c
√
k + p

p
(
∑
j>k

σ2
j)

1
2 (17.7)

Another approach: Matrix Subsampling

Instead of using Y = AΩ, we choose Y = samples of A′s columns, i.e.,

Y = [Ai1 , Ai2 , ..., Ail] (17.8)

Aik is the rescaled Aik . Roughly, we will show how to rescale A’s columns. Let Pi = ‖Ai‖2
‖A‖2F

which is the probability that ith column of A is chosen.

‖Yi‖2 =
‖Ai‖2

l × Pi

=
‖A‖2

F

l
(17.9)

We can show that E[Y Y ∗] = AA∗. Note that Y Y ∗ =
∑l

i=1 YiY
∗
i ,

E[Y Y ∗] = lE[YiY
∗
i] = l

∑
Pi
AiA

∗
i

lPi

=
∑

AiA
∗
i = AA∗ (17.10)

17-3

EE 381V Lecture 17 — March 19 Spring 2013

Sparsification: another way to do sampling

Algorithm:
Input: A
For i = 1, 2, ...,m, j = 1, 2, ..., n

Yij =

{
Aij/Pij, with probability Pij

0, otherwise
(17.11)

Output:top singular value of Y.
Remark:

1. Y is sparse which means faster performance of iterative algorithm(Power methods,
Lancoz).

2. Note Y =
∑

i,j Yijeie
∗
j , Y is sum of random matrices.

E[Y] =
∑
i,j

Pij(
Aij

Pij

)eie
T
j = A (17.12)

Pij Selection

V ar(Yij) =
1− Pij

Pij

A2
ij ≈

1

Pij

A2
ij (17.13)

One idea is based on minimization of the max variation. Pij ∝ Aij. Thus if |Aij| ≈ |Ai′j′|,
then Pij ≈ Pi′j′ . The actual choice could be τij = (

Aij

Amax
)c, Pij = maxτij,

√
c(n)τij, where

c(n) = (8 logn)4

n
. Regarding the performance of sparsification, we have the following theorem:

Theorem 17.3. With probability at least 1− δ,

‖A−QQ∗A‖2
2 ≤ ‖A− Ak‖2

2 + 16

√
log(2/δ)

l
‖A‖2

F (17.14)

Note that the first term on the right hand side is the best possible error.

17.3 Reference

[1]Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. ”Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompositions.”
arXiv preprint arXiv:0909.4061 (2009).

17-4

