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18.1 Sparsity

From this class we begin to study the problem of sparsity. In general, sparsity problem
is that we want to find a data ’x’ of high dimensions, e.g., 1000 dimensions, from a few
measurements given that only 10/100 entries of x are non-zero. If the measurements we
have are linear measurements, then the problem can be expressed as: y = A · x, where x is
the data we want to recover from the linear measurements y and matrix A is known.

18.2 Applications of Sparsity

18.2.1 Image Processing

Nature and medical images are sparse in appropriate bases:
Example 1. JPEG uses Discrete Cosine Transform(DCT) and weight frequency based

on perception to store image. After 2-D DCT, most energy is concentrated at the top left
corner, which stands for low frequency and the entries on the rest part can be viewed as
sparse data, with only a few entries having non-zero(or relatively large) values. The following
picture gives an example of the 2-D DCT result of an image.

Example 2. MRI image processing. A typical method of getting the image is to select
and measure a random line. Our measurement is the Fourier Transform result of the signal
get from that line and the corresponding problem is to recover the image using the few
measurement we have.
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Example 3. Reconstruct image using sparsity total variation norm. For a simple image,
we may focus on the contour of the image thus only the contour is useful to us and most
points of the image can be viewed as zero. Then we can recover the image with a few
measurements.

18.2.2 Radio Frequency / wide band monitoring

In cognitive radio, people need to monitor a wide band, e.g., 2-3 GHz band for idle spectrum
bands. The band we want to monitor is very large thus we can only take a few measurements
of the total band. Besides, only a few bands are occupied and each occupied band is narrow
compared with the whole band so we can consider this problem as recovering the wide
spectrum band with a few measurements.
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18.2.3 Sparse Predictors in Statistics

In some statistics problems, we want to find the factors that determine the response of
certain experiments. Let y be the response, x1, x2, . . . , xn be the variables that determine
the response. There are many variables while only a small number of them are significant.
An example is the study in genetics, that is, decide the genome that results in certain
response and the dependence of these response on the genome is sparse. This problem can
be expressed as y = xT · β, where β is the sparse causative relation. Each pair of (yi, xi) is
the test results of a person, with y be the response and x be the genome.

18.3 Number of Measurements Needed

A natural question that comes up is how many measurements we need to recover the data
we want. Here we state the sparsity problem again: use the fact that y

¯
= X · β

¯
, recover

β given y
¯
and X. Whether the number of dependents is known or unknown may lead to

different questions. Now we go back to the radio frequency monitoring problem discussed
earlier and the question is how many measurements we need given that the signal is a simple
sin signal.

From Nyquist theorem, we need 2 points per cycle to fully recover the signal. However,
in our problem, the signal is a simple sin signal thus we can expect that fewer measurements
are needed. A simple sin signal is: x(t) = a · sinω(t− τ), with a,ω and τ unknown.

The signal is sparse in frequency and our observation is in the time domain. From the
functions listed below, we can see that in most cases only three measures are needed to get
the three unknown variables.

y1 = a · sin(ω(t1 − τ)

y2 = a · sin(ω(t2 − τ)

y3 = a · sin(ω(t3 − τ)
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Let x = DIDFT · x̃ be the IDFT transform of x̃. Here x is the signal in time domain
and x̃ is the signal in frequency domain. Then clearly x̃ is sparse with only one entry being
non-zero. We can randomly choose x(t1), x(t2) and x(t3) as y, the corresponding rows in
IDFT matrix as A, and x̃ as the sparse unknown data, then the problem is expressed as
y = A · x̃, which is the general form of sparsity problem. With random t1, t2 and t3, we can
recover the sin signal with high probability.

We will study the more general form of similar problems later.

18.4 Methods for Sparse Recovery

In this section we begin to study the methods for sparse recovery.

18.4.1 Exhaustive Search

For a sparsity problem, y = A · x, we can find x using exhaustive search of the columns in
A given the sparsity of x.

For example, given x is 1-sparse, we can search the columns of A which best matches
our observation y. For 2-sparse case, we need to check every pair of columns of A and for
k-sparse case, search every groups of k columns.

The advantage of exhaustive method is that we can always get the correct answer, but
search cost is high, especially when n and k are large.

18.4.2 Greedy Methods

Another group of methods are Greedy Methods and Orthogonal Matching Pursuit is an
example of Greedy Methods.

Let r = y, then for each column ai of A, we first find

fi =
< ai, r >

∥ai∥
.

Pick i∗ argmax
i

fi as the first non-zero entry of x and update r as

r = r − < r, ai∗ >

∥ai∗∥
ai∗

∥ai∗∥
.

Continue this process until we find all k non-zero entries of x. The intuition behind the
method is that we greedily find the ai∗ which best matches y, update y and find ai which
best matches the residual of y. It is possible that the result of greedy methods is not correct.

Another example of Greed Methods is that, let x̂ be some solution to y = A · x and pick
the two largest coordinates of x̂ to solve the 2-sparse problem.
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18.4.3 Optimization-based Methods

We can solve the Sparsity Problem based on optimization and the optimization problem is
as follows:

minf(x)

s.t.y = A · x

f(x) = |support(x)| is the most easy and straight forward objective. The solution to
minimize such f(x) gives us x that gives us observation y with fewest non-zero entries. For
each xi, the support function is shown as below:
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If xi = 0, then xi is zero and support(xi) = 0, otherwise xi is non-zero thus support(xi) =
1. The problem with such f(x) is that the function is not continuous and it is not feasible to
solve the optimization problem. Instead, we use ∥x∥p = (

∑
|xi|p)1/p, p < 1 to approximate

|support(x)|. As p becomes smaller, the norm becomes sharper and approximate support
function better. Notice that ∥x∥p, p < 1 is not a ”norm” and the function is not convex.
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When p = 1, 1-norm is convex and sometimes we can get the sparse solution by solving
the optimization problem:

min∥x∥1
s.t.y = A · x
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Now let us see when the solution of the optimization problem is also the solution to the
sparse problem. Let x∗ be 1-sparse data and the total number of dimensions is 2. Then the
constraints y = A · x is a line crossing x∗ as shown in the following figure.

As we can see from the figure, if y = Ax is the black line in the figure, then the solution
to the optimization problem is x∗, thus the global optimal solution can be achieved using
f(x) = ∥x∥1. If y = Ax passes x′, then ∥x′∥1 < ∥x∗∥1 and the solution of the optimization
problem is not the solution. However, as we makes p smaller, e.g., ∥x∥p becomes the red
function shown in figure, then x′ is excluded. In general, error probability becomes smaller
as p becomes smaller. This example intuitively tells us why small p-norm is better.

When p > 1, the optimization problem becomes a convex problem and we can get the
sparse solution x∗ only when the hyperplane of y = A · x is tangent to the norm ball at x∗

which is generally not the case.
We will study more about optimization methods and other methods on Sparse problem

in later classes.
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