
EE 381V: Large Scale Learning Spring 2013

Lecture 19 — March 26

Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si

19.1 Reviews of Last Lecture

From the first lecture of this course, we focused on theory and algorithms with respect to large
scale learning problems. In this process, basic issues in the field of linear algebra emerged,
for instance matrix multiplication and factorization. Recall that in earlier lectures, we have
discussed Direct Methods, which were exact but with high cost. To this end, Iterative Methods
were introduced, where the solution could be exact after large number of iterations. These
type of algorithms usually cost much less in each iteration and exploited special structure,
as well as terminated early with a prior bound. Lanczos and Power methods are typical
examples with all the properties.

From last lecture (Lecture 17) on, we began to discuss Randomized Methods. In particu-
lar, we concerned a factorization approximation problem. Given a matrix A ∈ Rm×n, assume
its SVD is given by A = UΣV ∗, and its best rank-k approximation (with respect to ∥ · ∥2
or ∥ · ∥F) is UkU

∗
kA , Ak, where Uk is the first k columns of U . We want to approximately

compute Ak by some other matrix X, such that the error is bounded by

∥A−X∥22 ≤ ∥A− Ak∥22 + ϵ∥A∥2F ,

or
∥A−X∥2F ≤ ∥A− Ak∥2F + ϵ′∥A∥2F ,

with running time linear in n and m. Note that the first term at the right hand side is the
best error we can make, which cannot be evaded by any algorithm, and the second term is
additional error, which is expected to be small in our algorithm.

Several most common randomized approximation schemes have been introduced in last
lecture:

1. Dimension Reduction.

2. Column Selection.

3. Sparsification.

4. Approximation by sub-matrices.

Last time, we have seen the theoretical analysis of Dimension Reduction method, which
is basically induced by Johnson-Lindenstrauss lemma. Today, we move on to discuss Column
Selection and Sparsification methods.

19-1

EE 381V Lecture 19 — March 26 Spring 2013

19.2 Column Selection Method

In Column Selection Method, a set of columns are selected randomly with designed proba-
bility. More precisely, consider an aiming matrix A ∈ Rm×n. Design a set of i.i.d. random
vectors {Yi}, where 1 ≤ i ≤ l and l ≥ k, such that

Yi =
1√
lpj

Aj with probability pj =
∥Aj∥22
∥A∥2F

, 1 ≤ j ≤ n, (19.1)

where Aj is the jth column of A. Perform SVD to the constructed Y ∈ Rm×l, where the ith
column of Y is Yi, i.e. Y = QΣY V

∗
Y . Output X = QkQ

∗
kA, where Qk is consisted of top k

columns of Q.
Note that the choice of pj as (19.1) is crucial. The key idea of designing it is revealed as

follows. First, pj behaves as a normalization parameter such that every column of Y has the
same l2-norm. In particular, we have for every 1 ≤ i ≤ l,

∥Yi∥22 =
1

lpj
∥Aj∥22 =

1

l
∥A∥2F . (19.2)

Secondly, which is more important, the choice of pj guarantees that the expectation of Y Y ∗

equals AA∗, which is the desired expectation required by the algorithm. Mathematically, we
have

E[Y Y ∗] = E[
l∑

i=1

YiY
∗
i]

= lE[Y1Y
∗
1]

= l
n∑

j=1

pj

(
1

lpj
AjA

∗
j

)

=
n∑

j=1

AjA
∗
j

= AA∗. (19.3)

To this end, Y Y ∗ is a summation of i.i.d. matrices, with desired expectation, which inspires
us to use concentration bound to control the fluctuation. More precisely, we aim to show
∥AA∗ − Y Y ∗∥2 is small with high probability, which is feasible by concentration result. The
reason that we need this result is revealed by the following lemma.

Lemma 19.1.
∥A−QkQ

∗
kA∥22 ≤ ∥A− Ak∥22 + 2∥AA∗ − Y Y ∗∥2. (19.4)

Note that the output of our algorithm is X = QkQ
∗
kA, so a good bound on ∥AA∗ − Y Y ∗∥2

guarantees the performance of the algorithm. Before proving this lemma, we introduce a
general fact about singular value first. For this, we give the definition of Lipschitz continuous.

19-2

EE 381V Lecture 19 — March 26 Spring 2013

Given two norm spaces (X, ∥·∥X) and (Y, ∥·∥Y), a mapping f : X → Y is called Lipschitz
continuous if there exists a real constant L such that, for all x1 and x2 in X,

∥f(x1)− f(x2)∥Y ≤ L∥x1 − x2∥X.

Any such L is referred to as a Lipschitz constant for f .

Lemma 19.2. Singular value (as a function of matrix) is Lipschitz continuous with Lipschitz
constant 1 with respect to operator norm, i.e. for any matrices Z1, Z2 ∈ Rm×n,

|σk(Z1)− σk(Z2)| ≤ ∥Z1 − Z2∥2, (19.5)

where σk(·) denotes the kth singular value, and k ≤ min(m,n).

Proof: (to Lemma 19.2) The proof bases on Courant-Fischer variational formulas for sin-
gular values (similar to Problem 6 in Homework 2), which says

σk(Z) = max
V ∈Vk

min
x∈V

∥x∥2=1

∥Zx∥2, (19.6)

where Vk is the set of all subspaces in Rn of dimension k. Assume σk(Z1) ≥ σk(Z2) without
loss of generality. Define

V ∗ = arg max
V ∈Vk

min
x∈V

∥x∥2=1

∥Z1x∥2,

and
x∗ = arg min

x∈V ∗

∥x∥2=1

∥Z2x∥2,

then we have

|σk(Z1)− σk(Z2)| = max
V ∈Vk

min
x∈V

∥x∥2=1

∥Z1x∥2 −max
V ∈Vk

min
x∈V

∥x∥2=1

∥Z2x∥2

≤ min
x∈V ∗

∥x∥2=1

∥Z1x∥2 − min
x∈V ∗

∥x∥2=1

∥Z2x∥2

≤ ∥Z1x
∗∥2 − ∥Z2x

∗∥2
≤ ∥(Z1 − Z2)x

∗∥2
≤ ∥Z1 − Z2∥2.

�

With this result, we are ready to prove Lemma 19.1.

19-3

EE 381V Lecture 19 — March 26 Spring 2013

Proof: (to Lemma 19.1) First, we want to show

∥A−QkQ
∗
kA∥2 = sup

Q∗
kz=0

∥z∥2=1

∥A∗z∥2. (19.7)

Assume x = xQ + xQ⊥ , where xQ is in the range of Qk, i.e. xQ = Qky for some y, and xQ⊥

is in the perpendicular subspace, i.e. Q∗
kxQ⊥ = 0. Hence,

(I −QkQ
∗
k)xQ = Qky −Qky = 0. (19.8)

Using (19.8), and the fact that for any matrix Z, ∥Z∥2 = ∥Z∗∥2, we have

∥(I −QkQ
∗
k)A∥2 = ∥A∗(I −QkQ

∗
k)∥2

= sup
∥x∥2=1

∥A∗(I −QkQ
∗
k)x∥2

= sup
∥x∥2=1

∥A∗(I −QkQ
∗
k)xQ⊥∥2

= sup
Q∗

kz=0
∥z∥2=1

∥A∗z∥2,

where the last step holds by letting z = xQ⊥ .
Then, it is straightforward to see

∥A∗z∥22 = ⟨z, AA∗z⟩ = ⟨z, (AA∗ − Y Y ∗)z⟩+ ⟨z, Y Y ∗z⟩, (19.9)

and from Qkz = 0, where Qk is the top k columns of Y ’s SVD, we have

⟨z, Y Y ∗z⟩ ≤ σk+1(Y)2 = σk+1(Y Y ∗), (19.10)

Using Lemma 19.2 by choosing Z1 = AA∗ and Z2 = Y Y ∗, we have

σk+1(Y Y ∗) ≤ σk+1(AA
∗) + ∥AA∗ − Y Y ∗∥2. (19.11)

Combining (19.9), (19.10) and (19.11), we have

∥A∗z∥22 ≤ ∥AA∗ − Y Y ∗∥2 + σk+1(AA
∗) + ∥AA∗ − Y Y ∗∥2

= 2∥AA∗ − Y Y ∗∥2 + σk+1(AA
∗). (19.12)

Note that (19.12) holds for any z with ∥z∥2 = 1 and Q∗
kz = 0, thus combining with (19.7)

and observing ∥A− Ak∥2 = σk+1(A), we have

∥A−QkQ
∗
kA∥22 = sup

Q∗
kz=0

∥z∥2=1

∥A∗z∥22

≤ σk+1(AA
∗) + 2∥AA∗ − Y Y ∗∥2

= ∥A− Ak∥22 + 2∥AA∗ − Y Y ∗∥2.

�

19-4

EE 381V Lecture 19 — March 26 Spring 2013

Lemma 19.1 tells that it is sufficient to bound ∥AA∗−Y Y ∗∥2. From the former analysis on
the choice of pj, we have seen Y Y ∗ is a summation of i.i.d. matrices with desired expectation,
and recall that Matrix Bernstein Inequality (in Lecture 7) is a powerful tool to give this type
of bound.

Theorem 19.3. (Matrix Bernstein Inequality) Z1, . . . , Zl ∈ Rm×n are independent matrices,
with E[Zi] = 0, and ∥Zi∥2 ≤ R for any 1 ≤ i ≤ l, as well as ∥

∑l
i=1 E[Zi]

2∥2 ≤ σ2. Define

Z =
∑l

i=1 Zl, then

Pr{∥Z∥2 > t} ≤ m · exp
{
− t2

6(Rt+ σ2)

}
. (19.13)

In order to use this theorem directly, we need to modify the random matrices such that the
four ingredients in theorem are all satisfied. In this sense, assume the column we choose for
ith step is ji, where 1 ≤ i ≤ l and 1 ≤ ji ≤ n, then construct

Zi =
1

lpji
AjiA

∗
ji
− 1

l
AA∗. (19.14)

Note that the only randomness comes from the subindex ji, and using Yi =
1√
lpji

Aji , it is

simple to see
l∑

i=1

Zi =
l∑

i=1

(
YiY

∗
i − 1

l
AA∗

)
= Y Y ∗ − AA∗. (19.15)

Now we need to check the four conditions for Theorem 19.3 to hold.

• Independence. Since the randomness only comes from ji, and each choice of column is
independent, the constructed Zis are also independent.

• Zero mean. By using (19.3), we have for any 1 ≤ i ≤ l,

E[Zi] = E[YiY
∗
i]−

1

l
AA∗ = 0.

• Absolute bound. Using (19.2), we have for any 1 ≤ i ≤ l,

∥Zi∥2 = ∥YiY
∗
i − 1

l
AA∗∥2 ≤ ∥YiY

∗
i ∥2 +

1

l
∥AA∗∥2 ≤

2

l
∥A∥2F , R. (19.16)

19-5

EE 381V Lecture 19 — March 26 Spring 2013

• Variance. Note that

E[Z2
i] = E

[(
1

lpji
AjiA

∗
ji
− 1

l
AA∗

)2
]

= E
[

1

l2p2ji
∥Aji∥22AjiA

∗
ji
+

1

l2
(AA∗)2 − 2

l2pji
AjiA

∗
ji
AA∗

]
=

1

l2

{
∥A∥2FE

[
AjiA

∗
ji

pji

]
+ (AA∗)2 − 2E

[
AjiA

∗
ji

pji

]
AA∗

}
=

1

l2
{
∥A∥2FE [lYiY

∗
i] + (AA∗)2 − 2E [lYiY

∗
i]AA

∗}
=

1

l2
{
∥A∥2FAA∗ + (AA∗)2 − 2(AA∗)(AA∗)

}
=

1

l2
{
∥A∥2FAA∗ − (AA∗)2

}
.

Hence,

∥
l∑

i=1

E[Z2
i]∥2 = ∥

l∑
i=1

1

l2
{
∥A∥2FAA∗ − (AA∗)2

}
∥2

=
1

l
∥(∥A∥2F I − AA∗)AA∗∥2

≤ 1

l
∥(∥A∥2F I − AA∗)∥2∥AA∗∥2

≤ 1

l
∥A∥2F∥A∥22

≤ 1

l
∥A∥4F , σ2, (19.17)

where we have use a general result that ∥I−ZZ∗∥2 ≤ 1 for any matrix Z. This is true
because if λ is an eigenvalue of ZZ∗, then 1 − λ is an eigenvalue of I − ZZ∗. Since
λ ≥ 0, we have 1− λ ≤ 1, hence the largest eigenvalue is also no larger than 1.

Based on these conditions, it is straightforward to use Theorem 19.3. In particular, by
choosing t = ϵ∥A∥2F , we have

Pr{∥AA∗ − Y Y ∗∥2 ≥ ϵ∥A∥2F} ≤ m · exp
{
− ϵ2∥A∥4F
6(Rϵ∥A∥2F + σ2)

}
= m · exp

{
− ϵ2∥A∥4F
6(2

l
∥A∥2F ϵ∥A∥2F + 1

l
∥A∥4F)

}
= m · exp

{
− lϵ2

6(2ϵ+ 1)

}
≤ m · exp

{
− lϵ2

10

}
≤ δ,

19-6

EE 381V Lecture 19 — March 26 Spring 2013

for

ϵ ≥
√

10

l
log

(m
δ

)
. (19.18)

To this end, we have bounded the approximation error by

∥A−QkQ
∗
kA∥22 ≤ ∥A− Ak∥22 + 2ϵ∥A∥2F ,

where QkQ
∗
kA = X is the output of algorithm, and this holds with probability at least 1− δ,

if choosing ϵ as (19.18). Thus, if the number of randomly sampled columns l is large enough,
we can get a theoretical bound on approximation error with high probability.

19.3 Sparsification Method

Sparsification is another randomized scheme to approximate SVD. More precisely, consider
a matrix A ∈ Rm×n. Another matrix Y , a parse version of A, is constructed, where each
entry of A is randomly chosen, i.e.

Yij =

{
Aij

Pij
, with probability Pij,

0, with probability 1− Pij,
(19.19)

where Pij = |E|
mn

. Perform SVD to the constructed Y ∈ Rm×n, i.e. Y = QΣY V
∗
Y . Output

X = QkQ
∗
kA, where Qk is consisted of top k columns of Q.

Note that because Y is sparse, faster iteration algorithms could be adopted for SVD.
Moreover, Y =

∑
i,j Yijeie

∗
j , which is also a form of summation of independent matrices,

and E[Y] =
∑

i,j PijYijeie
∗
j = A, which is the desired expectation. Hence, similar reason

(Berstein inequality) gives the performance guarantee of this algorithm.

Theorem 19.4. Assume m ≤ n, maxi,j |Aij| ≤ Amax. If |E| ≥ Cn log n, then

∥A−QkQ
∗
kA∥2 ≤ ∥A− Ak∥2 + CAmax

√
mn

√
n

|E|
, (19.20)

with probability at least 1− 1
n3 .

19-7

