EE 381V: Large Scale Learning Spring 2013
Lecture 20 — March 28

Lecturer: Caramanis & Sanghavi Scribe: Zheng Lu

20.1 Reviews of last lecture

In Lecture 18, we begin to study the methods for sparse recovery. Recall the basic problem
is y = W -z, where x is an n X 1 high dimensional sparse data vector, W is an m X n
measurement matrix with m << n, and y is an m x 1 observation vector. The objective of
sparse recovery can be described as: given (y, W), find z such that ||z||o < S, where ||z||o is
the number of non-zero elements in x.

We have briefly introduced three types of algorithms to perform sparse recovery:

e Recovery via [;-norm minimization also known as Compressed Sensing;
e A greedy algorithm also known as Orthogonal Matching Pursuit (OMP);
e [terative methods including iterative soft thresholding and iterative hard thrsholding.

We will discuss theses algorithms in more details in the next few lectures. Our plan is
to study [;-norm minimization in this lecture, OMP in the next lecture and then iterative
methods.

20.2 Recovery via [;-norm minimization

The problem of sparse recovery via /;-norm minimization is often referred to as compressed
sensing. A useful reference is [1] which can be found on the course website. Like we discussed
earlier, the original sparse recovery problem can be described as the following Problem (20.1):

Given (y, W), find z, such that ||z||o < S and y = Wz. (20.1)

Since this problem is not easy to solve in general, compressed sensing instead tries to solve
an optimization problem and obtain an estimation Z of the true solution x. The optimization
is defined as the following Problem (20.2):

minimize ||Z||;
subject to y = Waz. (20.2)

Note in the remaining of this lecture we will always refer to = as the (true) solution to
Problem (20.1), and & as the solution to Problem (20.2).

20-1



EE 381V Lecture 20 — March 28 Spring 2013

Our hope is that we can solve the sparse recovery problem by solving compressed sensing,
i.e., & = x. However we quickly realize that this is not true in general, since Problem (20.2)
always has a feasible solution (actually it can be written as a linear programming) while
Problem (20.1) can be infeasible to solve or it can have multiple solutions. Thus in order for
Z = x to hold, we need to add some conditions on x and W.

Before we describe the exact conditions we need, let us see some intuitions first. Basically
what we want here are the uniqueness of the sparse solution x and the hope of sparse recovery
by compressed sensing.

e Uniqueness. If 2; and x5 are two solutions to Problem (20.1), then we need x; = x5
so that we are guaranteed to have only one solution x, which is the true solution.

e Hope of recovery. Note that if W is such that Wz = 0, i.e., x is in the null space
of W, then there is no hope of finding a non-zero solution using compressed sensing,
since the solution of Problem (20.2) will always be & = 0. Thus for sparse = not falling
in the null space of W, we need some conditions that ”preserves” sparse vectors, for
example,

Wz

I—e< —
|||z

, V& such that ||Z||o < S.

Now let us define Restricted Isometry Property (RIP) which is a sufficient condition
needed for both uniqueness of sparse solution and sparse recovery by compressed sensing.

Definition 1. A matrix W satisfies (e, S)-RIP if

(Wl

7]

Here are some remarks on the definition of RIP.

1—€e<

< 1+¢€, VI such that ||Z||o < S.

e The upper bound 1 + € is required in analysis, but we are not sure whether it is
fundamentally required.

e Under special conditions ¢ = 0, S = n, the above definition implies that W is an
isometry on R™. This is why we use the term "restricted isometry”.

We will first show uniqueness of sparse solution under RIP.

Lemma 20.1. If W satisfies (¢,2S)-RIP for any € < 1, then y = Wx cannot have two
S-sparse solutions.

Proof: Suppose there exist two S-sparse solutions xy and xy. Let Z = x; — x5 and note that
[W ||, = 0. Also note that  is a 2S-sparse vector, thus by RIP, we have 212 > 1 _¢ > 0,

[1Z]]2
which implies ﬁ > (. Thus there must be £ =0, i.e., 1 = x». 0
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Note that Lemma 20.1 guarantees that under the conditions stated in the lemma, Problem
(20.1) has a unique solution x, which is the true solution. Then we can state the following
theorem.

Theorem 20.2. If ||z||o < S and W satisfies (¢, 2S)-RIP for e < /2 — 1, then & = .

We will not prove Theorem 20.2, but instead we will prove a stronger theorem which is
describe as follows:

Theorem 20.3. If W satisfies (¢, 25)-RIP with € < v/2 — 1, then

|z — 2] <

2
< —=—— |z — s,
VS(1—p)
where p = 142:, and xg is the largest S entries of x.

Proof: Let Z be any vector, and h = Z — . Define disjoint index sets T; € [n] as follows:

Ty = largest (in magnitude) S elements of vector x;

Ty = largest (in magnitude) 5" elements of vector hyc;

T = largest (in magnitude) S elements of vector hzc ;

Note that Tj is an index set on vector z, and by its definition we have x7, = zg. But for
1> 1, T; is an index set on vector h. Under these definitions, we can state two claims which
will be proved in Lemma 20.4 and Lemma 20.5 respectively.

e Claim 1. For any Z such that ||Z||; < ||z||1, we have

2
g, [l2 < [[hn]2 + ﬁ\\ﬂf — o1
e Claim 2. For any & such that Wi = Wz, and W satisfies (¢, 25)-RIP with € < v/2—1,
then
||hTo,1||2 = \/—H xToHla
where p = fe

Note that Claim 1 involves the [;-norm minimization feature, but it does not have any
RIP requirements on W. Claim 2 does not involve any /;-norm minimization feature, but
it requires RIP on W. Now if we take Z to be the solution Z to the compressed sensing
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Problem (20.2), then the conditions of Claim 1 and Claim 2 are both satisfied, and thus we
have:

|l = &[]z = [|A]]2 < ||hT01H2 + [|hgg || (by triangle inequality),

<2l|hpy,ll2 + —= (by Claim 1 and the fact that ||hg, ||z < ||Ag,]]2)

e — 2l
f

P 1)z — aslh
\/_

< 2(— + (by Claim 2),
< —|lz — .
< Zsal sl

Here are the two lemmas for the two claims in the proof above.

Lemma 20.4. With the definitions in the proof of Theorem 20.3, for any  such that ||Z||; <
||z||1, we have

2
[hze |2 < [lhn[l2 + ﬁ“x — opy][1-
Proof: Take j > 1, for any ¢ € T; and i’ € Tj_; we have |h;| < |hy|. Therefore, [|hz,||o <
Hh‘Tj,1H1

. Thus we have:

1
|1y ll2 < VS|l < ﬁHth_lHl'

Summing the above over j = 2,3, ... and using the triangle inequality we obtain:

1hzg lle < Y [1hay Iz < \/—||th||1
7<2

Since ||Z||1 < ||z||1, using triangle inequality we have:

(20.3)

[y = Nl +Alle =Y los + il + D J2s + bl = [Jen |l = lhgy |l + [hgglh = ezl h,

i€Tp ieTs

(20.4)
and since |[zroll1 = ||z — zs|[i = |[z[|s — [|zz,[|1, Equation (20.4) can be further written as:
hrglle < llhzylly + 2llrg - (20.5)

Combining Equation (20.3) and (20.5), we obtain:

1 2
lhre ll2 < ﬁ(HhToul +2l[zrell) < |[|hmyll2 + ﬁH?ﬂTng-

U
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Lemma 20.5. With the definitions in the proof of Theorem 20.3, for any & such that Wz =
Wx, and W satisfies (¢, 2S)-RIP with € < /2 — 1, then

||hTo,1H2 = \/—H ngHl;

Proof: Since vector hr,, is 25-sparse, we can use the RIP condition to get:
(1 = )llhz, [[3 < W ha, 13- (20.6)

Note that Why,, = Wh = 3.y Why, = — 3., Whr,, thus we have:

Whay, |13 = =Y (Whay,, Whe,) = =Y (Why, + Why,, Wh,). (20.7)
Jj=2 Jj=2
. hr.
Note that for all ¢ and j, i # 7, IIhT H2 + Hthllz and HhT |I2 ﬁ are 25-sparse, and then

by RIP we have:

Whr, Whr, T,
s 13 < (L+ )]l 15 + [l 113) = 2(1 + ),
Azl [[haylls 1 nH 20 byl
and Wh Wh h h
T; T} T; 2 T 2
< —(1—c¢ + =—2(1—¢€).
Thus we have:
WhT WhT WhT WhT
I Why, Whr, )| = s A Th; T2 iz 12 = s hrllz — e Tl2 2 12
67
HhTz 4 N
which implies:
|(Whe,, Wha)| < el |[2][ P []2-
Take the above equation into Equation (20.7), we obtain:
W hay i |I5 < e(llhnol2 + o |l2) Y 11z llo < V2ellhry,[12 D [lhay |- (20.8)

j>2 >2

Combining Equation (20.3) (20.6) and (20.8), we obtain:

1
(L= &)z, 12 < \/§€||hTo,1H2ﬁ‘

g -
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Using Equation (20.5) and rearranging, we get:

P

VS

but since ||hp|]2 < ||hgy, ||2, we have:

hao i ll2 < —=([lhz |l + 2[[zge|ly) < pllhz |2 +

2p
ﬁHxTOCHb

p

1
|y, ]2 < Tpﬁ“x — o7 |1
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