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Lecture 20 — March 28

Lecturer: Caramanis & Sanghavi Scribe: Zheng Lu

20.1 Reviews of last lecture

In Lecture 18, we begin to study the methods for sparse recovery. Recall the basic problem
is y = W · x, where x is an n × 1 high dimensional sparse data vector, W is an m × n
measurement matrix with m << n, and y is an m× 1 observation vector. The objective of
sparse recovery can be described as: given (y,W ), find x such that ||x||0 ≤ S, where ||x||0 is
the number of non-zero elements in x.

We have briefly introduced three types of algorithms to perform sparse recovery:

• Recovery via l1-norm minimization also known as Compressed Sensing;

• A greedy algorithm also known as Orthogonal Matching Pursuit (OMP);

• Iterative methods including iterative soft thresholding and iterative hard thrsholding.

We will discuss theses algorithms in more details in the next few lectures. Our plan is
to study l1-norm minimization in this lecture, OMP in the next lecture and then iterative
methods.

20.2 Recovery via l1-norm minimization

The problem of sparse recovery via l1-norm minimization is often referred to as compressed
sensing. A useful reference is [1] which can be found on the course website. Like we discussed
earlier, the original sparse recovery problem can be described as the following Problem (20.1):

Given (y,W ), find x, such that ||x||0 ≤ S and y = Wx. (20.1)

Since this problem is not easy to solve in general, compressed sensing instead tries to solve
an optimization problem and obtain an estimation x̂ of the true solution x. The optimization
is defined as the following Problem (20.2):

minimize
x̃

||x̃||1

subject to y = Wx̃. (20.2)

Note in the remaining of this lecture we will always refer to x as the (true) solution to
Problem (20.1), and x̂ as the solution to Problem (20.2).
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Our hope is that we can solve the sparse recovery problem by solving compressed sensing,
i.e., x̂ = x. However we quickly realize that this is not true in general, since Problem (20.2)
always has a feasible solution (actually it can be written as a linear programming) while
Problem (20.1) can be infeasible to solve or it can have multiple solutions. Thus in order for
x̂ = x to hold, we need to add some conditions on x and W .

Before we describe the exact conditions we need, let us see some intuitions first. Basically
what we want here are the uniqueness of the sparse solution x and the hope of sparse recovery
by compressed sensing.

• Uniqueness. If x1 and x2 are two solutions to Problem (20.1), then we need x1 = x2
so that we are guaranteed to have only one solution x, which is the true solution.

• Hope of recovery. Note that if W is such that Wx = 0, i.e., x is in the null space
of W , then there is no hope of finding a non-zero solution using compressed sensing,
since the solution of Problem (20.2) will always be x̂ = 0. Thus for sparse x not falling
in the null space of W , we need some conditions that ”preserves” sparse vectors, for
example,

1− ε ≤ ||Wx̃||2
||x̃||2

, ∀x̃ such that ||x̃||0 ≤ S.

Now let us define Restricted Isometry Property (RIP) which is a sufficient condition
needed for both uniqueness of sparse solution and sparse recovery by compressed sensing.

Definition 1. A matrix W satisfies (ε, S)-RIP if

1− ε ≤ ||Wx̃||2
||x̃||2

≤ 1 + ε, ∀x̃ such that ||x̃||0 ≤ S.

Here are some remarks on the definition of RIP.

• The upper bound 1 + ε is required in analysis, but we are not sure whether it is
fundamentally required.

• Under special conditions ε = 0, S = n, the above definition implies that W is an
isometry on Rn. This is why we use the term ”restricted isometry”.

We will first show uniqueness of sparse solution under RIP.

Lemma 20.1. If W satisfies (ε, 2S)-RIP for any ε < 1, then y = Wx cannot have two
S-sparse solutions.

Proof: Suppose there exist two S-sparse solutions x1 and x2. Let x̃ = x1−x2 and note that
||Wx̃||2 = 0. Also note that x̃ is a 2S-sparse vector, thus by RIP, we have ||Wx̃||2

||x̃||2 ≥ 1− ε > 0,

which implies 0
||x̃||2 > 0. Thus there must be x̃ = 0, i.e., x1 = x2. �
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Note that Lemma 20.1 guarantees that under the conditions stated in the lemma, Problem
(20.1) has a unique solution x, which is the true solution. Then we can state the following
theorem.

Theorem 20.2. If ||x||0 ≤ S and W satisfies (ε, 2S)-RIP for ε <
√

2− 1, then x̂ = x.

We will not prove Theorem 20.2, but instead we will prove a stronger theorem which is
describe as follows:

Theorem 20.3. If W satisfies (ε, 2S)-RIP with ε <
√

2− 1, then

||x− x̂||2 ≤
2√

S(1− ρ)
||x− xS||1,

where ρ =
√
2ε

1−ε , and xS is the largest S entries of x.

Proof: Let x̃ be any vector, and h = x̃− x. Define disjoint index sets Ti ∈ [n] as follows:

T0 = largest (in magnitude) S elements of vector x;

T1 = largest (in magnitude) S elements of vector hTC
0

;

T2 = largest (in magnitude) S elements of vector hTC
0,1

;

......

Note that T0 is an index set on vector x, and by its definition we have xT0 = xS. But for
i ≥ 1, Ti is an index set on vector h. Under these definitions, we can state two claims which
will be proved in Lemma 20.4 and Lemma 20.5 respectively.

• Claim 1. For any x̃ such that ||x̃||1 ≤ ||x||1, we have

||hTC
0,1
||2 ≤ ||hT0||2 +

2√
S
||x− xT0 ||1.

• Claim 2. For any x̃ such that Wx̃ = Wx, and W satisfies (ε, 2S)-RIP with ε <
√

2−1,
then

||hT0,1||2 ≤
ρ

1− ρ
1√
S
||x− xT0||1,

where ρ =
√
2ε

1−ε .

Note that Claim 1 involves the l1-norm minimization feature, but it does not have any
RIP requirements on W . Claim 2 does not involve any l1-norm minimization feature, but
it requires RIP on W . Now if we take x̃ to be the solution x̂ to the compressed sensing

20-3



EE 381V Lecture 20 — March 28 Spring 2013

Problem (20.2), then the conditions of Claim 1 and Claim 2 are both satisfied, and thus we
have:

||x− x̂||2 = ||h||2 ≤ ||hT0,1||2 + ||hTC
0,1
||2 (by triangle inequality),

≤ 2||hT0,1 ||2 +
2√
S
||x− xS||1 (by Claim 1 and the fact that ||hT0||2 ≤ ||hT0,1||2),

≤ 2(
ρ

1− ρ
+ 1)

1√
S
||x− xS||1 (by Claim 2),

≤ 2√
S(1− ρ)

||x− xS||1.

�

Here are the two lemmas for the two claims in the proof above.

Lemma 20.4. With the definitions in the proof of Theorem 20.3, for any x̃ such that ||x̃||1 ≤
||x||1, we have

||hTC
0,1
||2 ≤ ||hT0||2 +

2√
S
||x− xT0||1.

Proof: Take j > 1, for any i ∈ Tj and i′ ∈ Tj−1 we have |hi| ≤ |hi′|. Therefore, ||hTj ||∞ ≤
||hTj−1

||1
S

. Thus we have:

||hTj ||2 ≤
√
S||hTj ||∞ ≤

1√
S
||hTj−1

||1.

Summing the above over j = 2, 3, ... and using the triangle inequality we obtain:

||hTC
0,1
||2 ≤

∑
j≤2

||hTj ||2 ≤
1√
S
||hTC

0
||1. (20.3)

Since ||x̃||1 ≤ ||x||1, using triangle inequality we have:

||x||1 ≥ ||x+ h||1 =
∑
i∈T0

|xi + hi|+
∑
i∈TC

0

|xi + hi| ≥ ||xT0 ||1 − ||hT0||1 + ||hTC
0
||1 − ||xTC

0
||1,

(20.4)

and since ||xTC
0
||1 = ||x− xS||1 = ||x||1 − ||xT0||1, Equation (20.4) can be further written as:

||hTC
0
||1 ≤ ||hT0 ||1 + 2||xTC

0
||1. (20.5)

Combining Equation (20.3) and (20.5), we obtain:

||hTC
0,1
||2 ≤

1√
S

(||hT0||1 + 2||xTC
0
||1) ≤ ||hT0||2 +

2√
S
||xTC

0
||1.

�
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Lemma 20.5. With the definitions in the proof of Theorem 20.3, for any x̃ such that Wx̃ =
Wx, and W satisfies (ε, 2S)-RIP with ε <

√
2− 1, then

||hT0,1||2 ≤
ρ

1− ρ
1√
S
||x− xT0||1,

where ρ =
√
2ε

1−ε .

Proof: Since vector hT0,1 is 2S-sparse, we can use the RIP condition to get:

(1− ε)||hT0,1||22 ≤ ||WhT0,1||22. (20.6)

Note that WhT0,1 = Wh−
∑

j≥2WhTj = −
∑

j≥2WhTj , thus we have:

||WhT0,1||22 = −
∑
j≥2

〈WhT0,1 ,WhTj〉 = −
∑
j≥2

〈WhT0 +WhT1 ,WhTj〉. (20.7)

Note that for all i and j, i 6= j,
hTi
||hTi ||2

+
hTj
||hTj ||2

and
hTi
||hTi ||2

− hTj
||hTj ||2

are 2S-sparse, and then

by RIP we have:

|| WhTi
||hTi ||2

+
WhTj
||hTj ||2

||22 ≤ (1 + ε)(|| hTi
||hTi ||2

||22 + ||
hTj
||hTj ||2

||22) = 2(1 + ε),

and

−|| WhTi
||hTi ||2

−
WhTj
||hTj ||2

||22 ≤ −(1− ε)(|| hTi
||hTi ||2

||22 + ||
hTj
||hTj ||2

||22) = −2(1− ε).

Thus we have:

|〈 WhTi
||hTi ||2

,
WhTj
||hTj ||2

〉| = |
|| WhTi
||hTi ||2

+
WhTj
||hTj ||2

||22 − ||
WhTi
||hTi ||2

− WhTj
||hTj ||2

||22
4

| ≤ ε,

which implies:
|〈WhTi ,WhTj〉| ≤ ε||hTi ||2||hTj ||2.

Take the above equation into Equation (20.7), we obtain:

||WhT0,1||22 ≤ ε(||hT0||2 + ||hT1||2)
∑
j≥2

||hTj ||2 ≤
√

2ε||hT0,1||2
∑
j≥2

||hTj ||2. (20.8)

Combining Equation (20.3) (20.6) and (20.8), we obtain:

(1− ε)||hT0,1||22 ≤
√

2ε||hT0,1||2
1√
S
||hTC

0
||1.

20-5



EE 381V Lecture 20 — March 28 Spring 2013

Using Equation (20.5) and rearranging, we get:

||hT0,1||2 ≤
ρ√
S

(||hT0||1 + 2||xTC
0
||1) ≤ ρ||hT0||2 +

2ρ√
S
||xTC

0
||1,

but since ||hT0||2 ≤ ||hT0,1||2, we have:

||hT0,1||2 ≤
ρ

1− ρ
1√
S
||x− xT0||1.

�
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