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Lecture 21 — April 2

Lecturer: Caramanis & Sanghavi Scribe: Megasthenis Asteris

21.1 Review

In the past few lectures we have been studying the problem of sparse signal reconstruction
from a small number of noiseless linear measurements. The objective is to recover an un-
known, k-sparse, n-dimensional vector x from a measurement vector y = Ax ∈ Rm, which
is a linear transformation of x by a known m× n matrix A, where m < n.

We have presented various heuristics for sparse signal recovery, including greedy algo-
rithms such as Orthogonal Matching Pursuit, and algorithms based on convex optimization
such as Basis Pursuit. In order to provide performance guarantees, the analysis of these
algorithms seeks conditions on the measurement matrix A and the sparsity k of x, under
which the solution is unique and/or the algorithm can successfully recover the sparsest solu-
tion. Examples of such conditions include mutual coherence (maximum coherence between
columns of the measurement matrix A), the Restricted Isometry Property, and the Restricted
Strong Convexity (which may be the subject of a future lecture).

The previous lecture focused on the analysis of Basis Pursuit under the assumption that
the measurement matrix satisfies an RIP condition. Specifically, if A satisfies the (ε, 2k)-
RIP for ε <

√
2− 1, then we can recover the unique k-sparse vector x as the solution of the

l1-minimization problem

minimize ‖x‖1

subject to: y = Ax.

21.2 Overview

Although the l1-norm minimization is arguably the most famous approach to the sparse re-
covery problem, it is not empirically the best. In this lecture we revisit Orthogonal Matching
Pursuit with an analysis based on the Restricted Isometry Property. Specifically, we describe
a result by Davenport and Wakin according to which if the measurement matrix satisfies the
RIP property of order k + 1 with an isometry constant δ < 1/3

√
k, Orthogonal Matching

Pursuit can recover any k-sparse signal. Recall that Orthogonal Matching Pursuit aims to
discover the support of the sparse vector x, gradually expanding a set of indices through an
iterative procedure. If the correct support has been retrieved, the calculation of the solution
x reduces to a simple least squares problem. The proof of the previous result essentially
relies on showing that under the aforementioned condition the algorithm in every iteration
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selects an index that belongs to the true support of x. We adhere to the argument outline
of [1] and large portion of the following description has been adapted from that paper.

21.3 Introduction

Orthogonal Matching Pursuit, depicted in Algorithm 1, is a greedy iterative algorithm for
the recovery of a k-sparse vector x from a vector of linear measurements y = Φx. Note that
in the notation of [1], Φ is used to denote the measurement matrix. The algorithm iteratively
expands an initially empty set Λ of indices, that correspond to the estimated support of x.
Once the support Λ has been determined, the final estimate x̂ is obtained as the orthogonal
of y on the subset of columns of Φ indexed by Λ. Let Λl denote the estimate of Λ in the l-th

Algorithm 1 Orthogonal Matching Pursuit

Require: Φ {The measurement matrix},
y {The vector of measurements},
stopping criterion
Initialization: r0 = y {residual}, x0 = 0 {estimate}, Λ0 = ∅, l = 0 {Iteration counter},
while not converged do

match: hl = ΦT rl

identify: Λl+1 = Λl ∪ {arg maxj |hl(j)|}
{If multiple maxima exist, choose only one arbitrarily.}
update: xl+1 = arg minz:supp(z)⊆Λl+1‖y−Φz‖2
rl+1 = y −Φxl+1

l = l + 1.
end while
return x̂ = xl = arg minz:supp(z)⊆Λl‖y−Φz‖2

iteration. This set is expanded into Λl+1 by including a new index that hopefully belongs to
the true support of x. Throughout the execution, the algorithm maintains the residual vector
rl, i.e., the component of the measurement y that cannot be explained by the columns of Φ
indexed by Λl. The index to be inserted in Λl yielding Λl+1 is the one corresponding to the
column of Φ that has the largest inner product with rl, i.e., the column that best explains
the residual rl. Note that rl is by construction orthogonal to the columns of Φ indexed by
Λl. Hence, h(j) = 0 for j ∈ Λl and the new index j∗ = arg maxj |hl(j)| is guaranteed to
belong to

(
Λl
)c

, the complement of Λl, increasing |Λ| by one in every iteration.
Let xΛ denote the vector containing the entries of x indexed by Λ, and similarly, ΦΛ the

m× |Λ| matrix formed by the |Λ| columns of Φ indexed by Λ. The estimate of the solution
at the l-th iteration, xl, is obtained as the orthogonal projection of the measurement y on
the columns of ΦΛl . In other words,

xlΛl = Φ†
Λly, and xl(Λl)c = 0,
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where Φ†
Λl =

(
ΦT

ΛΦΛ

)−1
ΦT

Λ is the Moore-Penrose pseudoinverse of ΦΛ. The residual in the
l-th iteration is

rl = y −Φxl = y −ΦΛlΦ†
Λly.

Observe that ΦΛlΦ†
Λl is a projection matrix; it projects y on R(ΦΛl), the column space of

ΦΛl . Denoting this orthogonal projection operator onto R(ΦΛl) by PΛl , and similarly the
projection operator on the complement space by P⊥

Λl = (I−PΛl), the residual vector can be
expressed as follows

rl = y −ΦΛlΦ†
Λly = (I−PΛl) y = P⊥Λly. (21.1)

The residual is correlated against all columns of Φ to determine the index to be included
in the estimate of x’s support, Λl+1. Note that every column of Φ can be written as the
sum of two orthogonal components: the projection on R(ΦΛl), and the projection on its
orthogonal complement R(ΦΛl)⊥. The vector of inner products is, hence,

hl = ΦT rl (21.2)

=
(
PΛlΦ + P⊥ΛlΦ

)T
P⊥Λly

= 0 + ΦT
(
P⊥Λl

)T
P⊥Λly (21.3)

= ΦT
(
P⊥Λl

)T (
P⊥Λl

)T
y

= ΦT
(
P⊥Λl

)T
y

=
(
P⊥ΛlΦ

)T
y = AT

Λly, (21.4)

where we have defined1 AΛl = P⊥
ΛlΦ. In the intermediate steps we have used the fact that

for an orthogonal projection matrix P = PT = P2. Equation (21.2) implies that for the
matching step of the algorithm, the residual need not be explicitly calculated. Instead, at the
l-th iteration, the columns of Φ can be orthogonalized against R(ΦΛl) and then the inner
products of the matching step can be directly calculated correlating y with the resulting
columns. Although the two approaches are equivalent, the new perspective will prove useful
in the subsequent analysis.

One final observation is that matrix AΛl plays a significant role in the construction of
the residual rl:

rl = P⊥Λly = P⊥ΛlΦx = AΛlx. (21.5)

Recalling that the columns of AΛl in Λl are zero, we can write

rl = AΛlx̃l, (21.6)

1Note that this notation is a little confusing: contrary to ΦΛl , AΛl is a matrix with the same dimensions
as Φ and not only a subset of the columns.
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where

x̃lΛl = 0 and x̃l(Λl)c = x(Λl)c . (21.7)

The benefit is that the support of x̃l shrinks as Λl grows, an observation that will also prove
useful in the sequel.

21.4 Main Result

Theorem 21.1. Suppose that Φ satisfies the RIP of order k + 1 with isometry constant
δ < 1

3
√
k
. Then for any x ∈ Rn with ‖x‖0 ≤ k, Orthogonal Matching Pursuit will recover x

exactly from y = Φx in k iterations.

In other words, if Φ satisfies the conditions of the theorem, then Orthogonal Matching
Pursuit will recover the correct set of indices, i.e., Λ = supp(x), which in turn implies that
in every iteration the maximum (by absolute value) element of h corresponds to an index in
the true support of x. The analysis will therefore evolve around vector h.

It is interesting to note that equation (21.6) essentially describes a sparse signal recovery
problem. In the first iteration, l = 0, it corresponds to the original problem y = Φx̃0. In
the l-th iteration the objective is to recover a sparse vector x̃l, from an observation rl with
a measurement matrix AΛl . In successive iterations, increasingly more zero columns appear
in AΛl , but (assuming that the algorithm expands Λl without mistakes) the support of x̃l

shrinks accordingly, with nonzero entries only outside Λl. Assume that Φ = AΛ0 has an RIP
property that guarantees that the algorithm will select a correct index in the first iteration.
Then, it would suffice the measurement matrices AΛl of subsequent iterations to inherit
a similar property for

(
k − |Λl|

)
-sparse vector supported on (Λl)c, revealing the inductive

nature of the proof to follow. Before we get there, however, we will prove a series of lemmata
that will eventually be combined in the proof of Theorem 21.1.

Lemma 21.2. If Φ satisfied the RIP of order k with constant δ, then for any set Λ with
|Λ| < k (

1− δ

1− δ

)
‖u‖2

2 ≤ ‖AΛu‖2
2 ≤ (1 + δ) ‖u‖2

2, (21.8)

for all u such that supp(u) ∩ Λ = ∅ and ‖u‖0 ≤ k − |Λ|.

The previous Lemma (see [3], [4] for proof) relates the RIP of the original Φ matrix to the
RIP of AΛl . If Φ satisfies the RIP with a constant δ on all k-sparse vectors, then AΛ satisfies
a modified version of the RIP on every (k − |Λ|)-sparse vector supported on Λc.

Lemma 21.3. Λ ⊆ [n] and suppose x̃ ∈ Rn with supp(x̃) ∩ Λ = ∅. Let

h = AT
ΛAΛx̃. (21.9)
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If Φ satisfies the RIP of order ‖x̃‖0 + |Λ|+ 1 with isometry constant δ, we have

|h(j)− x̃(j)| ≤ δ

1− δ
‖x̃‖2, (21.10)

for all j /∈ Λ.

Proof: From Lemma 21.2 we have that the restriction of AΛ to the columns indexed by Λc

satisfies the RIP of order (‖x̃‖0 + |Λ|+ 1)−|Λ| = ‖x̃‖0 + 1 with isometry constant δ/(1− δ).
From equations (21.1), (21.3) and (21.5), we have h = AT

ΛAΛx̃, which can be alternatively
written as

h(j) = 〈AΛx̃,AΛej〉, (21.11)

where ej denotes the j-th vector of the standard basis. Now suppose j /∈ Λ. Then, since
‖x̃± ej‖0 ≤ ‖x̃‖0 + 1 and supp(x̃± ej) ∩ Λ = ∅, we conclude from that

|h(j)− x̃(j)| = |〈AΛx̃,AΛej〉 − 〈x̃, ej〉| ≤
δ

1− δ
‖x̃‖2‖ej‖2. (21.12)

The inequality is a result of the fact that AΛ satisfies the RIP with constant δ/(1 − δ).
Noting that ‖ej‖2 = 1, we reach the desired conclusion. �

Lemma 21.4. Suppose that Λ, Φ, x̃ meet the assumptions specified in Lemma 21.3, and
let h be as defined in (21.9). If

‖x̃‖∞ >
2δ

1− δ
‖x̃‖2, (21.13)

we are guaranteed that arg maxj |h(j)| ∈ supp(x̃).

Proof: For j /∈ supp(x̃), we clearly have x̃(j) = 0. Therefore, by (21.10) we have

|h(j)| ≤ δ

1− δ
‖x̃‖2, for j /∈ supp(x̃). (21.14)

On the other hand, if (21.13) is satisfied, then there must exists an element x̃(j), clearly in
the support of x̃, such that

|x̃(j)| > 2δ

1− δ
‖x̃‖2. (21.15)

For that j, from (21.10) and the triangle inequality, we obtain

|h(j)| > δ

1− δ
‖x̃‖2. (21.16)

The bottom line is that there must exist a j in the support of x̃ for which |h(j)| is greater than
all |h(j′)| for j′ /∈ supp(x̃). Thus, the index j for which |h(j)| is maximized is guaranteed to
belong to the support of x̃. �

Finally, without a proof, note the following.

Lemma 21.5. For any u ∈ Rn, ‖u‖∞ ≥ ‖u‖2√
‖u‖0

.
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21.4.1 Proof of main theorem

Combining the above results, we can finally establish the proof of Theorem 21.1 In the first,
iteration (l = 0) we have:

h0 = ΦT r0 = ΦTy = ΦTΦx.

By assumption ‖x‖0 ≤ k and therefore, by Lemma (21.5), ‖x‖∞ ≥ ‖x̃‖2/
√
k. The conditions

of Lemma (21.13) are satisfied. In order to satisfy the remaining conditions of Lemma 21.4,
namely equation (21.13), it suffices to ask

2δ

1− δ
≥ 1√

k
⇔ δ <

1

2
√
k + 1

.

Clearly, if δ ≤ 1/3
√
k, as in the assumption, the above is satisfied, and

arg max
j
|h0(j)| ∈ supp(x),

i.e., the algorithm is guaranteed to choose a valid index in the first iteration. For the
induction step, assume that Λl ⊆ supp(x), i.e., all iterations up to the (l − 1)-th have
succeeded meaning that all indices in Λl belong to the support of x, . Recall that by
construction of x̃l, we have supp(x̃l) ∩ Λl = ∅ and hence,

‖x̃l‖0 ≤ k − |Λl|.

By assumption, Φ satisfies the RIP of order k + 1. Taking the previous inequality under
consideration, we have

k + 1 = (k − |Λl|) + |Λl|+ 1 ≥ ‖x̃l‖0 + |Λl|+ 1.

Finally, we have

‖x̃‖∞
Lemma 21.5

≥ ‖x̃‖2√
k − |Λl|

≥ ‖x̃‖2√
k

for δ < 1/
√
k

≥ 2δ

1− δ
‖x̃‖2. (21.17)

From Lemma 21.4, we conclude that

arg max
j
|hl(j)| ∈ supp(x̃l), (21.18)

and hence, Λl+1 ⊆ supp(x), which completes the proof.

21-6



Bibliography

[1] Davenport, Mark A., and Michael B. Wakin, Analysis of orthogonal matching pursuit
using the restricted isometry property. Information Theory, IEEE Transactions on 56.9
(2010): 4395-4401.

[2] Shai Shalev-Shwartz, Compressed Sensing: Basic results and self contained proofs. (2009).

[3] Dai, Wei, and Olgica Milenkovic. Subspace pursuit for compressive sensing signal recon-
struction. Information Theory, IEEE Transactions on 55.5 (2009): 2230-2249.

[4] M. A. Davenport, P. T. Boufounos, and R. G. Baraniuk, Compressive domain inter-
ference cancellation. Workshop on Signal Processing with Adaptive Sparse Structured
Representations (SPARS), Saint-Malo, France, Apr., 2009.

7


