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24.1 Review

In past classes, we studied the problem of sparsity. Sparsity problem is that we are given a
set of basis D (dictionary, design matrix) and a signal y, and we want to find a data x of
high dimensions, but of few elements being nonzero. If the measurements we have are linear
measurements, then the problem can be expressed as y = Dx, where x is the data we want to
recover from the linear measurements y and matrix D. If written down as a formulation, it is
represented as minx ||x||0 s.t. y = Dx, or approximately y ≈ Dx, satisfying ‖y −Dx‖p ≤ ε.
Or if we limited the sparsity to be s, then it is represented as minx ||y−Dx||22 s.t. ||x||0 ≤ s.

24.2 Dictionary Learning

Now we look at the reverse problem: could we design dictionaries based on learning? Our
goal is to find the dictionary D that yields sparse representations for the training signals.
We believe that such dictionaries have the potential to outperform commonly used predeter-
mined dictionaries. With evergrowing computational capabilities, computational cost may
become secondary in importance to the improved performance achievable by methods that
adapt dictionaries for special classes of signals.

Given y1, y2, · · · , yN , where N is large, find a dictionary matrix D with columns number
K � N , such that every yi is a sparse combination of columns of D. From now on, denote
dictionary matrix as D, with columns {di}K1=1; collection of signals as a m × N matrix Y ,
whose columns are points yis; representation matrix X, a n × N matrix with columns xis
being representation of yis in dictionary D.
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Intuitively, under natural idea, we would have the formulation represented as:

min
D,{xi}

∑
i

‖yi −Dxi‖2 s.t. ‖xi‖0 ≤ s (24.1)

But representation (24.1) has several issues to be considered:

• Issue 1: there is a combinatorial sparsity constraint;

• Issue 2: Optimization is over both D and {xi}, so this is a non-convex problem due to
bi-linearity in objective function.

24.2.1 Dictionary Learning, Idea 1

Do Lagrangian relaxation to the formulation (24.1) and relax the `0 norm to `1 norm, we
have

min
D,{xi}

‖Y −DX‖2F + λ‖x‖1 (24.2)

Here ‖Y − DX‖2F =
∑

i ‖yi −Dxi‖2. Formulation (24.2) does penalize `1 norm of x, but
does not penalize the entries of D as it does for x. Thus, the solution will tend to increase
the dictionary entries values, in order to allow the coefficients to become closer to zero. This
difficulty has been handled by constraining the `2 norm of each basis element, so that the
output variance of the coefficients is kept at an appropriate level.

An iterative method was suggested for solving (24.2). It includes two main steps in each
iteration:

• Sparse coding: calculate the coefficients xis;

• Dictionary update: fix {xi}, update D.
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The iterative method would lead to a local-minimum, so the performance of the solution is
sensitive to the initial D and {xi} we choose and the method we use to upgrade dictionary
and coefficients.

In sparse coding part, there is a bunch of methods that could be used: OMP, `1 minimiza-
tion, iterative thresholding, etc, which, more or less, were already been covered in former
classes.

In dictionary update part, fix {xi}, we are left with solving

min
D
‖Y −DX‖2F (24.3)

Option 1: directly solve the least square problem.

Issue: the “guess” X might be lousy. By doing the “exact” solving step, the whole process
would be “pushed” to local minimum nearest the initial guess. The situation is similar to
“over-fitting” current observation in regression model, where noise is unsuitably considered
in optimization and “push” regression model to a lousy direction.

Option 2: simple gradient descent procedure with small step

D(n+1) = D(n) − η
N∑
i=1

(D(n)xi − yi)x′i

Initializing D: greedy algorithm

1 Pick largest (`2 norm) column of Y , move to D from Y ;

2 To all columns that remain in Y , subtract their orthogonal projection to range(D)

repeat (1) and (2) till a full basis D is found.

24.2.2 Dictionary Learning, Idea 2

Unions of orthonormal dictionaries

Consider a dictionary composed as a union of orthonormal bases.

D = [D1, · · · , DL]

where Di ∈ O(m) (m is the dimension of yis), that is, D′iDi = DiD
′
i = Im×m, for i = 1, · · · , L.
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Correspondingly, divide X to L submatrices, with each submatix Xi containing the co-
efficients of of Di

X = [X ′1, X
′
2, · · · , X ′L]′

The update algorithm need to preserve the orthonormality of Dis in each iteration. As-
suming known coefficients, the proposed algorithm updates each orthonormal basis Di se-
quentially. The update of Di is done by first computing the residual matrix

Ei = Y −
∑
j 6=i

DjXj

Then we solve minDi∈O(m) ‖Ei −DiXi‖2F for updated Di

24.3 K-SVD algorithm

Overall, this algorithm is a “generalization” of K-means algorithm for clustering points
{yi}Ni=1.

K-means algorithm

In K-means, first we are offered K centers, denoted as C = [c1, c2, · · · , cK ]. This could
also be seen as a basis or dictionary. The index j of point yi is selected by finding j such
that

‖yi − Cej‖22 ≤ ‖yi − Cek‖,∀k 6= j

This has analogy to sparse coding stage. We force the sparsity of coefficients to be 1 and
the nonzero component should be 1. Written as formulation and in matrix form

min
x
‖Y − CX‖2F

s.t. xi = ek for some k,∀i
(‖xi‖0 = 1)

And in updating {ci} stage, let Rk be the set of index of points clustered into kth cluster

ck =
1

|Rk|
∑
i∈Rk

yi = argminc

∑
i∈Rk

‖yi − c‖22

combine all K such optimization problem, we have update of C is

C = arg min
C
‖Y − CX‖2F
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remember here X comes from sparse coding stage, defining which cluster each point in Y
lies. Denote kth row of X as xkT , then

Y − CX = Y −
∑
k

ckx
k
T = Y −

∑
j 6=k

cjx
j
T

Ek

−ckxkT

Since the whole problem is decomposable to subproblems of finding each ck, ∀k, so it is
equivalent to sequentially search ck that minimizes ‖Ek − ckxkT‖2F =

∑
i∈Rk
‖yi − ck‖22.

Back to dictionary learning problem,

Y −DX = (Y −
∑
j 6=k

djx
j
T

Ek

)− dkxkT

So
‖Y −DX‖2F = ‖Ek − dkxkT‖2F

In dictionary update step, analogous to K-means, assuming known X, we could sequentially
solve

min
dk
‖Ek − dkxkT‖2F

for update of columns of D.

K-SVD algorithm:
Data: {yi}Ni=1

Initialization: D(0) ∈ Rm×K , with each column normalized; t = 1
Repeat until convergence:

1 Do sparse coding, solve for each {xi}Ni=1 using suitable algorithm;

2 for each column k = 1, · · · , K in D(t−1)

1 Define Rk = {i|1 ≤ i ≤ N, xkT (i) 6= 0}
2 Compute Ek = Y −

∑
j 6=k djx

j
T , extract columns with indices in Rk, denote as

ERk
k ; ERk

k ∈ Rm×|Rk|

3 Apply SVD, ERk
k = U∆V T , choose updated dictionary column dk as the first

column of U , update the nonzero items of coefficient xkT by xkRk
, xkRk

is the first

column of V multiplied by σ1(E
Rk
k )

3 Set t = t+ 1
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