
EE 381V: Large Scale Learning Spring 2013

Lecture 25 — April 16

Lecturer: Caramanis & Sanghavi Scribe: Jeff Manning

25.1 Data Streaming Model

This model is applied to the same kinds of problems as we have covered already in class, but
when the data objects (matrices and matrix elements) are too big to fit in memory, or are
otherwise presented to us serially.

25.2 Two Models

25.2.1 Model A: Multi-pass

Data fits on disk (e.g. server on a network) but does not fit in local RAM. Disk (or network)
access is expensive in comparison with processing power, and becomes the throughput bot-
tleneck.

Model:

• Small main memory

• Infinite tape but expensive to access

• Must read the data left-to-right in sequential order. The goal herein is to read through
the data as few times as possible, ideally executing O(1) operations per datum.

Metrics:

• Number of passes through the data

• Amount of memory required

• Computation time

25.2.2 Model B: Single-pass

Data must be processed sequentially, as if coming directly from a sensor, e.g. a camera.

Metrics:

25-1

EE 381V Lecture 25 — April 16 Spring 2013

• Amount of memory required

• Computation time

• Sample Complexity (especially relevant when we have a generative model, e.g. PCA)

If x, w are Gaussian, then yi = N (0, AAT + I), where yi ∈ Rp. We need to estimate
range(A). The goal here is to determine how many points are needed to do so. Produce the
covariance matrix of y, given by

1

n

∑
yiy

T
i ,

(which is (p x p), requiring storage O(p2)), then compute its SVD and project it into k
principal components, which will require O(kp) operations. Therefore, an example image of
10Mb, where each yi is a (1 x 107) vector, has p2 = 1014. A computer with 100Tb of memory
looks much different (and costs a bit more) than one with 10Mb! We are consequently
compelled to seek a lower-complexity approximate solution.

25.3 Efficient Approximate Matrix Multiplication

Given two matrices A and B, our goal is to produce the matrix C, such that∥∥ATB − C∥∥
F
< ε ‖A‖F ‖B‖F .

How much memory is required to compute the approximation C? Henceforth, we will
derive an upper bound for the amount of memory required, and then use the principle of
Communication Complexity to find a lower bound as well.

25.3.1 Data Acquisition

1. Turnstile Model (like database access) - Over time, the algorithm receives arbitrary
updates to the individual elements of a matrix:

Mij ←Mij + x

2. Another model - Algorithm receives updates to an entire row or column at a time.

25.3.2 Matrix Product using Sketches

Recall that for a large mxn matrix A, we can form

Y = AΩ

25-2

EE 381V Lecture 25 — April 16 Spring 2013

where Ω = n x k Gaussian, which randomly projects every row of A onto a k-dimensional
subspace. This works, because random projections have similar properties as Johnson-
Lindenstrauss projections onto a lower dimensional subspace.

Here, we will use a ”sign matrix” instead of a Gaussian random matrix, to form a ”sketch”
of the product of two large matrices ATB.

Define S, (p x m), with

sij =

{
+1, prob = 1/2

−1, prob = 1/2
(25.1)

So the sketch of ATB is STASTB. We therefore have

E[ATSSTB]

m
=
ATE[SST]B

m
=
AT (mI)B

m
= ATB

The variance is given by

E[‖ A
TSSTB

m
− ATB ‖2F] ≤ 2

m
‖ A ‖2‖ B ‖2 (2)

Exercise: Use the Chebyshev Inequality to show that this bound implies that

∀ε > 0,∃m = O(
1

ε2
)

such that

P(‖ [ATSSTB −ATB ‖2≤ ε ‖ A ‖2‖ B ‖2) ≥ 3

4

By the Chebyshev Inequality, the probability that a value of an rv is less than kσ from the
mean is ≥ 1− 1

k2
. Here we have a sketch whose expected value is ATB and variance bounded

as given above. Thus we have √
ε ‖ A ‖‖ B ‖= kσ

but by the bound on σ,
c

ε
≤ 2k2

for some constant c, and k = 2√
3
.

The algorithm is

1. Generate r = O(log 1
δ
). Keep r pairs of sketches: STA, STB.

2. For each pair, store

pi =
(S(i)TA)T (S(i)TB)T

m

25-3

EE 381V Lecture 25 — April 16 Spring 2013

3. See if
‖ pj − pi ‖F≤

ε

2
‖ A ‖‖ B ‖

for > 1
2

of the other pi.

One of the pi is ”good” (best). That is, pick j=1 to start, then go through and find pj that
is close to lots of the others. That pj is the best one, so output it.

Proof: (of correctness)

1. ∃ a ”good” pj, and

2. the ”good” pj is good.

By (2), we have

P(EventEi) = P(‖ pi − ATB ‖≤
ε

4
‖ A ‖‖ B ‖) ≥ 3

4

when pi is close to ATB.

Exercise: Use the Chernoff Bound: ∃ some r such that with probability ≥ 1− δ, at least 5
8 of

the events Ei occur. The Chernoff bound states that for a set of r Bernoulli random variables,
each with probability > 1

2 , the probability of more than r
2 of them having a value of 1 is

S =

r∑
i=| r

2
|+1

(
n

i

)
pi(1− p)r−i

or,

S ≥ 1− exp(− 1

2p
r(p− 1

2
)2)

so, given the above,
r = −24log(δ)

Suppose ≥ 5
8

of the Eis have occurred. Then for at least 1
2

of all of the {p1, ..., pr}, by
the triangle inequality,

‖ pi − pj ‖≤‖ pi − ATB ‖ + ‖ pj − ATB ‖≤
ε

2
‖ A ‖‖ B ‖

25-4

EE 381V Lecture 25 — April 16 Spring 2013

Now, we must show that we can estimate ‖ A ‖and‖ B ‖ from the sketches. 1
2

are close,
and 5

8
are good, so there are some that are both close and good (”close” means closer than

the others, while ”good” means within a specified bound). Here we show that our test will
indeed find the ”good” ones:

Suppose p1 satisfies

‖ p1 − pj ‖≤
ε

2
‖ A ‖‖ B ‖

for more than half of the p2, ..., pr. Then we want to show that p1 is also good:

‖ p1 − ATB ‖ ≤‖ p1 − pj ‖ + ‖ pj − ATB ‖

≤ ε

2
‖ A ‖‖ B ‖ +

ε

4
‖ A ‖‖ B ‖

=
3ε

4
‖ A ‖‖ B ‖

�

25.3.3 Algorithm Performance

We claim that the memory required for storing the random data to generate S is O(r).

Theorem 25.1. Given two (p x n) matrices A and B,

m = O(
1

ε2
)

r = O(log
1

δ
)

The algorithm succeeds with probability ≥ 1-δ and outputs a p such that

‖ p− ATB ‖≤ ε ‖ A ‖‖ B ‖

with space requirement O(mpr), where r = the number of sketches used.

25.3.4 Finding a Lower error Bound

The foregoing establishes an upper bound on the error of our sketch-based matrix multipli-
cation algorithm. We now wish to determine a lower bound for that error, and will use the
notion of communication complexity to do so. The motivation for finding a lower bound is
that it acts as a quality measure on the upper bound. That is, if we can find lower and upper

25-5

EE 381V Lecture 25 — April 16 Spring 2013

bounds which are very close to each other (or equal), then our algorithm must be close to
(or identically) optimal. If not, then perhaps improvements can be made to it. In any case,
the only way to know is to bound the error from both directions.

Communication complexity is a measure, given a certain task to be performed between
two remote participants, of how much information must be exchanged between them in order
to perform the task. For example, considering the two parties, Alice and Bob, presented in
class and also in [2], we have the following:

Alice posesses the bit string x, of length n bits. Bob posesses a different bit string y, also
n bits long. The task is for either of them to produce the output of a function f(x,y) which
requires both x and y as input. Therefore, information will have to move from one of them
to the other (or in the general sense, in either direction between them).

To define the communication complexity, consider that we choose some protocol P
that results in a sequence of messages mi between Alice and Bob, denoted by sp(x, y) =

(m1,m2, ...,mr). Further, if |mi| is the bit length of mi, then |sp(x, y)| =
r∑
i=1

|mi|. The

deterministic communication complexity is then given by

D(P) , max
(x ,y)∈{0 ,1}nx{0 ,1}n

|sp(x , y)|

.

As an example, if we choose the equality function EQ(x,y) such that

EQ(x, y) =

{
1, x = y

0, else
(25.2)

The communication complexity D(EQ(x,y)) = n, for one-way communication only.

Another case, the randomized communication complexity, is where Alice transmits the
parity of her message, 〈x, zi〉, where zi is a random vector. In this case, P(x · zi = y · zi) = 1

2
.

For a sequence of k bits, the probability is P = 2−k, and the communication complexity D
= log(n).

In the context of reduction, recall the turnstile model, in which Alice feeds the data x
into the algorithm in some arbitrary order, that is,

f(x, y) = Algo(x, y)

which implies that

Storage(Algo) ≥ D(f)

so the communication complexity forms a lower bound, and this bound can be mapped
back to our original matrix multiplication problem, which will be covered in the next lecture.

25-6

Bibliography

[1] Eyal Kushilevitz, Communication Complexity, Dept. of Computer Science, Technion,
Haifa 32000, Israel, 1997.

[2] Tamas Sarlos, Improved approximation algorithms for large matrices via random projec-
tions, 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 143-152,
2006.

7

