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25.1 Review of Streaming Model

Streaming model is a new model for presenting massive data. In this model, we consider
data (input as matrices) are too large to fit in memory or even in the local disk. Thus, the
streaming algorithms are designed to handle the data presenting in streaming manner. There
are two settings for presenting streaming data:

• Streaming data are given in sequential way. One can regard this setting as reading
data stored in “tape”.

• Data are given with arbitrary order, and data possibly cannot be stored anywhere.

We will consider the second streaming model with matrices as input. For matrices, there are
two reasonable settings for presenting data in each time:

• Turnstyle: each time we are given an entry (i, j) of the matrix, or

• Every time we are given a column or a row.

25.2 Last Time: Matrix Multiplication in Streaming

Model

Recall the last time we introduce the randomized matrix multiplication problem (with ap-
proximation sense) in streaming model. The problem is as follows:

• Given two p× n matrices A,B (p� n and both are large), output an approximation
P ≈ ATB in the sense that:

Pr(‖P − ATB‖F ≤ ε‖A‖F‖B‖F ) ≥ 1− δ. (25.1)

The idea of solving this problem under streaming model is using sketching to generate
matrices STA, STB with different S, where S is a p×m sign matrix (±1 in each entry) with
only few m columns (that is, p, n� m). One then calculates several approximate resulting
matrices (STA)T (STB), and picks one “good” approximation from them. Since matrices
STA, STB is now much smaller, they can be stored in memory. We proved this algorithm
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solves the randomized matrix multiplication problem. Moreover, the smaller dimension m
in S depends on rank of A, log 1

δ
and log 1

ε
.

We have already seen under sketching, the memory it requires is O(m log 1
ε2

log 1
δ
). This

gives this problem an upper bound of memory use. Today we will see how to derive a space
lower bound of the matrix multiplication problem using communication complexity.

25.3 Recap of Communication Complexity

25.3.1 Basic Definition

• Communication Complexity (CC):
Recall that in one-way communication model, Alice and Bob both have some informa-
tion x and y ∈ [0, 1]n. Given a function f : [0, 1]n × [0, 1]n → {0, 1}, the definition of
communication complexity is the minimum number of bits that Alice requires to send
to Bob, such that Bob can answer f(x, y) correctly.

• Randomized Communication Complexity (RCC):
In randomized one-way communication model, we are interested in how many bits
that Alice requires to send to Bob, such that Bob can answer f(x, y) correctly with
probability at least 1 − δ. Alice and Bob are allowed to do randomization based
on a same random generator. Apparently, the complexity depends on how high the
probability is. For example, if δ = 1

2
, the randomized communication complexity is

always 0, since Bob can always achieve success probability 1
2

by flipping a random coin.
Thus, we are always interested in RCC with δ < 1

2
.

25.3.2 Facts of Communication Complexity

Here we list some of the known results for randomized communication complexity.

Theorem 25.1. Under one-way randomized communication model, the RCC for com-
puting f(x, y) with probability ≥ α is C(n, α).

The above theorem says the RCC of a problem is a function of how high the success
probability is, and the length of input string x, y.

Theorem 25.2. Let Q be a randomized problem defined as below: given input x, y in
any order, we want to compute correct f(x, y) with probability at least α. In addition,
consider under randomized communication model, if Alice is given x and Bob is given
y, the RCC that Bob can answer f(x, y) correctly with probability ≥ α is R. Then,
any algorithm that can solve the problem Q requires storage space at least Ω(R).
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Proof: The above theorem can be seen by simple reduction. Suppose an algorithm
A(x, y) can solve problem Q. This means A will succeed to give the answer with
probability ≥ α in any order of input x, y. Now consider a scenario that Alice firstly
given algorithm A with input x, and pass the whole state of the algorithm to Bob. The
communication cost is R by definition of RCC. Bob then continue to input y into A,
and output the answer of A(x, y). Thus, such algorithm must need at least R bits of
storage under this particular scenario. Notice that A might need more than R storage
in general since A is an algorithm that can answer f(x, y) in any order of input, while
in this scenario the input order is first x then y. Thus, Ω(R) is the space lower bound
for any algorithm that solves problem Q. �

25.4 Lower Bound of Storage on Matrix Multiplication

Problem

We will prove the space lower bound of the matrix multiplication in streaming model using
Theorem 25.2, by reduction to augmented indexing problem. The main result we will prove
is stated as follows.

Theorem 25.3. Any algorithm that solves randomized matrix multiplication problem with
probability at least 4

5
requires space complexity at least Ω(cε−2 log nc), where c is a constant

such that every entry in A,B can be stored in O(log nc) bits.

25.4.1 Augmented Indexing Problem

The problem is defined as follows. Alice is given a string x ∈ [0, 1]n, and Bob is given an
index î ∈ {1 . . . n} and xî+1, . . . xn. The goal for Bob is to answer what the xî is (with high

probability). In other word, f(x, y) = xî. Notice that Alice does not know what index î is.
The following result states the RCC of the augmented index problem.

Theorem 25.4. Consider augmented index problem under randomized one-way communi-
cation model. If we want that Bob answer the correct bit of xî with probability at least 2

3
,

then the randomized communication complexity is Ω(n).

In other word, if we ask Bob to give the correct bit of xî with probability 2
3
, then there is no

“clever” way to do so; Alice basically needs to send all string information to Bob to achieve
the goal.

25.4.2 Preparation: Constructing Matrices

Using reduction technique, we now show that if we have a black box that solves matrix
multiplication problem, then we can use it to solve augmented index problem in one-way
communication model. Thus, as Theorem 25.2 states, the RCC for augmented index problem
will be the lower bound of space required by any matrix multiplication algorithm.
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Suppose we are given a black box that solves matrix multiplication problem, with equa-
tion (25.1) hold. Now consider the randomized communication model. Alice has a string
x ∈ [0, 1]cr/2. Bob is given an index î ∈ {1 . . . cr

2
}, and all values of xî+1 . . . xcr/2. We will

specify the value of r later.
For Alice, she constructs a c

2
×n matrix U . U can be divided into log cn+ 1 submatrices.

The first log cn submatrices are U0, U1 . . . Ulog cn−1 with each dimension c
2
× r

log cn
. The last

submatrix Z is an all zero matrix with dimension c
2
× (n− r). Thus the structure of U is:

U =
[
U0 U1 · · · Ulog cn−1 Z

]
.

Alice fills in U with x in column-first order. That is, she fills first column of U0, second
column of U0, . . . , last column of U0, and the first column of U1, and so on. When she fills
in an entry in Uk, if the corresponding entry in x = 1, then she fill the entry with 10k, and if
that entry in x = −1 she fill the entry with −10k. Thus, formally, the Uk(i, j) can be defined
as follows:

Uk(i, j) =

{
10k, if xt = 1,where t = k × r

log cn
+ (j − 1)× c

2
+ i

−10k, if xt = 0.

On the other hand, Bob will create two matrices, V and B. Suppose the index î that
Bob is given corresponds to the (i∗, j∗) entry in Uk∗ submatrix of U . Bob creates the cr

2
× n

matrix V as follows. For all entries after the (i∗, j∗) entry in k∗-th block, Vk(i, j) = −Uk(i, j),
and for all other entries, Vk(i, j) = 0. Thus V has the structure as:

V =

 0 · · · 0 −u · · · −u
0 · · · 0 · · · 0∗ −u · · · −u · · · −Ulog cn−1 Z

0 · · · −u −u · · · −u

 ,
where the index of 0∗ is the (i∗, j∗) entry of the matrix Uk∗ . Bob will also create another
c
2
× n matrix B defined as follows:

Bij =

{
1, if i = (k∗ − 1)× r

log cn
+ j∗ and j = 1,

0, otherwise,

So B only contains one entry = 1 and all other entries are zero.
In summary, Alice creates V using string x, and Bob creates U and B using given index

î and xî+1 · · ·xcr/2. Now we show that under this setting, how to use matrix multiplication
black box to solve the augmented index problem under communication model.

25.4.3 The Proof of Space Lower Bound for Matrix Multiplication

In the previous subsection we see Alice creates V and Bob creates U , B. To solve augmented
index problem in communication model, Alice first send V to Bob. Bob compute AT = U+V ,
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and input A, B into matrix multiplication black box, which will output a matrix P such
that ‖P − ATB‖F ≥ ε‖A‖F‖B‖F with probability 1− δ.

By definition of A, we have:

‖A‖2F ≤
k∗∑
k=0

‖Uk‖2F =
c

2
× r

log cn
×

k∗∑
k=0

100k,

and

‖B‖2F = 1.

Choosing r = log cn
8δ

, then with probability 1 − δ, the resulting matrix P output from
matrix multiplication black box satisfies:

‖P − ATB‖2F ≤ ε2‖A‖2F‖B‖2F

≤ c

2
× 100k

∗ × 25

198
. (25.2)

By our construction, the matrix ATB has the following structure. The first column of it
is the j∗-th column in Uk∗ , and all other columns are zeros. Since P and ATB has difference
(which is small with high probability), there will be some sign disagreement between ATBi1

and Pi1 for all i. However, any sign disagreement between ATBi1 and Pi1 will contribute
squared error (ATBi1 − Pi1)

2 ≥ 100k
∗
. This implies if the bound (25.2) holds, then the

fraction of entries in ATB:1 and P:1 that have sign disagreement will no more than 25
198

, which
implies:

Pr(sgn(Pi∗1) = sgn(Uk∗(i∗, j∗))) ≥ 173

198
.

Finally, if we choose δ as 1
5
, then with probability at least 4

5
the matrix multiplication

black box outputs P satisfies (25.2), which further implies that Bob will answer xî (by looking
the sign of Pi∗1) correctly with probability at least 173

198
. Putting these together, we conclude

that by using this matrix multiplication box,

Pr(Bob correctly answer the bit xî) =
4

5
× 173

198
> 0.69 >

2

3
. (25.3)

Therefore, from Theorem 25.4, the communication complexity for this augmented index
problem is Ω( cr

2
). By Theorem 25.2, this implies the space lower bound for the matrix

multiplication problem is Ω( cr
2

) = Ω(cε−2 log nc). The Theorem 25.3 is thus proved.

25.5 Sketching for Regression

The regression problem can also be approximately solved using sketching. That is, instead
of solving:

min
X
‖AX −B‖2F , (25.4)
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we solve the problem:
min
X
‖STAX − STB‖2F , (25.5)

with some random sign matrix S with a small dimension. There is a similar result proving
that using sketching, we can obtain a good approximation X̃ to the true solution X∗. The
result is summarized as follows.

Theorem 25.5. Let A,B be two p × n matrices with rank(A) = k, and let S be a p ×m
random sign matrix, where the small dimension m = O(k(log 1

δ
)/ε). Then using sketching to

solve (25.5) instead of (25.4), with probability 1−δ we have ‖AX̃−B‖ ≤ (1+ε)‖AX∗−B‖.
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