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27.1 Last Time: Matrix Multiplication in Streaming

Model

• Review of streaming model.

• Matrix multiplication using sketching in streaming model.

• Upper and lower bounds of storage requirement for matrix multiplication using sketch-
ing.

• Sketching for regression.

27.2 This Time: Deal with the Corrupted Data in

High-dimensional Setting

27.2.1 Background

There are many types of noises: stochastic noise, Gaussian noise, arbitrary noise or com-
binations of different types of noises. We may come across the corrupted data in many
applications, for example, sparse estimation and matrix completion. In this lecture, we
consider the standard setting in two important ways:

• a constant fraction of the points are arbitrarily corrupted in a perhaps non-probabilistic
manner;

• the number of data points is of the same order as the dimensionality or perhaps con-
siderably smaller than the dimensionality.

27.2.2 Basic Definition

Definition (Breakdown point(BDPT)): a robustness measure which is defined as the
percentage of corrupted points that can make the output of the algorithm arbitrarily bad.
Next we show some examples for BDPT. Given samples x1, · · · ,xn with some fraction of
x1, · · · ,xn corrupted and some θ̂n that we want to estimate:

• If θ̂n = 1
n

∑n
i=1 xi, the BDPT is 0;
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• If θ̂n = θ̂median, the BDPT 50%;

• If the θ̂n is λ trimmed mean, the BDPT is λ.

Setting: Given n data points Y = {y1, · · · ,yn} ⊂ Rp, λ(λ ≤ 0.5) percentage of n points
are corrupted points(outliers). Thus there are t = (1−λ)n authentic samples z1, · · · , zt ∈ Rp,
λn corrupted points o1, · · · ,on−t ∈ Rp and these corrupted points are arbitrary. The data
set we can observe is Y = {y1, · · · ,yn} = {z1, · · · , zt} ∪ {o1, · · · ,on−t}

Objective: Given a mix of authentic and corrupted points Y , the goal is to find a low-
dimensional subspace that captures as much variance of the authentic points. The corrupted
points are arbitrary in every way except their number, which is controlled.

27.3 The Challenge for PCA in High-dimensional Set-

ting

Next let us explain why robust PCA gets into trouble when dealing with the high-dimensional
noisy data. Let us consider a simple generative model in high-dimensional setting, where
the number of data points n is close to p.

Suppose each authentic point is generated as yi = Axi + vi, where A is a p × d matrix
with d representing the number of principal components; each xi is drawn from a zero mean
symmetric random variable, and vi ∼ N(0, Ip). In the high-dimensional setting, we have
n ≈ p � σA = σmax(A) and thus is much larger than d. By the standard calculation, we
have

√
E(‖Ax‖22) ≤

√
dσA, and

√
E(‖v‖22) ≈

√
p, with sharp concentration of the Gaussian

around this value. We then may have
√
E(‖v‖22) ≈

√
p ≤

√
dσA. So in this case, the

magnitude of the noise is much larger than the magnitude of the signal.
In the high-dimensional setting, each point yi might be perpendicular to all other points,

and thus to the direction we want to recover. A simple experiment can verify the above
observations.

• Generate the data points as yi =
√
θvxi + wi with wi ∼ N(0, Ip);

• fix i and j and compute the angle between yi and yj(
yT

i yj

‖yi‖‖yj‖) and do the same thing

for v and yi;

• find the angle between two closest points: yi and yj and the angle between v and
closest yi;

27.4 The Main Algorithm: HR-PCA

High-dimensional Robust Principal Component Analysis(HR-PCA)[1] is efficient and robust
to the outliers in the high-dimensional setting. HR-PCA can achieve BDPT 50% while others
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Algorithm 1: HR-PCA

Input: Contaminated sample set Y = {y1, · · · ,yn} ⊂ Rp, d̂, T̄ , t̂.
Output: w̄1, · · · , w̄d̂.

1) Let ŷi := yi for i = 1, · · ·n;Y = {ŷ1, · · · , ŷn}; s := 0; Opt := 0.
2) While s ≤ T̄ , do
a) Compute the empirical variance matrix

Σ̂ :=
1

n− s

n−s∑
i=1

ŷiŷ
T
i .

b) Perform PCA on Σ̂. Let w1, · · · , wd̂ be the d̂ principal components of Σ̂.

c) If
∑d̂

j=1 V̄t̂(wj) ≥ Opt, then let Opt :=
∑d̂

j=1 V̄t̂(wj) and let w̄j := wj for

j = 1, · · · , d̂.
d) Randomly remove a point from {ŷi}n−s

i=1 according to

Pr(ŷi is removed from Ŷ )∝
∑d̂

j=1(wj
T ŷi)

2.

e) Denote the remaining points by {ŷi}n−s−1
i=1 .

f) s := s+ 1.
3) Output w̄1, · · · , w̄d̂. End.

have the BDPT zero. Specifically, HR-PCA iteratively performs standard PCA, and at each
iteration randomly casts out one point which is more likely to be corrupted point.

In HR-PCA, the trimmed variance is used as robust variance estimator(RVE):

V̄t̂(w) =
1

t̂

t̂∑
i=1

|wT y|2(i).

where t̂ is any lower-bound on the number of authentic points. The RVE works as first
projecting yi into the direction of w, then removing the furthest n− t̂, and finally computing
the empirical variance for the rest t̂ samples. By definition, RVE approximately measures
the variance along a candidate direction v for all the authentic samples.

The main algorithm is shown in Algorithm 1.
There are some intuitions for HR-PCA. At each iteration, HR-PCA selects candidate

directions using standard PCA to obtain directions with largest empirical variance. After
obtaining the candidate directions w1, · · · ,wd, RVE will measure the variance of the n − t̂
smallest points projected in those directions. If this is large, it means that many of the
points have a large variance in this direction. In the other hand, if it is small, it is very
likely that a number of the largest variance points are corrupted, and then it removes one
of them randomly, in proportion to their distance in the candidate directions w1, · · · ,wd.
So if the corrupted points have a very high variance along the candidate directions with
large angle from the span of the principal components, then with higher probability, HR-
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PCA will remove them; If they have a high variance in a direction “close to” the span of
the principal components, then these points can only help in finding the “true” principal
component; finally, if the corrupted points do not have a large variance, they may well
survive the random removal process, but the distortion they can cause in the output of PCA
is necessarily limited[1].

There are some interesting facts about HR-PCA:

• BDPT is 50%;

• There exists explicit lower bound for the error in [1];

• If the fraction of corrupted points go to 0, HR-PCA will recover the true solution.
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