
EE 381V: Large Scale Optimization Fall 2012

Lecture 2 — January 17

Lecturer: Caramanis & Sanghavi Scribe: Dinesh Jayaraman

2.1 Locally sensitive hashing: Overview

Last class, we began to discuss locality-sensitive hashing (LSH). The objective of LSH is
to map high dimensional points into a lower dimensional space in such a way that points
that are close to each other (as measured by some specified distance measure) map to the
same point (“collide”) and those that are not, map to different points. Formally, a family of
functions H is said to be a (r1, r2, p1, p2) locally sensitive family, if ∀h : A → B ∈ H and ∀
points p, q ∈ A, (r1 < r2, p1 > p2)

• if ‖p− q‖ ≤ r1, then pH(h(p) = h(q)) ≥ p1

• if ‖p− q‖ ≥ r2, then pH(h(p) = h(q)) ≤ p2

2.2 Amplification of hashing functions

Ideally, we will have p1 = 1, p2 = 0. However, a family of LSH functions H as defined
above (satisfying p1 > p2) can be combined using AND and OR operations to produce new
functions that approach this ideal LSH function.

2.2.1 The AND operation

Defn 2.2.1. AND : H → H′ - Pick r functions h1, h2, . . . hr without replacement from H.
Define h′ by h′(x) = h′(y) ⇔ hi(x) = hi(y) ∀ 1 ≤ i ≤ r. We denote the family of such h′

functions H′.

By requiring that the his collide all at once, the AND operation reduces the chances of a
collision in h′. If, for two points x and y, pH(h(x) = h(y)) = p, then pH′(h′(x) = h′(y)) = pr.

Furthermore, for probabilities p1 > p2, p1
AND−−−→ p′1 = p1

r, p2
AND−−−→ p′2 = p2

r(
p′1
p′2

)r

=

(
p1
p2

)r

>>

(
p1
p2

)
(2.1)

Thus, we see that AND, while reducing the probability of a collision, amplifies the difference
in probabilities of collisions between nearby and far points.

2-1

EE 381V Lecture 2 — January 17 Fall 2012

Example 2.2.2. Recall the example of a family of LSH functions for the case of Hamming
distances between binary vectors: H = {hi : hi(x) = xi, i selected randomly from [1 . . . n]}.
To produce a function h′ ∈ H′ in this case, we pick r coordinates (without replacement)
from [1 . . . n] and set h′(x) = h′(y) if and only if all the r coordinates collide.

2.2.2 The OR operation

Defn 2.2.3. AND : H → H̃ - Pick b functions h1, h2, . . . hb without replacement from H.
Define h̃ by h̃(x) = h̃(y) ⇔ hi(x) = hi(y) for some i. We denote the family of such h̃
functions H̃.

The OR operation boosts the chances of a collision in h̃. If, for two points x and y,
pH(h(x) = h(y)) = p, then pH̃(h̃(x) = h̃(y)) = 1 − (1 − p)b. In other words, if pH(h(x) 6=
h(y)) = 1 − p, then pH̃(h̃(x) 6= h̃(y)) = (1 − p)b. For probabilities p1 > p2 as before,(

1−p1
1−p2

)
< 1, p1

OR−−→ p̃1 = 1− (1− p1)b, p2
OR−−→ p̃2 = 1− (1− p2)b(

1− p̃1
1− p̃2

)
=

(
1− p1
1− p2

)b

<<

(
1− p1
1− p2

)
(2.2)

Thus OR, while boosting the probability of a collision, also boosts the probability of collision
more fo nearby points than for points farther away, and thus is also an amplifying operation
for hash functions.

For our binary vector Hamming distance example, an OR involves simply picking b
coordinates and setting h̃(x) = h̃(y) if and only if there is at least one matching coordinate.

2.2.3 Concatenation of AND and OR

Concatenation of AND and OR can be used to combine hash functions to produce amplified
hash functions that are near-ideal. The following equation shows a family of hash functions
H with collision probabilities p transforms after AND and OR in sequence.

(H, p) AND−−−→ (H′, pr) OR−−→ (H̃′, 1− (1− pr)b) (2.3)

As seen in the plots in Figure 2.1, AND and OR operations tend to take a family of
hash functions H towards ideality asymptotically. For instance if p1 and p2 were 0.3 and
0.8 before amplification, then with r = 10 and b = 100, these probabilities go to 0 and 1
respectively. That is, after amplification, the hash functions in the family always collide for

2-2

EE 381V Lecture 2 — January 17 Fall 2012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision probability before amplification: p

c
o
lli

s
io

n
 p

ro
b

a
b
ili

ty
 a

ft
e
r

a
m

p
lif

ic
a
ti
o
n
:
1
−

(1
−

p
r)b

r=4,b=2

r=4,b=40

r=10,b=5

r=10,b=100

r=100,b=10

r=100,b=100000

Figure 2.1. Evolution of collision probabilities with different amplification factors

distances below r1, and never for distances above r2. It is also possible to change the order
of concatenation to achieve the same effect.

If H is bad to begin with (i.e it has low separation between p1 and p2), the convergence
to ideality will be very slow. For example, say, p1 = 0.85 and p2 = 0.9. Then, from Figure
2.1, these probabilities get close to 0 and 1 respectively only around r = 100 and b = 100000.
Combining such large numbers of hash functions can be computationally expensive(for each
sample, a large number of elementary hash functions need to be computed), and is also
limited by the size of the family |H|.

2.2.4 Hash functions for the nearest neighbor problem

Defn 2.2.4. Optimization problem - Given query point q and a set of points A, find the
nearest neighbor p to q in A.

Defn 2.2.5. Decision problem - Given query point q, is there a point p ∈ A.

Defn 2.2.6. Randomized c-approx R-near-neighbor problem - Given distance mea-
sure d on a space X, for any point q, distance threshold R, and set A ∈ X, if ∃ p ∈ A such
that d(q, p) ≤ R, return a point s s.t. d(q, s) ≤ cR (c > 1) with probability 1− δ.

This problem, depicted in Figure 2.2, can be solved by using a family of hash functions
as defined in section 2.1, that has r2 = cR and r1 = R. Note that the problem as defined
above says nothing about whether the algorithm should return a point when there exists no
point in the set within the given distance threshold. False positives are allowed in this way

2-3

EE 381V Lecture 2 — January 17 Fall 2012

Figure 2.2. The c-approx nearest R-near-neighbor problem setup

because they can always be eliminated afterwards by computing the distances of all returned
points from q.

Defn 2.2.7. Randomized R-near-neighbor problem - Given distance measure d on
a space X, for any point q, distance threshold R, and set A ∈ X, if ∃ p ∈ A such that
d(q, p) ≤ R, report a point s s.t. d(q, s) ≤ R with probability 1− δ.

We cannot get better than O(n2) guarantee on such problems if we do not allow the prob-
ability tolerance δ. Together with the tolerance, these problems can be solved in sublinear
time.

Example 2.2.8. We have already discussed LSH functions for binary vectors and Hamming
distances. Let us now look at another family of LSH functions, again for binary vectors, but
this time with the Jaccard distance defined below being our choice of the distance measure.

Defn 2.2.9. Jaccard distance - For any binary vector u, define Su = {i : ui = 1}. Now
for binary vectors u and v, define:

dJ(u, v) = 1− |S1 ∪ S2|
|S1 ∩ S2|

(2.4)

A common use of the Jaccard distance is in recommender systems. For eg., suppose that a
supermarket wants to identify customers similar to some query customer. Each customer a
may be represented as a binary vector va of n elements, where n is the number of items and
the ith coordinate of va is set if and only if a has purchased that item. The Jaccard distance
between va and vb provides a useful notion of similarity between a and b in such contexts.

To define an LSH function for this case, select a random permutation π of the n coordi-
nates in the binary vector space. Define hash functions h(v) ≡ h(S(v)) = arg mini∈S(v) π(i),
where S(v) = {i : vi = 1}

We will see how this function satisfies the LSH conditions in a later class.

2-4

EE 381V Lecture 2 — January 17 Fall 2012

Figure 2.3. A schematic of the c-approx nearest R-near-neighbor problem definition

2-5

