EE381 V: Large Scale Machine Learning Spring 2013
Lecture 5 — January 29

Lecturer: Constantine Caramanis and Sujay Sanghavi Scribe: Suriya Gunasekar

5.1 Recap

Let {z1, 9, ..., 2,} be the set of data points that need to be clustered. A graph, G = (V, E),
can be defined over the points such that V' is the set of data points and E' = {(, j) : 4;; > 0},
where A;; is a measure of similarity or “closeness” between points x; and x;. An example of
a similarity measure is exp(—55 [|lz; — ;|?).

e The similarity matrix, A4, is defined such that A;; = exp(—52 ||z — ;%)

e The degree matrix, D, is a diagonal matrix with the diagonal entries given by, D;; =

e Finally, the Laplacian, L, and the normalized Laplacian, L,, of the graph, G, are
defined as, L2 D — A and L, £ I — D~Y2AD~/? respectively.

It is easy to see that:
L, =D Y?LD7'/? (5.1)
5.2 Spectral Clustering Algorithm

1. Compute the normalized Laplacian, L,

2. Let, uy,us, ..., u; be the bottom k eigenvectors (corresponding to the k smallest eigen-
values) of L,

T 1 T
3. Define U = [u; ugy ... ug
4 \J
4. Fori=1{1,2,...,n}, let y; € R be the rows of matrix F and #; = ”5?”2.

5. Run k-means clustering (or any distance based clustering) on {;}
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5.3 General definitions and results

5.3.1 Spectral Theorem

If M € S™is an n X n symmetric matrix, then:

) T
1. M has an orthogonal basis of eigenvectors T'= |u; us ... u,
L4 \

5.3.2 Singular Value Decomposition

Any rank-£ matrix M € R™*" can be written as:

> 0

M:[U1|U2][O 0

} VA | Vil = U,SVy

where U; € R™* V; € R™* and £ € R¥**. U; and V; are orthonormal, (ie. UfU; =
ViVi = I) and X is the diagonal matrix with diagonal entries o1 > 09 > ... 0% > 0

5.3.3 Matrix Norms

For a rank-k matrix M with singular values 0y > 05 > ...0} > 0, the following norms are

defined:
1/2 i 1/2
1. Frobenius Norm: ||M||p = (Z” M%) = (Z U2>

i=1"1

2. Operator Norm: || M|l = max ||[Mulls = max v Mu = o,
wilull2=1 wvi||uf2=]lv]l2=1

Exercise If M € R™*" and if T} € R™™ and T, € R™" are orthonormal matrices, i.e.
Tl*Tl = TlTl* = Im and T2*T2 = T2T2* = In, then ||T1MT2||2 = ||M||2

Proof:
T MT.
I MTy)]s = maxo—12-2¢ (5.2)
wo [[v]|2][ull2
(TIU>TM(T2U)
= max 5.3
S Tl Touls (5:3)
T M
= max———2— = ||M||, (5.4)

O BB

where, Equation 5.3 follows as for any orthonormal matrix ) with Q*Q) = I, we have
Qx| = (Qx)"(Qz) = z*Q*Qx = x*xr = ||z||s; and Equation 5.4 follows by redefining
variables as x = Tiv and y = Thu. O
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5.4 Goodness of the spectral clustering algorithm

Theorem 5.1. L and L, are positive semi-definite. If G is a fully connected graph, the
smallest eigenvalue of L,, A\i(L,) = 0 and the eigenvector corresponding to this eigenvalue

Vdy
o Vdy
is given by u; = .

Vs

Proof: Consider L = D — A. For v € R", we have:

vI'Lv= v"Dv—vT Av
= g v2d; — g v; AV,
- z T K (]

i i

Z Aij - Z UiAijUj
J ij

= ) Aij(v} = vwy) (5:5)

_2:2
= U;

i

1
= 3 Z Aij(vF + Uj2- — 20;0;)
ij
1 2
= 3 > (v =) Ay
ij

From Equation 5.1, for v € R™, we have:

2
1 ; :
v Lyv = (D720 ' L(D~Y?0) = 52( Y - — Y ) A >0 (5.6)

From Equations 5.5 and 5.6, we have L, L,, > 0.
Vdi
Vd;

Further it can be verified that with u; = ) , we have Au; = 0. This implies that 0 is
Vdy,
an eigenvalue of L,, and as L, > 0, it is also the smallest eigenvalue, i.e. A\j(L,) = 0. O

Theorem 5.2. If G is disconnected with k connected components, then the spectral clus-
tering algorithm returns exact clustering.
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Proof: If G is disconnected, the nodes can be rearranged such that A and hence L, is block
diagonal, with k& blocks.
LY
LY

L, =
L
The eigenvalues of L,, are the union of the eigenvalues of LY. A(L,) =A <L£11)) UA (L%2)> U
L UA (pr). Similarly, eigenvectors of L,, are the union of the appropriately zero padded
eigenvectors of L,(f). spec(L,) = spec (L?) U spec (LEP) U...Uspec (L,(f))

Each diagonal block, Lg), is a completely connected component and hence by Theorem

NS

51, M (L?) =0V i € [k] and the corresponding eigenvectors are u; <L7(11)> = ; ,

dis)
d
Uy (Lg)) = : and so on. Thus, the bottom k eigenvectors form the matrix:
up 0 0
U— 0 "uQ 0
0 0 Uy,
In this case, for i € [n], 2 = ”yyﬁ = e,, where, z; € S, (S, denotes the cluster indexed by

a), where e, is a standard basis vector.

However for a general matrix A (which is typically not block diagonal as assumed above),
the matrix with the bottom k eigenvectors can be written as U = UQ, the new 70, = Q.
However as unitary transformations preserve the distances (i.e (z,y) = (Qz, Qy)), any dis-
tance based clustering algorithm would perfectly retrieve the clusters. 0

5.4.1 Perturbation of symmetric matrices

Consider a symmetric perturbation of a symmetric matrix M € R"*" given by M +A (M +A
is also symmetric). Let Ey € R™** be the matrix formed with the bottom k eigenvectors of
M as the columns and F{y be the corresponding matrix for M + A. We define the divergence
between the subspaces spanned by Ey and Fj as follows:

dp(Eo, Fo) = [|[EoEy — FoFg |2 (5.7)
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Lemma 5.3. If the basis from Ey and Fy is completed as E = [Ey|E,] and F = [Fy|F}]
respectively. Then,

dp(Eo, Fo) = || FY Eoll2 = [|E] Foll2 = || sin O]

where, © = diag(@) and 0 is a vector of principal angles between subspaces spanned by
columns of Ey and Fy. The principal angles, 0;, are defined such that cosf; = o;(EiFy).
Thus, we have the singular value decomposition of EjFy as EjFy = U cos OV*, U,V € RF*k

. (0 0 (0 B (0 B .
Exercise A = <O e) and A = <,8 5). Thus, A+ A = (5 5+€). The eigenvector

corresponding to the smallest eigenvalues of A and A + A are given by Ey = ¢y = <1) and

0
1+D /
Fo=fo= 7pmm ( Y ) respectively, where D = y/1+ -,

dp(eo, fo) = || sin O[2 = /1 — (eq, fo)?

Also,

 1+D  [i+D 1 432 —1/2_\/ 32 B
(eo,f0>—\/m— 5D _E\/1+(1+€_2) = 1_6_2+O(ﬁ4>_1_§

Thus, dy(eo, fo) = 2 + HO.T

€

Theorem 5.4. sin ® theorem:

If
M, 0 *
v=el ) [\ e Bl
and .
M, 0 N
M+ A =[F| F] {00 M}[ o | Fi]
1

where, MO,Ml,MO,Ml are diagonal matrices with the appropriate eigenvalues along the
diagonal. If Ja,b,d, such that My(i,i) € [a,b], Vi and M,(i,i) € (—oo,a — ) U (b+ d,00) Vi
then, dp(Eo,FQ> S %HAHQ
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