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5.1 Recap

Let {x1, x2, . . . , xn} be the set of data points that need to be clustered. A graph, G = (V,E),
can be defined over the points such that V is the set of data points and E = {(i, j) : Aij > 0},
where Aij is a measure of similarity or “closeness” between points xi and xj. An example of
a similarity measure is exp(− 1

2σ2‖xi − xj‖2).

• The similarity matrix, A, is defined such that Aij = exp(− 1
2σ2‖xi − xj‖2).

• The degree matrix, D, is a diagonal matrix with the diagonal entries given by, Dii =
di =

∑
j∈[n]Aij.

• Finally, the Laplacian, L, and the normalized Laplacian, Ln, of the graph, G, are
defined as, L , D − A and Ln , I −D−1/2AD−1/2 respectively.

It is easy to see that:
Ln = D−1/2LD−1/2 (5.1)

5.2 Spectral Clustering Algorithm

1. Compute the normalized Laplacian, Ln

2. Let, u1, u2, . . . , uk be the bottom k eigenvectors (corresponding to the k smallest eigen-
values) of Ln

3. Define U =

 ↑ ↑ ↑
u1 u2 . . . uk
↓ ↓ ↓


4. For i = {1, 2, . . . , n}, let yi ∈ Rk be the rows of matrix E and x̂i = yi

‖yi‖2 .

5. Run k-means clustering (or any distance based clustering) on {x̂i}
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5.3 General definitions and results

5.3.1 Spectral Theorem

If M ∈ Sn is an n× n symmetric matrix, then:

1. M has an orthogonal basis of eigenvectors T =

 ↑ ↑ ↑
u1 u2 . . . un
↓ ↓ ↓


2. M = TΛT ∗ =

∑
i λiuiu

∗
i

5.3.2 Singular Value Decomposition

Any rank-k matrix M ∈ Rm×n can be written as:

M = [U1 | U2]

[
Σ 0
0 0

]
[V1 | V2]∗ = U1ΣV

∗
1

where U1 ∈ Rm×k, V1 ∈ Rn×k and Σ ∈ Rk×k. U1 and V1 are orthonormal, (i.e. U∗1U1 =
V ∗1 V1 = I) and Σ is the diagonal matrix with diagonal entries σ1 ≥ σ2 ≥ . . . σk > 0

5.3.3 Matrix Norms

For a rank-k matrix M with singular values σ1 ≥ σ2 ≥ . . . σk > 0, the following norms are
defined:

1. Frobenius Norm: ‖M‖F =
(∑

ijM
2
ij

)1/2
=
(∑k

i=1 σ
2
i

)1/2
2. Operator Norm: ‖M‖2 = max

u:‖u‖2=1
‖Mu‖2 = max

u,v:‖u‖2=‖v‖2=1
vTMu = σ1

Exercise If M ∈ Rm×n and if T1 ∈ Rm×m and T2 ∈ Rn×n are orthonormal matrices, i.e.
T ∗1 T1 = T1T

∗
1 = Im and T ∗2 T2 = T2T

∗
2 = In, then ‖T1MT2‖2 = ‖M‖2.

Proof:

‖T1MT2‖2 = max
u,v

vTT1MT2u

‖v‖2‖u‖2
(5.2)

= max
u,v

(T1v)TM(T2u)

‖T1v‖2‖T2u‖2
(5.3)

= max
x,y

xTMy

‖x‖2‖y‖2
= ‖M‖2 (5.4)

where, Equation 5.3 follows as for any orthonormal matrix Q with Q∗Q = I, we have
‖Qx‖2 = (Qx)∗(Qx) = x∗Q∗Qx = x∗x = ‖x‖2; and Equation 5.4 follows by redefining
variables as x = T1v and y = T2u. �
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5.4 Goodness of the spectral clustering algorithm

Theorem 5.1. L and Ln are positive semi-definite. If G is a fully connected graph, the
smallest eigenvalue of Ln, λ1(Ln) = 0 and the eigenvector corresponding to this eigenvalue

is given by u1 =


√
d1√
d2
...√
dn

.

Proof: Consider L = D − A. For v ∈ Rn, we have:

vTLv = vTDv − vTAv

=
∑
i

v2i di −
∑
ij

viAijvj

=
∑
i

v2i

[∑
j

Aij

]
−
∑
ij

viAijvj

=
∑
ij

Aij(v
2
i − vivj)

=
1

2

∑
ij

Aij(v
2
i + v2j − 2vivj)

=
1

2

∑
ij

(vi − vj)2Aij

(5.5)

From Equation 5.1, for v ∈ Rn, we have:

vTLnv = (D−1/2v)TL(D−1/2v) =
1

2

∑
ij

(
vi√
di
− vj√

dj

)2

Aij ≥ 0 (5.6)

From Equations 5.5 and 5.6, we have L,Ln � 0.

Further it can be verified that with u1 =


√
d1√
d2
...√
dn

, we have Au1 = 0. This implies that 0 is

an eigenvalue of Ln and as Ln � 0, it is also the smallest eigenvalue, i.e. λ1(Ln) = 0. �

Theorem 5.2. If G is disconnected with k connected components, then the spectral clus-
tering algorithm returns exact clustering.
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Proof: If G is disconnected, the nodes can be rearranged such that A and hence Ln is block
diagonal, with k blocks.

Ln =


L
(1)
n

L
(2)
n

. . .

L
(k)
n


The eigenvalues of Ln are the union of the eigenvalues of L

(i)
n . Λ(Ln) = Λ

(
L
(1)
n

)
∪Λ

(
L
(2)
n

)
∪

. . . ∪ Λ
(
L
(k)
n

)
. Similarly, eigenvectors of Ln are the union of the appropriately zero padded

eigenvectors of L
(i)
n . spec(Ln) = spec

(
L
(1)
n

)
∪ spec

(
L
(2)
n

)
∪ . . . ∪ spec

(
L
(k)
n

)
Each diagonal block, L

(i)
n , is a completely connected component and hence by Theorem

5.1, λ1

(
L
(i)
n

)
= 0 ∀ i ∈ [k] and the corresponding eigenvectors are u1

(
L
(1)
n

)
=


√
d
(1)
1

...√
d
(1)
|S1|

,

u1

(
L
(2)
n

)
=


√
d
(2)
1

...√
d
(2)
|S2|

 and so on. Thus, the bottom k eigenvectors form the matrix:

U =


u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...
0 0 . . . uk


In this case, for i ∈ [n], x̂(i) = yi

‖y1‖2 = ea, where, xi ∈ Sa (Sa denotes the cluster indexed by

a), where ea is a standard basis vector.
However for a general matrix A (which is typically not block diagonal as assumed above),

the matrix with the bottom k eigenvectors can be written as Û = UQ, the new x̂
(i)
new = Qx̂(i).

However as unitary transformations preserve the distances (i.e 〈x, y〉 = 〈Qx,Qy〉), any dis-
tance based clustering algorithm would perfectly retrieve the clusters. �

5.4.1 Perturbation of symmetric matrices

Consider a symmetric perturbation of a symmetric matrix M ∈ Rn×n given by M+∆ (M+∆
is also symmetric). Let E0 ∈ Rn×k be the matrix formed with the bottom k eigenvectors of
M as the columns and F0 be the corresponding matrix for M + ∆. We define the divergence
between the subspaces spanned by E0 and F0 as follows:

dp(E0, F0) = ‖E0E
∗
0 − F0F

∗
0 ‖2 (5.7)
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Lemma 5.3. If the basis from E0 and F0 is completed as E = [E0|E1] and F = [F0|F1]
respectively. Then,

dp(E0, F0) = ‖F ∗1E0‖2 = ‖E∗1F0‖2 = ‖ sin Θ‖2

where, Θ = diag(θ) and θ is a vector of principal angles between subspaces spanned by
columns of E0 and F0. The principal angles, θi, are defined such that cos θi = σi(E

∗
0F0).

Thus, we have the singular value decomposition of E∗0F0 as E∗0F0 = U cos ΘV ∗, U, V ∈ Rk×k

Exercise A =

(
0 0
0 ε

)
and ∆ =

(
0 β
β β

)
. Thus, A + ∆ =

(
0 β
β β + ε

)
. The eigenvector

corresponding to the smallest eigenvalues of A and A+ ∆ are given by E0 = e0 =

(
1
0

)
and

F0 = f0 = 1√
2D+2D2

(
1 +D

−2β
ε

)
respectively, where D =

√
1 + 4β2

ε2
.

dp(e0, f0) = ‖ sin Θ‖2 =
√

1− 〈e0, f0〉2

Also,

〈e0, f0〉 =
1 +D√

2D + 2D2
=

√
1 +D

2D
=

1√
2

√
1 +

(
1 +

4β2

ε2

)−1/2
=

√
1− β2

ε2
+O(β4) = 1− β

2ε
+O(β2)

Thus, dp(e0, f0) = β
ε

+H.O.T

Theorem 5.4. sin Θ theorem:
If

M = [E0 | E1]

[
M0 0
0 M1

]
[E0 | E1]

∗

and

M + ∆ = [F0 | F1]

[
M̂0 0

0 M̂1

]
[F0 | F1]

∗

where, M0,M1, M̂0, M̂1 are diagonal matrices with the appropriate eigenvalues along the
diagonal. If ∃a, b, δ, such that M0(i, i) ∈ [a, b], ∀i and M̂1(i, i) ∈ (−∞, a− δ)∪ (b+ δ,∞) ∀i
then, dp(E0, F0) ≤ 1

δ
‖∆‖2
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