EE 381V: Large Scale Learning Spring 2013
Lecture 6 — January 31

Lecturer: Caramanis & Sanghavi Scribe: Rajiv Khanna

6.1 Last time

In the previous lecture, we introduced the spectral clustering algorithm. We showed how
running a distanced based clustering on rows formed from bottom-k eigenvectors of the
Laplacian stacked as columns in the matrix results on a toy data with non-trivial visible
clustering gives perfect clusters. To explain the goodness of the result, we proved that the
smallest eigenvalue of the Laplacian is 0; this helped us in proving that running spectral
clustering on a disconnected graph with k connected components would yield perfect clus-
ters. We then moved onto matrix perturbation to extend usability of the spectral clustering
algorithm on general graphs which are “close to” ones with k-connected components. In this
class, we continue our discussion on perturbation results, and then apply it to our spectral
clustering algorithm.

6.2 Perturbation of Symmetric Matrices

[Defn] Distance between Subspaces: Let M € R™ ™ be the original symmetric matrix.
Let A be the symmetric perturbation applied to it, so that M + A is another symmetric
matrix. Further, let £y € R™** be the matrix formed by stacking the bottom-k eigenvectors
(i.e. eigenvectors corresponding to least-k eigenvalues). Let, Fj be the corresponding matrix
for M 4+ A. Then, the distance between subspaces spanned by E, and Fj is given by:

dy(Ey, Fo) = || EoEy — FoFg|l2- (6.1)

[Defn] Principal angles: With E, and Fj defined as above (the definition is true for general
subspaces), there exists a set of k angles @ = {0y, ..., 60}, defined recursively as follows:

6, := min [arccos <H<1ﬁ—|v>H) lu € Ey,v € FO} = Z(uy,v1),
ull||v

6, := min [arccos <%) lu € Eg;v € Fosu Lu,v Lo, Vist.1<i<(j—1)| =ZL(uj,v;).
ul||v

If © = diag(0), it can be shown that :

EiFy = Ucos®OV*; UV € O(k),

Ok) = {QeRF.QQ=1}. (6.2)
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Theorem 6.1. sin ® theorem
By Spectral theorem, both M and M + A have eigenvalue decomposition.

M = [Ey | By []‘go Agl] B | By,

My, 0O .
M+A_[F0’F1]|:OO M1:| [F()’Fl],

where My, My, My, M are diagonal matrices of respective eigenvalues.
If 3a,b, 8, such that My(i,q) € [a,b], Vi and M;(i,i) € (—o00,a — &) U (b+ §,00) Vi
then, dp(Eo,F[)) S %”AHQ

Before we can prove Theorem 6.1, we need several results that would be useful. These
results are presented and proved as lemmas.

Lemma 6.2. With ' = [Fy|Fy], E = [Ey|E1], and © as diagonal matrix of principal angles,
we have

| Eoll2 = || Fg Erll2 = || sin ©]].
Proof:

IESFill: = ||EGFFY Eolly®
= ||E(I — FoFg)Eo|ly®
= ||I — Ucos©OV*V cos OU*||5*° (6.3)
= ||U(I — cos®> ©)U*||9°
= ||I —cos*O]9° (6.4)
= || sin O|ls.

Here, step 6.3 above comes from Equation 6.2 above. Step 6.4 comes from the properties
of 2—norm.
The proof from ||F; E1]]2 is similar.

Lemma 6.3. If
EjFy=A=UcosOV™,

then, R R
U, E7Fy = B =Ucos©OV™.
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Proof:

B*B

— F'E\E/F,
= (I — EEj)Fy

= I —AA
= [ —VcosOU*U cos OV
= [ —Vcos?OV*
= V(sin?@)V*.
O
Lemma 6.4.
dp<E0, Fo) = H sin ®H2
Proof: From A and B as defined in Lemma 6.3, note that we can write Fy = FgA + E1B.
This helps us to write in [Ey|E;]-basis :
I | 0 AA* | AB*
EE;=|— | —|,and RFy=| — | ——
0O | © BA* | BB*
This gives,
AA* | AB*
Eonia< — F})FBk = —_ N | I
BA* | BB*
(I 0 U cos? QU U sin © cos OU
—\0 0 Usin®cos®OU*  Usin?OU*
- sin® © —sin®cosO| (U 0
- —sin © cos © —sin’© 0 U/’
. . - sin® © —sin © cos ©
= |IEEy — FoFgllz = H {—sm@cos@ —sin’© } )
sin? 6, —sin 0; cos 6;
- hax {— sin 0; cos 0; —sin? 6, ] ) (6.5)
) sinf); —cos6;
= max |sin 0| )
i cosf); —sinb; )
= max|sin 6] (6.6)
= ||sin©]|s. (6.7)
O
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Above, Step 6.5 follows from properties of diagonal matrices, Step 6.6 follows from the fact
that the matrix in the previou step is a rotational matrix (with only real eigenvalue being
= 1), Step 6.7 follows from sin © being a diagonal matrix again.

Lemma 6.5.
dyp(Eo, o) = || F Eoll2 = ||Fg Er|]2 = || sin ©]]s.

Proof: This follows immediately from Lemma 6.2 and 6.4. U

Lemma 6.6. Given:
Ac€ RHXH,B c Rmxm’

A7 ]2 < (a+0) 7, [[Bll: < o,
X ERnxm,C GRnXm
Define C = AX — X B, then ||C||2 > 0||X]|2.

Proof: Note that
| X B2 < [|X]]2-|[Bl]2 < af|X]]2,

and,

X2 = AT AX s < (o + )7 |AX 2.

Consider,

IC2 = [[AX = XBlls > [[AX][2 = || X Bll2 > (a + 9)[|X|l2 — a[[X||2 = 6] X]]2.

O
We are now ready to prove the sin ©® theorem - Theorem 6.1.
Proof: Let R = AFEy = (M + A)Ey — M Ej.
Consider,
EAF, = R'Fy
= Ej(M+ A)F, — MjEjFy
= (EgFy)My — Mg (EGFy).
= [|EjAR|[ = [[(EGF) My — Mg(EgF)| |2
> || EGFl2
= d,(Ey, Fo).
Lo
= dp(Bo, [o) = S[|EGAR2
1
< =l||Alls.
< SlIAl,
Above, Step 6.8 follows from Lemma 6.6, and Step 6.9 follows from Lemma 6.5.
O
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6.3 Application of sin© theorem

Having proved the theorem, we shall now apply it to matrices which are “close to” matrices
of graphs of k connected components. The idea is that if such matrices are sufficiently close,
we should be able to reproduce the clusters using a distance based clustering.

For the graph with k£ connected components, the smallest k& eigenvalues of the Laplacian
are 0. Let L be the laplacian matrix of the graph. Let Y be the matrix formed by stacking
eigenvectors corresponding to smallest k eigenvectors. Let L be the perturbed Laplacian,
and Y be corresponding eigenvector matrix. By sin © theorem,

~ 1 ~
dp(Y,Y) < ——||L = L] (6.10)

k+1

Note that ¢ in the sin © theorem is (k + 1) eigvenvalue of the perturbed Laplacian L.
This is because the smallest k& eigenvalues of L are 0.

However, notice that the Equation 6.10 gives the distance between subspaces spanned
by columns of Y and Y, while we used rows in our algorithm. Hence, we need a different
distance function. Define:

d.(Y,Y)= min [[YQ—YR|y= min |[Y —YR],.
Q,ReO(k) ReO(k)
The relationship between the two distance measures is as follows.

Lemma 6.7. R X R
dy(Y.V) < d(Y,Y) < V2d, (Y. V).

Proof:
B0, PP = min By~ FQ
= ngn 12— Q*V cosOU* — U cos OV* Q|2
= mén |2 — Q" cos © — cos OQ)||2
= 2m5n Hmllax{l — (z,Q" cos Ox)}
z||=1
= 2{1- mS,XHmHin (Qx,cosOx)}.
z||=1
Consider

max min (Qx,cos Ox) > min (Qz,cos Ox)
Q@ |lz|l=1 [lz]|=1

= mincosb;.
(2
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Also,

max Hnrlllin (Qx,cosOx) < mgx(@ej, cos O¢;)
z||=1

= mincosb;,
7

where e; is a vector of all Os except at j™ position where it is 1, and j = arg min; cos 6;
Hence, maxq minj|y=1 (Qx, cos ©x) } = min; cos 6;.
This gives,

de(Ey, Fy) = 2[|1 — cos O[5
= ||2sin(©/2)|]s.

Comparing with d,(Ey, Fy) = || sin©l]2 = ||2sin(0/2) cos(©/2)||2 proves the lemma. [

Using the lemma, we redefine the matrix if eigenvectors for perturbed Laplacian.

Theorem 6.8. A
AQ € O(k) s.it. YV =YQ,
and
dC(Yv Y/) - ||Y - Y/H27
and,
V2 .
Y —Y'||]s < ——||L — L2,
Akl
then,
1 — 2%k .
=y = will3 < 1L~ LI[5. (6.11)
nea Nit1
Proof:

1 . /112 1 1112
~ —ylR = —|lY -V
a2l —adlls = Tl =Y

1
-y
J

< —.k:.maxajz
n J
k
— - Y_y/ 2
By -y
2k -
< — L= L5
NAk+1
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Equation 6.11 gives a bound on average euclidean distance of points generated in our
clustering algorithm in terms of perturbation in the Laplacian. However, RHS contains A It
is desirable to minimize the dependence of the bound on perturbed matrix. The next lemma
helps replacing A with \.

Lemma 6.9. ) R
Akt 2> A1 — |[L = L2

Proof: Let V = span(uy,us, ..., ux), where u; is eigenvector corresponding to S\k, then,
A = i Lz):xe€ Vi, =1
er = max min{(e, La) i € V4 fal| = 1}
> Hnr|1|in {(z,La) -z € V*'}
z||=1
> min x,Lx)} — max x,L—f}x
> |\x||=1,a:ew{< )} \|z||=1{< ( )x)}

Met1 — ||L = Llfa-

OJ
Lemma 6.9 helps us modify Theorem 6.8 :
Theorem 6.10. )
AQ € O(k) s.it. Y =YQ,
and
dC(Y> Y/) = HY - Y/H2>
then,
1 2%k 3
LSy -y < — ) (6.12)
nia n(A—||L = Ll[2)

6.4 Next time

Next time we shall discuss about planted models.
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