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6.1 Last time

In the previous lecture, we introduced the spectral clustering algorithm. We showed how
running a distanced based clustering on rows formed from bottom-k eigenvectors of the
Laplacian stacked as columns in the matrix results on a toy data with non-trivial visible
clustering gives perfect clusters. To explain the goodness of the result, we proved that the
smallest eigenvalue of the Laplacian is 0; this helped us in proving that running spectral
clustering on a disconnected graph with k connected components would yield perfect clus-
ters. We then moved onto matrix perturbation to extend usability of the spectral clustering
algorithm on general graphs which are “close to” ones with k-connected components. In this
class, we continue our discussion on perturbation results, and then apply it to our spectral
clustering algorithm.

6.2 Perturbation of Symmetric Matrices

[Defn] Distance between Subspaces: Let M ∈ Rn×n be the original symmetric matrix.
Let ∆ be the symmetric perturbation applied to it, so that M + ∆ is another symmetric
matrix. Further, let E0 ∈ Rn×k be the matrix formed by stacking the bottom-k eigenvectors
(i.e. eigenvectors corresponding to least-k eigenvalues). Let, F0 be the corresponding matrix
for M + ∆. Then, the distance between subspaces spanned by E0 and F0 is given by:

dp(E0, F0) = ||E0E
∗
0 − F0F

∗
0 ||2. (6.1)

[Defn] Principal angles: With E0 and F0 defined as above (the definition is true for general
subspaces), there exists a set of k angles θ = {θ1, . . . , θk}, defined recursively as follows:

θ1 := min

[
arccos

(
〈u, v〉
||u||||v||

)
|u ∈ E0, v ∈ F0

]
= ∠(u1, v1),

θj := min

[
arccos

(
〈u, v〉
||u||||v||

)
|u ∈ E0; v ∈ F0;u ⊥ ui, v ⊥ vi,∀i s.t. 1 ≤ i ≤ (j − 1)

]
= ∠(uj, vj).

If Θ = diag(θ), it can be shown that :

E∗0F0 = U cos ΘV ∗; U, V ∈ O(k),
O(k) = {Q ∈ Rk×k : Q∗Q = Ik}.

(6.2)
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Theorem 6.1. sin Θ theorem
By Spectral theorem, both M and M + ∆ have eigenvalue decomposition.

M = [E0 | E1]

[
M0 0
0 M1

]
[E0 | E1]

∗,

M + ∆ = [F0 | F1]

[
M̂0 0

0 M̂1

]
[F0 | F1]

∗,

where M0,M1, M̂0, M̂1 are diagonal matrices of respective eigenvalues.
If ∃a, b, δ, such that M0(i, i) ∈ [a, b], ∀i and M̂1(i, i) ∈ (−∞, a− δ) ∪ (b+ δ,∞) ∀i
then, dp(E0, F0) ≤ 1

δ
‖∆‖2.

Before we can prove Theorem 6.1, we need several results that would be useful. These
results are presented and proved as lemmas.

Lemma 6.2. With F = [F0|F1], E = [E0|E1], and Θ as diagonal matrix of principal angles,
we have

||F ∗1E0||2 = ||F ∗0E1||2 = || sin Θ||2.

Proof:

||E∗0F1||2 = ||E∗0F1F
∗
1E0||0.52

= ||E∗0(I − F0F
∗
0 )E0||0.52

= ||I − U cos ΘV ∗V cos ΘU∗||0.52 (6.3)

= ||U(I − cos2 Θ)U∗||0.52

= ||I − cos2 Θ||0.52 (6.4)

= || sin Θ||2.

Here, step 6.3 above comes from Equation 6.2 above. Step 6.4 comes from the properties
of 2−norm.

The proof from ||F ∗0E1||2 is similar.
�

Lemma 6.3. If
E∗0F0 = A = U cos ΘV ∗,

then,
∃Û , E∗1F0 = B = Û cos ΘV ∗.
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Proof:

B∗B = F ∗0E1E
∗
1F0

= F ∗0 (I − E0E
∗
0)F0

= I − F ∗0E0E
∗
0F0

= I − A∗A
= I − V cos ΘU∗U cos ΘV ∗

= I − V cos2 ΘV ∗

= V (sin2 Θ)V ∗.

�

Lemma 6.4.
dp(E0, F0) = || sin Θ||2.

Proof: From A and B as defined in Lemma 6.3, note that we can write F0 = E0A + E1B.
This helps us to write in [E0|E1]-basis :

E0E
∗
0 =

 I | 0
−− | −−
0 | 0

, and F0F
∗
0 =

AA∗ | AB∗

−− | −−
BA∗ | BB∗

.

This gives,

E0E
∗
0 − F0F

∗
0 =

 I | 0
−− | −−
0 | 0

−
AA∗ | AB∗

−− | −−
BA∗ | BB∗


=

(
I 0
0 0

)
−
(

U cos2 ΘU U sin Θ cos ΘÛ

Û sin Θ cos ΘU∗ Û sin2 ΘÛ∗

)
=

(
U 0

0 Û

)[
sin2 Θ − sin Θ cos Θ

− sin Θ cos Θ − sin2 Θ

](
U 0

0 Û

)
.

=⇒ ||E0E
∗
0 − F0F

∗
0 ||2 =

∣∣∣∣∣∣∣∣ [ sin2 Θ − sin Θ cos Θ
− sin Θ cos Θ − sin2 Θ

] ∣∣∣∣∣∣∣∣
2

= max
i

∣∣∣∣∣∣∣∣ [ sin2 θi − sin θi cos θi
− sin θi cos θi − sin2 θi

] ∣∣∣∣∣∣∣∣
2

(6.5)

= max
i
| sin θi|

∣∣∣∣∣∣∣∣ [sin θi − cos θi
cos θi − sin θi

] ∣∣∣∣∣∣∣∣
2

= max
i
| sin θi| (6.6)

= || sin Θ||2. (6.7)

�
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Above, Step 6.5 follows from properties of diagonal matrices, Step 6.6 follows from the fact
that the matrix in the previou step is a rotational matrix (with only real eigenvalue being
= 1), Step 6.7 follows from sin Θ being a diagonal matrix again.

Lemma 6.5.
dp(E0, F0) = ||F ∗1E0||2 = ||F ∗0E1||2 = || sin Θ||2.

Proof: This follows immediately from Lemma 6.2 and 6.4. �

Lemma 6.6. Given:
A ∈ Rn×n, B ∈ Rm×m,

||A−1||2 ≤ (α + δ)−1, ||B||2 ≤ α,

X ∈ Rn×m, C ∈ Rn×m.

Define C = AX −XB, then ||C||2 ≥ δ||X||2.

Proof: Note that
||XB||2 ≤ ||X||2.||B||2 ≤ α||X||2,

and,

||X||2 = ||A−1AX||2 ≤ (α + δ)−1||AX||2.
Consider,

||C||2 = ||AX −XB||2 ≥ ||AX||2 − ||XB||2 ≥ (α + δ)||X||2 − α||X||2 = δ||X||2.

�

We are now ready to prove the sin Θ theorem - Theorem 6.1.

Proof: Let R = ∆E0 = (M + ∆)E0 −ME0.
Consider,

E∗0∆F1 = R∗F1

= E∗0(M + ∆)F1 −M∗
0E
∗
0F1

= (E∗0F1)M̂1 −M∗
0 (E∗0F1).

=⇒ ||E∗0∆F1||2 = ||(E∗0F1)M̂1 −M∗
0 (E∗0F1)||2

≥ δ||E∗0F1||2 (6.8)

= δdp(E0, F0). (6.9)

=⇒ dp(E0, F0) ≤
1

δ
||E∗0∆F1||2

≤ 1

δ
||∆||2.

Above, Step 6.8 follows from Lemma 6.6, and Step 6.9 follows from Lemma 6.5.
�
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6.3 Application of sin Θ theorem

Having proved the theorem, we shall now apply it to matrices which are “close to” matrices
of graphs of k connected components. The idea is that if such matrices are sufficiently close,
we should be able to reproduce the clusters using a distance based clustering.

For the graph with k connected components, the smallest k eigenvalues of the Laplacian
are 0. Let L be the laplacian matrix of the graph. Let Y be the matrix formed by stacking
eigenvectors corresponding to smallest k eigenvectors. Let L̂ be the perturbed Laplacian,
and Ŷ be corresponding eigenvector matrix. By sin Θ theorem,

dp(Y, Ŷ ) ≤ 1

λ̂k+1

||L− L̂||2. (6.10)

Note that δ in the sin Θ theorem is (k + 1)th eigvenvalue of the perturbed Laplacian L̂.
This is because the smallest k eigenvalues of L are 0.

However, notice that the Equation 6.10 gives the distance between subspaces spanned
by columns of Y and Ŷ , while we used rows in our algorithm. Hence, we need a different
distance function. Define:

dc(Y, Ŷ ) = min
Q,R∈O(k)

||Y Q− Ŷ R||2 = min
R∈O(k)

||Y − Ŷ R||2.

The relationship between the two distance measures is as follows.

Lemma 6.7.
dp(Y, Ŷ ) ≤ dc(Y, Ŷ ) ≤

√
2dp(Y, Ŷ ).

Proof:

[dc(E0, F0)]
2 = min

Q
||E0 − F0Q||22

= min
Q
||E∗0E0 +Q∗F ∗0F0Q−Q∗F ∗0E0 − E∗0F0Q||2

= min
Q
||2−Q∗V cos ΘU∗ − U cos ΘV ∗Q||2

= min
Q
||2−Q∗ cos Θ− cos ΘQ||2

= 2 min
Q

max
||x||=1

{1− 〈x,Q∗ cos Θx〉}

= 2{1−max
Q

min
||x||=1

〈Qx, cos Θx〉}.

Consider

max
Q

min
||x||=1

〈Qx, cos Θx〉 ≥ min
||x||=1

〈Qx, cos Θx〉

= min
i

cos θi.
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Also,

max
Q

min
||x||=1

〈Qx, cos Θx〉 ≤ max
Q
〈Qej, cos Θej〉

= min
i

cos θi,

where ej is a vector of all 0s except at jth position where it is 1, and j = arg mini cos θi
Hence, maxQ min||x||=1〈Qx, cos Θx〉} = mini cos θi.
This gives,

dc(E0, F0) =
√

2||1− cos Θ||2
= ||2 sin(Θ/2)||2.

Comparing with dp(E0, F0) = || sin Θ||2 = ||2 sin(Θ/2) cos(Θ/2)||2 proves the lemma. �

Using the lemma, we redefine the matrix if eigenvectors for perturbed Laplacian.

Theorem 6.8.
∃Q ∈ O(k) s.t. Y ′ = Ŷ Q,

and
dc(Y, Y

′) = ||Y − Y ′||2,
and,

||Y − Y ′||2 ≤
√

2

λ̂k+1

||L− L̂||2,

then,
1

n

n∑
i=1

||yi − y′i||22 ≤
2k

nλ̂2k+1

||L− L̂||22. (6.11)

Proof:

1

n

n∑
i=1

||yi − y′i||22 =
1

n
||Y − Y ′||2F

=
1

n

∑
j

σ2
j

≤ 1

n
.k.max

j
σ2
j

=
k

n
||Y − Y ′||22

≤ 2k

nλ̂2k+1

||L− L̂||22.

�
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Equation 6.11 gives a bound on average euclidean distance of points generated in our
clustering algorithm in terms of perturbation in the Laplacian. However, RHS contains λ̂. It
is desirable to minimize the dependence of the bound on perturbed matrix. The next lemma
helps replacing λ̂ with λ.

Lemma 6.9.
λ̂k+1 ≥ λk+1 − ||L− L̂||2.

Proof: Let V = span(u1,u2, . . . , uk), where ui is eigenvector corresponding to λ̂k, then,

λ̂k+1 = max
dim(V )=k

min{〈x, L̂x〉 : x ∈ V ⊥, ||x|| = 1}

≥ min
||x||=1

{〈x, L̂x〉 : x ∈ V ⊥}

≥ min
||x||=1,x∈V ⊥

{〈x, Lx〉} − max
||x||=1

{〈x, (L− L̂)x〉}

= λk+1 − ||L− L̂||2.

�

Lemma 6.9 helps us modify Theorem 6.8 :

Theorem 6.10.
∃Q ∈ O(k) s.t. Y ′ = Ŷ Q,

and
dc(Y, Y

′) = ||Y − Y ′||2,

then,
1

n

n∑
i=1

||yi − y′i||22 ≤
2k

n(λ− ||L− L̂||2)2
||L− L̂||22. (6.12)

6.4 Next time

Next time we shall discuss about planted models.
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