EE 381V: Large Scale Learning Spring 2013
Lecture 7 — February 5

Lecturer: Caramanis & Sanghavi Scribe: Dohyung Park

7.1 'Topics covereed

e The planted model for spectral clustering

7.2 Perturbation approach

In the previous lecture, we proved the sinf theorem. Applying the theorem, we can find a
performance guarantee for the spectral clustering.

Let us first recap the siné theorem. The distance d,(Ey, Fy) between two subspaces
spanned by the columns of Ey and Fj, respectively, is defined as

dy(Eo, Fo) £ || EvEy — FoFyll2 = || sin©]2 (7.1)
where O is a diagonal matrix with principal angles.

Theorem 7.1 (The sinf theorem). Consider matrices M, A € S,, where

M=glm] | I BB

are the eigenvalue decompositions of the matrices. If My C [a,b], My C (—o0,a — 6) U (b +
J,00), then

1
dy(Eo, Fo) < <[[All2. (7.2)

The sin# theorem bounds the distance between the column spaces of Fy and Fy. In
spectral clustering, once we take the k eigenvectors with the k& smallest eigenvalues, we cluster
n rows of the matrix whose columns are the k£ eigenvectors. Therefore, the performance of
the spectral clustering must be measured as the gap between the n rows obtained from the
perturbed Laplacian, f}n, and the n rows from the unperturbed Laplacian, L,,, up to rotation.
In other words, let Y and Y denote the matrices with the first & eigenvectors of L and L,
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respectively. They are described as

| | - - | | - -
Y=|u - w |= : Y=|a - | Q= : @,
| ‘ - Yn — | ’ — @n —

(7.3)
where uq, ..., u; are the first k eigenvectors of L, and 4y, ..., U are the first k eigenvectors
of L. Qis a k x k unitary matrix. The performance of spectral clustering gets better as
G, - .-, Un are closer to yi, . .., Yn, respectively. Hence we need to measure £ 7 ||ly; — 4:|3.
Since we have

RS sz 2 ok o112
2Dl =l < Y = VI < Y - VI (74)

we need to bound ||Y — Y||2. To do so, we define another measure of distance between two
subspaces.
Definition 7.2.
d.(Ey, Fp) £ i EyQ — FyR
(Eo, Fo) Q’gélg(k) 1 Eo@ oR|l2

= 1 Ey,— FyR 7.5
Rlenollélk) || 0 0 ||2 ( )

Before we consider the main theorem, we check two useful lemmas.

Lemma 7.3.
dy(Eo, Fy) < do(Eo, Fy) < V2d,(Ey, Fy) (7.6)

Proof: (Proof) O

Lemma 7.4. Let \y; and 5\k+1 be the (k + 1)-th smallest eigenvalue of matrices L and j},

respectively. Then R )
Akt = Ner1 = [[L = L[2. (7.7)

Proof: Let uq, ..., u; be the first k eigenvectors (with the k& smallest eigenvalues) of L. Then
it follows that

Ap1 = max min  (z, Lx)
V:dim(V)=k z:zeV L ||z||=1

> min (z, Lx)

x:x€span{ui,...,u }+,||z||=1

= min vaf—i,i—Lx}
z:xEspan{uy,..., uk}J_’”x”:l{< > < ( ) >

~

> min x,Lx) — max{x, (L — L)x

 awespan{ui,..., Uk}JW”IH:1< ) Hx||:1< ( )2)

> min x,Lr) — max (y, L— L)z
z:z€span{us,..., Uk}lvllw\\:1< Hﬂcllzllyllz1< ( )

= Mst = L= L2
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An interpretation of Lemma 7.4 is the following: If we add L—LtolL, Ag+1 will change. Tt
is maximally reduced when the kth eigenvector of L is perfectly aligned to the eigenvector
with the smallest (negative) eigenvalue of L — L. Since the value is greater than —||L — L||,
Ars1 cannot be reduced more than || L — L||5. There is a chance that another eigenvalue of L
smaller than A\,,1 will become the (k + 1)-th smallest eigenvalue of L, but it doesn’t matter

because the value will be greater than Ay — ||L — Lo
Using the above lemmas, we obtain the main theorem.

Theorem 7.5. There exists a unitary matrix Q € O(k) such that if

Y=|w - wy |, Y=|d - @ |Q,
| | | |
then d (FEy, Fy) = ||Y — Y||2, and

I ) 2k A
—ZH%—%‘H% < = 2HLn—LnH§~
L n()‘k-H — A — ”Ln - Ln”)
Proof:
IR Lo 1 112
SNy —wlli =y - ¥
2 3l =l = Y = T
k .
<Y —Y|?
<y - VB
L .
= —d, KY ?
Sa.(v.Y)
2k -
< —d,(Y,Y)?
n
2k A
e S A
n( A1 — Ar)
2k .
< 2 9 HLn - Ln”%
n(Aes1 = Ae = [[Ln = Lal)
e The first equality holds by the definition of Frobenius norm.

The third equality holds by the definition of the distance measure d..

The fourth inequality holds by Lemma 7.3.

The fifth inequality follows from Theorem 7.1.

The last inequality follows from Lemma 7.4.

In the next section, we apply this theorem to the planted model.
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The second inequality holds because || X ||z < v/k|| X2 for any matrix X with rank k.
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7.3 The planted model

Consider a graph with & clusters. There is an edge with probability p between a pair of
vertices in the same cluster, while vertices in different cluster are connected with probability
q. It is natural that we should have p > ¢ to correctly split the vertices into k clusters. The
main question is that: How big must the gap p — q be?

Let us build a mathematical model before we consider the problem. The matrices P*™"
and P are defined as

pm_ | D if vertices ¢ and j are in the same cluster,
@ 71 0 if vertices i and j are in different clusters,

p._lP if vertices ¢ and j are in the same cluster,
Y q if vertices ¢ and j are in different clusters.

Then an adjacency matrix A based on P is generated as

1 with probability P;; ifi <,
A;; =4 0 with probability 1 — P;; if i <7,
Aj; with probability P;; ifi>j.

Once we have an adjacency matrix A, we do the spectral clustering.
Note that P and A can be thought of as perturbations of P" and P, respectively.
Therefore, we apply Theorem 7.5 for the following two cases.

e A deterministic model : L, = — D"2P"™D~3 [, =] — D 2PD"3
e The planted model : L, =1 — D :PD 2, L, =1— D 2AD"2

In the following sections, we will find a lower bound on p — ¢ for exact partitioning by
spectral clustering. The planted model is what we are interested in, but we first consider
the deterministic model.

7.3.1 Spectral clustering for the deterministic model

Let P = UAU™! be the eigenvalue decomposition of P. Since D = (qn + (p — q)n/k)I is a
multiple of identity, we have that

A

i, =I—-D2PD 3

1 1
=UU ' — —T-UANU' - —T
VY Nal

1

=U (1 - —A) Ut (7.10)
Y

where v = gn + (p — q)n/k. Note that [ — %A is diagonal. This means that (7.10) is the

eigenvalue decomposition of L,,. Therefore, the eigenvectors corresponding to the k smallest
eigenvalues of L, are equal to the eigenvectors with the %k largest eigenvalues of P. This
leads to the following fact.
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Proposition 7.6. Clustering according to the bottom k eigenvectors of L, is equivalent to
clustering by the top k eigenvectors of P.

Can we also consider the bound in Theorem 7.5 in terms of P and P"? The following
proposition is the key property.

Proposition 7.7. The bound (7.9) is invariant to scaling and translation by addition of a
multiple of identity.

Proof: (Proof) O

As D is a multiple of identity, P is obtained by scaling {:n and adding a multiple of identity
to it. It follows that the gap between two eigenvalues of L,, are scaled by the absolute number
of the scaling factor. Therefore, the bound (7.9) is written as

li” — il < 2k
n Yi — Yill2 = n(An—ki1(P) = Ak (P) — || P — P™||2)

S|P — P"™3. (7.11)

Since the eigenvalues of P are given by

n
A(P)=qn+ (p— Q)E,
n
)\n—l(P) == )‘n—k-i-l(P) = (p - Q)E7
Ak(P)=---=X\(P)=0,
the bound is written as
1~ ) 2k )
- Yi — Ccluster(i S P—Pun
T e i iy o e
2k 9
ey qn
n(gn+ (p — q)n/k — qn)2( )
2k3q?

which means that the spectral clustering works while
Ck3/2
qu{l— n1/2}' (7.13)

7.3.2 Spectral clustering for the planted model

As mentioned in the previous case, we can consider the k largest eigenvalues and their
corresponding eigenvectors of A instead of the k smallest eigenvalues and eigenvectors of L,,,
when D for A is a multiple of identity. Here, we also look at A because each diagonal entry
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of D is given by the sum of independent random variables, d; = Z?:l A;;, and for sufficiently
large n, it is close to a constant Y 7 | Pi; = 2(p — q) +nq.
The planted model can be rewritten as

A=P+X,

where

Y. — 1 — P;; with probability P,
k —F; otherwise.

Note that E[X] = 0. The bound (7.9) is then given by

LS il < 2h
n 2 W = 8 D (P) = Mk(P) — X l)

;113 (7.14)

Since the eigenvalues of P are given by

n
MU?ZQW+@—®E,
n
)\n—l(P) == )\n—k—i-l(P) = (p - (DE)
Ak(P) ==X\ (P)=0,
the bound is written as
1l & 2k
= Ny — a3 < 1X I3
> > = 0= om/k) — X2
2k
— X2 7.15
n(ne/k:— HX||2)2H H2 ( )

where € = p — ¢. Since || X||2 is still a random variable, we need an expression to bound it
with high probability.

One reasonable try can be to use Chebyshev’s inequality: For any random variable Z
with mean ;i and variance o2,

1
P(|Z — | > ao) < el (7.16)
for any number o > 0. Since we have that
of = BlIX|3] < ENX|3] =Y EIXZ] <n?, (7.17)
i,J
it follows that
1
P([[X]l2 = 10n) < P(||X]l> > 100%) < o5 (7.18)
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Putting the bound || X||2 < 10n to Theorem 7.5, we get

1< o 2k )
- i — Yilla < X
2k
< 10n)?
~ n(n(e/k — 10))2( On)
200k
= n(e/k — 10)2°

This bound doesn’t give any useful result for €. In the above derivation, (7.17) and (7.18)
hold even if the entries of X are correlated. To obtain a useful bound, we must exploit
independence of 1 and j.

Another try is to use the Matrix Bernstein inequality. [1]

Theorem 7.8 (Matrix Bernstein inequality). Let 7, ..., Z,, € S" be independent ran-
dom matrices where E[Z;]) = 0, ||Z;||la < R, and || Y.;", E[Z?]|| < 02, and let X =" | Z,.
Then we have that

P(IX], > 1) < nexp (—m) . (7.19)

We can apply Theorem 7.8 to X = P — A by defining
Ziij) = Xij(eies + ee;)

where the superscript * denotes the transpose. Note that all the entries of Z(;; are zero
except for the entries at (i,7) and (j,4) that are equal to X;; = Xj;. Then X can be
described as the sum of n? matrices

X =) Zu.
1,J

The random matrices Z(;;) have the following properties.

o ElZup] =0, Zajllz < 2.

o 7%, = Xijleie; +ejer) - Xijleie; + ejey) = Xi(eief + ejef).
[ ]
-1 X
> ElZy) = ot = DB <
i,5:1<) Z?zl XTQU, i<y 2
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Using Theorem 7.8 and the above properties, we obtain that

t2
P(l|X t) < —_——

< nexp <—6(%in)) . (7.20)

Consider ¢t = 10y/nlogn. Then we have that

100n 1
P (HXH2 > 10 nlogn) < nexp (_ nlogn )

6(n + 204/nlogn)
100n logn
SR T

<nexp(—10logn) =n"". (7.21)
This implies that for sufficiently large n, we have that

| X2 < 10y/nlogn (7.22)

with high probability. Let us drop the logn factor just to make bounds look clean. Then we
obtain that

k 2

< 200k
~ (ne/k —104/n)?
200k
<
where € > i?’i + 7. This concludes that we need
10k
P—QZEZW (7.23)

for the planted model to be correctly partitioned using spectral clustering for sufficiently
large n.

Remark 7.9. If k = O(1) as n — oo, then we need ¢ = O(1/y/n). This implies that if
n >> k, the spectral clustering can correctly partition the planted model even with a very
small gap €e = p — q.

7-8



Bibliography

[1] Tropp, J. (2010). User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4), 389-434.



