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8.1 Introduction

We have learned some approaches of Dimension Reduction (DR), such as LSH for nearest
neighbor search and spectral clustering for a given similarity graph (or matrix). In the lecture
today, we are going to introduce spectral clustering for Gaussian Mixture Models (GMM).

8.2 Gaussian Mixture Models

A Gaussian mixture model is a distribution with the probability density function defined as
follows.

P (x) =
k∑

i=1

wiN (µi,Σi), (8.1)

where x ∈ Rn is a sampled point, wi ≥ 0 ∀i,
∑k

i=1wi = 1, and N (µi,Σi) is a multivariate
Gaussian distribution characterized by the mean vector µi and the covariance matrix Σi.

Sampling Process. We first select a index i ∈ {1, . . . , k}, where each i is selected with
the probability wi, then sample a point x from N (µi,Σi).

8.2.1 Clustering Problem

Given m points (without index label) sampled from a GMM, where only the parameter k is
known, we want to find the correct index label for each point.

The difficulty of this problem depends on the parameters of the underlying GMM (i.e.,
{µi} and {Σi}). Let’s look at a simple example in Figure 8.1, where we consider a simplified
GMM with k = n = 2, ‖µ1−µ2‖ = 2, and Σ1 = Σ2 = σ2I2. Figure 8.1a shows the result for
σ2 = 1, while Figure 8.1b shows the result for σ2 = 0.1. Obviously, the clustering problem
for σ2 = 0.1, where points generated from different Gaussian distributions do not overlap,
is easier than clustering for σ2 = 1, where points are highly mixed. In general, for any two
Gaussian Ni and Nj, if E[‖X(i)−µi‖] and E[‖X(j)−µj‖] are much smaller than ‖µ1−µ2‖,
where X i denotes a random data point sampled from Ni, then clustering problem becomes
easier. Therefore, the distance between {‖µi −µj‖ : i 6= j} and {E‖X i −µi‖} is the key to
determine the difficulty of the clustering problem.

We state a useful lemma for estimate E[‖X − µ‖] for a multivariate Gaussian:
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(a) σ2 = 1 (b) σ2 = 0.1

Figure 8.1: Clustering Difficulty for different σ2

Lemma 8.1. For an n-dimensional Gaussian distribution X ∼ N (µ,Σ),

E[‖X − µ‖2] =
n∑

i=1

σ2
ii,

where σii is the i-th entry in the diagonal of Σ.

Proof: By definition, X = µ+ Y , where Y ∼ N (0,Σ). Thus,

E[‖X − µ‖2] = E[‖Y ‖2] = E[
n∑

i=1

Y 2
i ] =

n∑
i=1

E[Y 2
i ] =

n∑
i=1

σ2
ii.

�

8.3 Settings

In this lecture, we consider the clustering problem for a simplified version of GMM:

• the dimension n is large,

• the covariance matrix for each Gaussian distributions is just a diagonal matrix Σi =
σ2

i In,.

• µi − µj is considered a constant which is independent of the dimension n.

Based on Lemma 8.1, we have the following Corollary to measure the difficulty of clus-
tering problems under our setting.
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Corollary 8.2. For an n-dimensional Gaussian distribution X ∼ N (µ, σ2In),

E[‖X − µ‖] = σ
√
n.

As a result, to obtain a good clustering result, distance-based methods such as K-means
require that

‖µi − µj‖ > C max{σi, σj}
√
n (8.2)

holds for i 6= j, where C is a constant. As the RHS of (8.2) is linear to
√
n, distance-based

methods will fail when n is large.
Does this high-dimensional clustering problem become easier when {µi} is also given?

Consider a simple case where k = 2 and µ1 and µ2 are known. We can simply project all
data points on the line connecting µ1 and µ2,

1 then

E[‖Proj(X(i))− Proj(µi)‖] = σi, i = 1, 2.

As a result, as long as ‖µ1 − µ2‖ > C max{σ1, σ2}, distance-based methods can work well
on the projected data because the RHS is independent of n. In general, if {µi} are told,
and ‖µi−µj‖ > C max{σi, σj} for each pair of (i, j), the clustering problem becomes easier
when we apply appropriate projection.

8.4 Two Ideas for Projection

However, in real-world application, {µi} are usually unknown. Here we try two ideas to find
an appropriate projection.

8.4.1 Idea I - Random Projection

The first idea is projecting the data onto a random r-dimensional subspace V , where n �
r > k. As the dimension becomes r, σ

√
n becomes σ

√
r, which is a good thing as the RHS

in (8.2) is reduced. However, by the Johnson-Lindendstrauss lemma [1, 2],

E[‖ProjV (µi)− ProjV (µj)‖2] =
r

n
‖µi − µj‖2,

which means that the LHS in (8.2) is also reduced by random projection. This means that
if distance-based methods are not able to cluster the original data well, the projected data
cannot be well-clustered as the difficulty remains after the random projection.

1We can assume µ2 = cµ1 for some constant c to make the line an one-dimensional subspace.
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Algorithm 1 Spectral Clustering for Gaussian Mixture Models

1: Form the m× n sample matrix A, where each row is data point.
2: Calculate the truncated SVD for A with rank r:

A ≈ ÛrΣ̂rV̂
T
r .

3: Form the projected m× r sample matrix A′ = ÛrΣ̂.
4: Run an elementary clustering algorithm on A′.

8.4.2 Idea II - Projection covering Span{µ1, . . . ,µk}
The reason why random projection does not work is that it also reduces the distance between
{µi}. If we knew a r-dimensional subspace U that contains Span{µ1, . . . ,µk}, then after a
projection onto U , the RHS in (8.2) is reduced, while the distance between µi and µj (i.e.,
the LHS in (8.2)) remains unchanged:

‖ProjU(µi)− ProjU(µj)‖ = ‖µi − µj‖, ∀i, j
E[‖ProjU(X i)− ProjU(µi)‖] = σi

√
r, ∀i.

As a result, clustering projected data becomes easier for distance-based methods. Next we
discuss how to find the desired subspace U .

8.5 Spectral Clustering for GMMs

Spectral clustering for GMMs is an approach to find/approximate the projection “U” de-
scribed in Section 8.4.2.

Intuition. Assume that X is generated from a single Gaussian ∼ N (µ, σ2In) and
consider the optimization problem:

arg max
‖v‖=1

E[< X,v >2]. (8.3)

Recall that X = µ + Y, Y ∼ N (0, σ2In), thus < X,v >=< µ,v > + < Y,v >. As
E[< Y,v >] is a constant for all v,

arg max
v:‖v‖=1

E[< X,v >2]

= arg max
v:‖v‖=1

E[< X,v >]

= arg max
v:‖v‖=1

E[< µ,v >] + E[< Y,v >]

= arg max
v:‖v‖=1

E[< µ,v >] + constant

=µ.
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The optimal solution for (8.3) is just µ. Similarly, for a GMM with k > 1, we have

arg max
V :dim(V )=k

E[‖ProjV X‖2] = Span{µ1, . . . ,µK}.

Thus, ideally, we can find a desired projection U through finding a projection which maxi-
mizing the expected length of projected data.

Given m data points sampled from a GMM following the setting in Section 8.3, the goal
is to find a projection which maximizing the empirical expectation of length of the projected
data.

arg max
V :dim(V )=r

1

m

m∑
i=1

‖ProjV xi‖22, (8.4)

where xi ∈ Rn is the i-th data point. It can be analytically shown that the optimal projection
is V̂ T

r , the transpose of the matrix corresponding to the top-r right singular vectors of the
m×n sample matrix A, where i-th row, Ai = xT

i , is the i-th data point. In particular, if we
form the rank-r truncated SVD for A:

A ≈ ÛrΣ̂rV̂
T
r ,

we have

V̂ T
r = arg max

V :dim(V )=r

1

m

m∑
i

‖ProjV Ai‖2,

ÛrΣ̂r = ProjA, the projected m× r sample matrix .

As a result, we can conduct an elementary clustering algorithm on the projected sample
matrix ProjA. We describe the spectral algorithm for GMM in Algorithm 1.

8-5



Bibliography

[1] W. Johnson and J. Lindenstrauss, “Extensions of lipshitz mapping into hilbert space,”
in Modern analysis and probability, vol. 26, pp. 189–206, 1984.

[2] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: applica-
tions to image and text data,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’01, (New York, NY, USA),
pp. 245–250, ACM, 2001.

6


