EE 381V: Large Scale Learning Spring 2013
Lecture 8 — Feb 7

Lecturer: Caramanis & Sanghavi Scribe: Hsiang-Fu Yu

8.1 Introduction

We have learned some approaches of Dimension Reduction (DR), such as LSH for nearest
neighbor search and spectral clustering for a given similarity graph (or matrix). In the lecture
today, we are going to introduce spectral clustering for Gaussian Mixture Models (GMM).

8.2 (Gaussian Mixture Models

A Gaussian mixture model is a distribution with the probability density function defined as
follows.

P(z) = ZwiN(u‘ia %), (8.1)

where € R"™ is a sampled point, w; > 0 Vi, Zle w; = 1, and N (p;, ;) is a multivariate
Gaussian distribution characterized by the mean vector p; and the covariance matrix ;.

Sampling Process. We first select a index i € {1,...,k}, where each i is selected with
the probability w;, then sample a point @ from N (;, ;).

8.2.1 Clustering Problem

Given m points (without index label) sampled from a GMM, where only the parameter k is
known, we want to find the correct index label for each point.

The difficulty of this problem depends on the parameters of the underlying GMM (i.e.,
{p;} and {3;}). Let’s look at a simple example in Figure 8.1, where we consider a simplified
GMM with k =n =2, |y — py|| = 2, and X; = 5y = 021,. Figure 8.1a shows the result for
0% = 1, while Figure 8.1b shows the result for ¢ = 0.1. Obviously, the clustering problem
for 02 = 0.1, where points generated from different Gaussian distributions do not overlap,
is easier than clustering for o2 = 1, where points are highly mixed. In general, for any two
Gaussian N; and N, if E[| X — p,[|] and E[|| XY — p[|] are much smaller than ||p; — g,
where X* denotes a random data point sampled from A, then clustering problem becomes
easier. Therefore, the distance between {||p; — ]| - 7 # j} and {E|| X’ — p;||} is the key to
determine the difficulty of the clustering problem.

We state a useful lemma for estimate E[||X — pl|] for a multivariate Gaussian:
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Figure 8.1: Clustering Difficulty for different o2
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Lemma 8.1. For an n-dimensional Gaussian distribution X ~ N (pu,X),

where o;; is the i-th entry in the diagonal of X..

E[IX = pl’] =)o
1=1

Proof: By definition, X = u + Y, where Y ~ N(0,X). Thus,

E(|X — pl*] = E[IY]*] = E[Z Y7 = ZE[Yf] = ZUZ~

8.3 Settings
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In this lecture, we consider the clustering problem for a simplified version of GMM:

e the dimension n is large,

e the covariance matrix for each Gaussian distributions is just a diagonal matrix ¥; =

2
o1y,

® p; — p; is considered a constant which is independent of the dimension n.

Based on Lemma 8.1, we have the following Corollary to measure the difficulty of clus-

tering problems under our setting.
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Corollary 8.2. For an n-dimensional Gaussian distribution X ~ N (u, 0*1,),

E[IX — ul]] = o /.

As a result, to obtain a good clustering result, distance-based methods such as K-means
require that

;= psll > € max{os, 05}/ (8:2)

holds for ¢ # j, where C' is a constant. As the RHS of (8.2) is linear to /n, distance-based
methods will fail when n is large.

Does this high-dimensional clustering problem become easier when {u,} is also given?
Consider a simple case where & = 2 and p; and p, are known. We can simply project all
data points on the line connecting g, and p,,* then

E[|| Proj(X®) — Proj(m;)||]] = o4, i = 1,2.

As a result, as long as ||, — ps|| > Cmax{oy, 02}, distance-based methods can work well
on the projected data because the RHS is independent of n. In general, if {u;} are told,
and ||p; — p,]| > Cmax{o;,0;} for each pair of (4, j), the clustering problem becomes easier
when we apply appropriate projection.

8.4 Two Ideas for Projection

However, in real-world application, {u,;} are usually unknown. Here we try two ideas to find
an appropriate projection.

8.4.1 Idea I - Random Projection

The first idea is projecting the data onto a random r-dimensional subspace V', where n >
r > k. As the dimension becomes r, oy/n becomes o+/r, which is a good thing as the RHS
in (8.2) is reduced. However, by the Johnson-Lindendstrauss lemma [1, 2],

. . r
E[|| Projy,(p;) — Projy (k) I°] = —~lla; — my|*,
which means that the LHS in (8.2) is also reduced by random projection. This means that

if distance-based methods are not able to cluster the original data well, the projected data
cannot be well-clustered as the difficulty remains after the random projection.

'We can assume p, = cp; for some constant ¢ to make the line an one-dimensional subspace.
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Algorithm 1 Spectral Clustering for Gaussian Mixture Models

1: Form the m x n sample matrix A, where each row is data point.
2: Calculate the truncated SVD for A with rank r:

An 05,07,

3: Form the projected m x r sample matrix A’ = U3
4: Run an elementary clustering algorithm on A’.

8.4.2 1Idea II - Projection covering Span{p, ..., pu;}

The reason why random projection does not work is that it also reduces the distance between
{p;}. If we knew a r-dimensional subspace U that contains Span{g,,..., ;}, then after a
projection onto U, the RHS in (8.2) is reduced, while the distance between p; and p; (i.e.,
the LHS in (8.2)) remains unchanged:

I Projy () = Proju ()|l = llws — myll, Vi, j
E[|| Projy (X") = Projy (p) || = i/, Vi.

As a result, clustering projected data becomes easier for distance-based methods. Next we
discuss how to find the desired subspace U.

8.5 Spectral Clustering for GMMs

Spectral clustering for GMMs is an approach to find/approximate the projection “U” de-
scribed in Section 8.4.2.
Intuition. Assume that X is generated from a single Gaussian ~ N (u,0?1,) and
consider the optimization problem:
arg HmHaux1 El< X, v >?]. (8.3)
vll=
Recall that X = p+ Y, Y ~ N(0,0%],), thus < X,v >=< p,v > + < Y,v >. As
E[< Y,v >] is a constant for all v,

arg max E[< X, v >?|

v:||v]|=1

=arg max E[< X,v >]

vilvl=1
=arg _rﬁle‘m‘}lek p,v >+ E[<Y,v>]

=arg max FE[< p,v >]+ constant

villvl|=1

8-4



EE 381V Lecture 8 — Feb 7 Spring 2013

The optimal solution for (8.3) is just p. Similarly, for a GMM with & > 1, we have

E[|| Proj, X||*] =S .
arg max | El||Projy X|[7} = Span{p, -, puc}
Thus, ideally, we can find a desired projection U through finding a projection which maxi-
mizing the expected length of projected data.

Given m data points sampled from a GMM following the setting in Section 8.3, the goal
is to find a projection which maximizing the empirical expectation of length of the projected
data.

1 m
— Projy, @[3, 8.4
arg | max Zl | Projy 5 (8:4)
where &; € R" is the i-th data point. It can be analytically shown that the optimal projection
is VI the transpose of the matrix corresponding to the top-r right singular vectors of the

m x n sample matrix A, where i-th row, A; = x!, is the i-th data point. In particular, if we
form the rank-r truncated SVD for A:

~ 3 v ’ T
A~UX V",
we have

. 1 &
VT - - Proj Az 2,
S =ag max Z || Projy A

U3, = Proj A, the projected m x r sample matrix .

As a result, we can conduct an elementary clustering algorithm on the projected sample
matrix Proj A. We describe the spectral algorithm for GMM in Algorithm 1.
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