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Abstract: Suppose we are given a matrix that is formed by adding an unknown sparse matrix
to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and
low-rank components. Such a problem arises in a number of applications in model and system
identification, but obtaining an exact solution is NP-hard in general. In this paper we consider
a convex optimization formulation to splitting the specified matrix into its components; in fact
our approach reduces to solving a semidefinite program. We provide sufficient conditions that
guarantee exact recovery of the components by solving the semidefinite program. We also show
that when the sparse and low-rank matrices are drawn from certain natural random ensembles,
these sufficient conditions are satisfied with high probability. We conclude with simulation results
on synthetic matrix decomposition problems.

1. INTRODUCTION

In many engineering applications one encounters complex
systems and models that are often composed of multiple
simpler systems and models. In order to better understand
the behavior of the complex system, a natural approach is
to break it down into simpler components. In this paper
we consider matrix representations of systems and statis-
tical models in which our matrices are formed by adding
together sparse and low-rank matrices. The object of this
paper is to propose a tractable solution for recovering the
sparse and low-rank components, and to analyze when our
approach recovers these components exactly.

The low-rank and sparse matrices have different interpre-
tations based on the problem at hand. In a statistical
model selection setting, the sparse matrix can correspond
to a sparse Gaussian graphical model (Lauritzen [1956]),
while the low-rank matrix can be attributed to the effect
due to marginalization of latent variables. Being able to
decompose a matrix into simpler sparse and low-rank
components can have important implications for the de-
velopment of efficient estimation algorithms. In a system
identification setting, the low-rank (Hankel) matrix corre-
sponds to a low-order LTI system, and the sparse (Hankel)
matrix can capture an LTI system with a sparse impulse
response. Such a decomposition can be used to provide a
simpler, more efficient description of a complex system in
terms of its simpler components.
? This work was supported in part by a MURI funded through
AFOSR Grant FA9550-06-1-0324, and by a MURI funded through
ARO Grant W911NF-06-1-0076.

For a low-rank matrix with entries perturbed by Gaussian
noise, one can recover an estimate of the low-rank matrix
by using techniques based on the singular value decom-
position (SVD). Such an approach might involve some
form of thresholding of the singular values. However, the
problem that we consider is rather different in that a low-
rank matrix is “perturbed” by a sparse matrix. The sparse
matrix can in general have entries of arbitrary magnitude.
Therefore, SVD-based methods are not directly applicable
in order to solve such problems. Solving this problem is
NP-hard in general, but we consider approaches employing
recently well-studied convex relaxations.

In formulating our convex optimization problem, we use
the `1 norm as a surrogate for counting the number
of non-zero entries based on the numerous results that
demonstrate its effectiveness at recovering sparse solutions
(see for example Donoho [2006a]). We also use the nuclear
norm, which is the sum of the singular values of a matrix,
to replace the rank of the matrix (Fazel [2002]). This is
a generalization of the previously studied trace-heuristic
used in various control problems (Mesbahi et al. [1997]).
Recent work has also demonstrated that the nuclear norm
is an effective surrogate in rank minimization problems
(Recht et al. [2007], Candes and Recht [2008]).

Suppose that we are given a matrix C = A∗+B∗ with A∗

an unknown sparse matrix and B∗ an unknown low-rank
matrix. We seek to recover the matrices A∗ and B∗. We
consider the following convex optimization problem:



min
A,B

γ‖A‖`1 + ‖B‖∗

s.t. A + B = C.

Here, γ is a parameter that trades off between the low-
rank and sparse components. Clearly, one cannot expect
to recover from C = A∗+B∗ arbitrary sparse and low-rank
matrices A∗, B∗ as such a problem is ill-posed in general.
We provide a set of sufficient conditions under which the
solution of the convex optimization problem above yields
the exact A∗, B∗. These conditions essentially require
that the space spanned by the singular vectors of B∗ is
“incoherent” with the standard basis, while the sparse
matrix A∗ does not contain too many non-zero elements
in each row/column. We also show that these sufficient
conditions are satisfied with high probability when A∗, B∗

are drawn from certain natural random ensembles of sparse
and low-rank matrices. Our convex program can in fact be
cast as a semidefinite program (SDP) (Vandenberghe and
Boyd [1996]), which can be solved efficiently in polynomial-
time.

Relation to previous work The `1 norm has been well-
studied as a heuristic for finding sparse representations of
signals based on overcomplete dictionaries (Donoho and
Elad [2003]). Building on these results, compressed sensing
(Candes et al. [2006], Donoho [2006b]) was introduced as
a framework for recovering a sparse signal based on very
few measurements. Analogous to the compressed sensing
setting, a number of recent papers (Recht et al. [2007],
Candes and Recht [2008]) have addressed the problem
of recovering a low-rank matrix given very few linear
functionals of the matrix (e.g., a subset of the entries
of the matrix). Our work is closer in spirit to that of
Donoho and Elad [2003], and can be viewed as a method
to find the “simplest” representation of a matrix given
an “overcomplete dictionary” of sparse matrix atoms and
low-rank matrix atoms.

Paper outline In Section 2, we introduce a problem from
system identification and one from statistical model selec-
tion to demonstrate the potential applicability of our work.
In Section 3 we present the formal problem statement and
discuss the kinds of sparse and low-rank matrices that one
can hope to recover. Section 4 introduces our optimization
formulation and provides a set of sufficient conditions for
exact recovery based on subgradient optimality conditions.
In Section 5 we provide an even simpler set of sufficient
conditions for exact recovery, and apply these conditions to
demonstrate that exact recovery is possible under a certain
probabilistic regime with high probability. We describe the
results of simulations of our approach applied to synthetic
matrix decomposition problems in Section 6, and conclude
with a brief discussion in Section 7.

Our analysis can be extended to provide an uncertainty
principle that quantifies a notion of rank-sparsity incoher-
ence for arbitrary matrices. Due to space constraints we do
not discuss this point in detail, and we also do not provide
any proofs of our results in this paper. We defer these to
a longer report.

2. STYLIZED APPLICATIONS

Our work has important applications in model selection.
Given a joint covariance matrix Σ(o h) on a collection of
observed variables o and hidden variables h, the marginal
covariance of the observed variables is simply the corre-
sponding submatrix Σo. In many applications, however,
Gaussian models are parameterized in terms of the inverse
covariance matrix J(o h) = Σ−1

(o h) (also known as the
precision or concentration or information matrix). Such a
parameterization reveals the connection to sparse Gauss-
Markov models in which the information matrix is sparse
according to the underlying graph on which the Gaussian
variables obey the Markov property (Lauritzen [1956]).
The marginal information matrix of the observed variables
Σ−1

o is given by a Schur complement relation:

Ĵo = Jo − Jo,hJ−1
h Jh,o, (1)

where Jo is typically sparse due to sparsity in the graphical
structure, while Jo,hJ−1

h Jh,o has rank equal to the number
of latent variables h. Thus, decomposing Ĵo into these
components reveals the graphical structure in the observed
variables as well as the effect due to (and the number of)
the unobserved latent variables.

A similar problem can be posed in the system identification
setting in which the input-output relation of an LTI system
is described by a matrix H as follows:

H = Hs + Hlr.

Here, Hlr is a low-rank Hankel matrix corresponding to
a low-order system. The matrix Hs is a sparse Hankel
matrix and describes an LTI system with a sparse impulse
response. Decomposing H into these components could
potentially provide a simpler description of the system
rather than considering the system matrix H by itself.

We note that our work also has applications in problems
from computer science such as those involving matrix
rigidity (Valiant [1977]).

3. PRELIMINARIES AND PROBLEM STATEMENT

3.1 Notation

We briefly describe the notation used in this paper. We
consider matrices that live in the space 1 Rn×n. The sup-
port of a matrix M (the locations of the non-zero entries
in M) is denoted supp(M) ⊆ {1, · · · , n}×{1, · · · , n}. The
rank of a matrix M is denoted rank(M). The following
matrix norms will be employed throughout this paper:

• ‖·‖ refers to the spectral norm, or the largest singular
value.

• ‖ · ‖`∞ refers to the absolute element-wise maximum
entry of a matrix (not the operator `∞ norm).

• ‖ · ‖∗ refers to the nuclear norm, or the sum of the
singular values.

• ‖·‖`1 refers to the element-wise sum of absolute values
(not the operator `1 norm).

• ‖ · ‖F refers to the Frobenius norm.
1 All our results extend to the rectangular case, but we stick with
the square case to avoid cluttered notation. If the matrices belong
to Rn1×n2 , then our results can be extended by simply setting
n = max(n1, n2).



We will not have occasion to use the operator `1 and `∞
matrix norms. Therefore, there should be no ambiguity
with the above notation. We also use the `2 vector norm,
and will denote it by ‖ · ‖2.

3.2 Problem Statement and Rank-Sparsity incoherence

Main Problem Given a matrix C = A∗ + B∗ where A∗

is sparse and B∗ is low-rank, recover the components A∗

and B∗.

Let supp(A∗) be the support of A∗, and let B∗ be a
rank-k matrix with singular value decomposition (SVD)
B∗ = UΣV ′. Here, U ∈ Rn×k,Σ ∈ Rk×k, and V ∈ Rn×k.

It is apparent that our main problem is ill-posed; we de-
scribe two such situations below. They provide insight into
the kind of additional conditions that must be imposed on
A∗, B∗ in order to guarantee exact recovery. First, suppose
that B∗ consists of a 1 in the top-left location and 0
everywhere else. While such a B∗ is low-rank, it is also very
sparse. One could not reasonably expect to recover such a
B∗ from C, since a valid sparse-plus-low-rank decomposi-
tion (Â, B̂) is Â = A∗ + B∗, B̂ = 0. Therefore, we need an
appropriate notion of low-rank that ensures that B∗ is not
too sparse. As will be seen later in the paper, one natural
way to accomplish this is to impose conditions that require
the space spanned by the singular vectors U and V (i.e.,
the row and column spaces of B∗) to be “incoherent” with
the standard basis. Similar conditions have been discussed
in recent work on the matrix completion problem (Candes
and Recht [2008]). Second, suppose that the first column of
A∗ is non-zero, while all other columns are 0. Thus, A∗ is
relatively sparse, but it is also low-rank (it has rank 1). In
such a scenario a reasonable decomposition (Â, B̂) might
be Â = 0, B̂ = A∗ + B∗ (here rank(B̂) ≤ rank(B∗) +
1). Consequently, we consider sparse matrices that have
“bounded degree”, i.e., each row/column does not have too
many non-zero entries, to avoid such identifiability issues.

4. CONVEX OPTIMIZATION FORMULATION

In this section, we motivate the convex optimization prob-
lem that was stated in the introduction. The general prob-
lem of recovering A∗ and B∗ from C is NP-hard, and a
typical solution might involve a search with combinatorial
complexity. However, a number of heuristics have been
developed for approximating the functions |supp(·)| and
rank(·). In particular the ‖ · ‖`1 norm has proved to be
surprisingly effective as a surrogate for |supp(·)| and there
is a vast literature describing conditions under which one
can recover a sparse signal exactly using the `1 heuristic
(Donoho [2006a]). Note that ‖ · ‖`1 is a convex function,
unlike |supp(·)|. More recently, a growing body of work
has advocated the use of the nuclear norm ‖·‖∗ in place of
rank(·) (Fazel [2002], Recht et al. [2007], Candes and Recht
[2008]). This is a generalization of the trace-heuristic pre-
viously employed as a surrogate for the rank of a positive-
semidefinite matrix (Mesbahi et al. [1997]). Notice that
the nuclear norm is a convex function, and is analogous to
an “`1 norm” applied to the singular values. A variety of
results provide conditions under which one can recover a
low-rank matrix exactly using the nuclear norm heuristic.

We consider the following optimization program to split a
given matrix C into its sparse and low-rank components:

min
A,B

γ‖A‖`1 + ‖B‖∗

s.t. A + B = C. (2)
Here, γ is a regularization parameter that provides a
trade-off between the two components. In situations where
C contains additional noise, one can relax the equality
constraints. In this paper, we focus on the problem with
no additional noise, i.e., the case with equality constraints.
We note that (2) can be cast as an SDP (see Appendix A)
and can be solved efficiently with complexity polynomial
in the size of the input using off-the-shelf SDP solvers.

4.1 Optimality conditions

Before describing the subgradient-based optimality condi-
tions for (2), we introduce certain spaces associated with
the matrics A∗ and B∗. We consider the space of all
matrices that have the same support as A∗:

Ω = {M ∈ Rn×n| supp(M) ⊆ supp(A∗)}. (3)
The projection of a matrix onto the space Ω is denoted by
PΩ, which simply sets to zero those entries with support
not in supp(A∗). Let Ωc denote the orthogonal space to Ω,
i.e., the space of those matrices with support in supp(A∗)c.
The projection onto Ωc is denoted PΩc .

The SVD of B∗ = UΣV ′, where as described previously,
U ∈ Rn×k and V ∈ Rn×k. Consider the following tangent
space at B∗ to the manifold of rank-k matrices:

T = {UX ′ + Y V ′| X ∈ Rn×k, Y ∈ Rn×k}. (4)
The space T is generated by the span of all matrices that
either have the same column space as B∗ or the same row
space as B∗. The projection of a matrix onto the space T
is given by PT :

PT (M) = PUM + MPV − PUMPV ,

where PU = UU ′ and PV = V V ′ denote the projection
onto the spaces spanned by U and V respectively. Let
T⊥ denote the orthogonal space to T , i.e., the span of
all matrices with column space orthogonal to the column
space of B∗ and row space orthogonal to the row space of
B∗. We denote the projection onto this space by PT⊥ :

PT⊥(M) = (In − PU )M(In − PV ).

The following proposition gives a set of sufficient con-
ditions for (A∗, B∗) to be the unique optimum of (2).
Let sign(·) denote the element-wise signum function of a
matrix.
Proposition 1. Suppose that C = A∗+B∗. Then, (A∗, B∗)
is the unique optimizer of (2) if the following conditions
are satisfied:

(1) Only the 0 matrix belongs to both Ω and T , i.e.,
Ω ∩ T = {0}.

(2) There exists a dual Q ∈ Rn×n such that
(a) PT (Q) = UV ′

(b) PΩ(Q) = γsign(A∗)
(c) ‖PT⊥(Q)‖ < 1
(d) ‖PΩc(Q)‖`∞ < γ

Figure 1 provides a visual representation of these condi-
tions. In particular, we see that the spaces Ω and T only



Fig. 1. Geometric view of optimality conditions: Existence
of a dual Q.

intersect at 0. One can also intuitively see that guarantee-
ing the existence of a dual Q with the requisite conditions
is perhaps easier if the “angle” between Ω and T is greater.

Applying optimality conditions from convex analysis
(Bertsekas et al. [2003]), one can check that (A∗, B∗) is
an optimum of (2) if there exists a dual Q ∈ Rn×n such
that

Q ∈ γ∂‖A∗‖1 and Q ∈ ∂‖B∗‖∗. (5)
For Q ∈ γ∂‖A∗‖1, we must have that

PΩ(Q) = γsign(A∗), ‖PΩc(Q)‖∞ ≤ γ. (6)
For Q ∈ ∂‖B∗‖∗, we must have that (Watson [1992])

PT (Q) = UV ′, ‖PT⊥(Q)‖ ≤ 1. (7)
As noted above, (5) only provides a set of conditions
for (A∗, B∗) to be an optimum of (2). The conditions in
Proposition (1) involve some tightening of these subgra-
dient conditions (5), (6), and (7) in order to guarantee
uniqueness.

5. SUFFICIENT CONDITIONS FOR EXACT
RECOVERY

5.1 Simple sufficient conditions

We describe a set of simpler sufficient conditions that
guarantee the existence of a dual Q in Proposition 1.
Consider the following two quantities:

ξT = max
M∈T,‖M‖≤1

‖M‖∞ (8)

ξΩ = max
M∈Ω,‖M‖∞≤1

‖M‖ (9)

If ξT is small, then we have that elements of T are
“diffuse”, i.e., a matrix in T cannot have very large
entries. 2 Similarly, if ξΩ is small then we have that the
spectrum of an element of Ω is “diffuse”, i.e., has small
singular values.

The following proposition provides a simpler set of suffi-
cient conditions than those provided by Proposition 1.
Proposition 2. If ξT ξΩ < 1

8 , then Ω ∩ T = {0} and there
exists a dual Q such that the second set of conditions
2(a)− 2(d) in Proposition (1) is satisfied for

γ ∈
(

ξT

1− 6ξT ξΩ
,
1− 4ξT ξΩ

ξΩ

)
. (10)

Consequently, ξT ξΩ < 1
8 implies that (A∗, B∗) is the

unique optimizer of (2).
2 Specifically, unit-spectral-norm matrices in T cannot have very
large entries.

Observe that if T = Rn×n, then ξT = 1. Similarly, if
Ω = Rn×n, then ξΩ = n. Therefore, we clearly need to
use special structure in T and in Ω in order to identify
classes of matrices in which ξT ξΩ < 1

8 .

Bound on ξΩ We have the following bound on ξΩ for
“degree-bounded” Ω.
Lemma 3. Let supp(A∗) ⊆ {1, . . . , n}×{1, . . . , n} be some
fixed support set in which every row/column has at most
δ non-zero entries. Then for Ω as defined by (3) and ξΩ

defined by (9), we have that ξΩ ≤ δ.

Therefore, matrices that are “degree-bounded” have small
spectral norm (compared to n).

Bound on ξT Before analyzing ξT we define the following
notion of incoherence, which played an important role in
the results of Candes and Recht [2008]:

µ = max(max
i

‖PUei‖2,max
i

‖PV ei‖2), (11)

where B∗ = UΣV ′ and each ei ∈ Rn is a standard basis
vector. We provide a bound on ξT in terms of µ.
Lemma 4. Let T be the linear space defined in (4), let ξT

be defined by (8), and let µ be defined by (11). Then,
ξT ≤ 3µ.

Conditions based on δ, µ Combining Propositions 1 and
2, and Lemmas 3 and 4, we have the following corollary.
Corollary 5. Suppose that C = A∗ + B∗, and suppose that
each row/column of A∗ has at most δ non-zero entries.
Then there exists a range of values for γ (given by (10))
so that (A∗, B∗) is the unique optimizer of (2) if

δµ <
1
24

,

where µ is defined by (11).

5.2 Exact recovery for random matrices

Next, we describe classes of random matrices such that if
A∗ and B∗ are drawn from these classes, then we have
exact recovery with very high probability. In particular,
we show that the conditions specified by Corollary 5
are satisfied with high probability by matrices randomly
drawn from these classes.

Random orthogonal model (Candes and Recht [2008])
The matrix B∗ = UΣV ′ is constructed as follows: The
singular vectors U, V ∈ Rn×k are drawn uniformly at
random from the collection of rank-k partial isometries
in Rn×k. The singular vectors in U and V need not be
independent from each other. No restriction is placed on
the singular values.

Random sparsity model The matrix A∗ is such that
supp(A∗) is chosen uniformly at random from the collec-
tion of all support sets of size m. There is no assumption
made about the values of A∗ at locations specified by
supp(A∗).



For the random orthogonal model, the value of µ was
computed by Candes and Recht [2008].
Lemma 6. Suppose that a rank-k B∗ is drawn according to
the random orthogonal model. Then there exists a constant
α1 such that µ (defined by (11)) is bounded as

µ ≤ α1

√
max(k, log(n))

n
,

with very high probability.

Finally, we obtain a degree bound on matrices A∗ drawn
according to the random sparsity model.
Lemma 7. Suppose that A∗ is drawn according to the ran-
dom sparsity model with m non-zero entries. Let δ be the
maximum number of non-zero entries in each row/column
of A∗. We have that

δ ≤ m

n
log(n),

with high probability.

The proof of this lemma follows from a standard balls and
bins argument, and can be found in several references (see
for example (Bollobas [2001])). Combining the previous
two lemmas with Corollary 5, we have the following result
for exact recovery for matrices drawn from the random
orthogonal model and the random sparsity model.
Theorem 8. Suppose that a rank-k B∗ is drawn from the
random orthogonal model, and that A∗ is drawn from the
random sparsity model with m non-zero entries. Given
C = A∗ + B∗, there exists a range of values for γ (given
by (10)) so that we can recover (A∗, B∗) exactly with high
probability using the SDP (2) provided

m ≤ α
n1.5

log(n)
√

max(k, log(n))
,

for some constant α.

Thus, for matrices B∗ with rank k smaller than n, the SDP
(2) yields exact recovery with high probability even when
the size of the support of A∗ is super-linear in n.

6. SIMULATION RESULTS

We describe two sets of experiments to evaluate the perfor-
mance of our convex program (2) in recovering sparse and
low-rank matrices. All simulations were performed using
YALMIP [2004] and the SDPT3 software for solving SDPs
(Toh et al. [2006]).

In the first experiment, we generate symmetric positive-
definite rank-k matrices B∗ as follows. We construct a
matrix P ∈ Rn×k with i.i.d Gaussian entries, and let
B∗ = PP ′. To generate sparse symmetric matrices A∗,
we choose a symmetric support set supp(A∗) of size m
uniformly at random. The values of A∗ within this support
are i.i.d Gaussian. Letting C = A∗+B∗, we solve the SDP
(2) and conclude that recovery is successful if the solution
(Â, B̂) satisfies tolγ ≤ 10−3 with

tolγ =
‖Â−A∗‖F

‖A∗‖F
+
‖B̂ −B∗‖F

‖B∗‖F
(12)

for some 3 γ. The following table shows the success rate of
exact recovery with n = 20 for various values of m, k with
3 We perform our experiment for a large range of values of γ and
conclude that recovery is exact if (12) is satisfied for some γ in this

Fig. 2. Comparison between diffγ and tolγ for a randomly
generated model with n = 30, k = 6,m = 100.

the above procedure repeated 50 times:
m=30 m=35 m=40 m=45

k=3 98% 96% 90% 82%
k=6 54% 46% 22% 6%

Thus, for reasonably low-rank matrices B∗ and for suffi-
ciently sparse A∗, (2) recovers these matrices from C =
A∗ + B∗ exactly.

Next, we discuss an experiment that suggests a heuristic
for choosing the regularization parameter γ in (2). We
generate a single random instance of B∗ and A∗ by the
same procedure as above, but with n = 30, k = 6,m = 100.
We solve the convex program (2) for numerous values of
γ, beginning with γ = 0.25 and incrementing the value of
γ by ε = 0.02. For each γ, we compute

diffγ =
‖Âγ−ε − Âγ‖F

‖Âγ‖F

+
‖B̂γ−ε − B̂γ‖F

‖B̂γ‖F

. (13)

We also compute the quantity tolγ of (12) in order to
check if A∗, B∗ are recovered successfully. Figure 2 shows
the results of this experiment. Notice that whenever the
experiment is successful (i.e., when tolγ is small), the value
of diffγ also tends to be zero. If the experiment is not
successful, diffγ typically does not tend to be close to zero
and in fact changes rapidly. Therefore, if a good guess for
γ is not available, one could solve (2) for a range of γ’s and
choose a solution corresponding to a γ in a range (γ1, γ2)
in which diffγ is stable and near zero.

7. DISCUSSION

We presented a method for decomposing a matrix C =
A∗ + B∗ into its components A∗, B∗, where A∗ is sparse
and B∗ is low-rank. Such a problem arises in a variety
of situations in statistical model selection and in system
identification. Our approach is based on a convex opti-
mization formulation that can be solved efficiently using
SDP solvers. We provide a set of sufficient conditions
that guarantee exact recovery of A∗, B∗. These conditions
essentially require that the row-space and column-space of
the low-rank matrix B∗ are “incoherent” with respect to
the standard basis, and that A∗ does not have too many
range. We typically found that whenever exact recovery was possible,
values of γ around 0.4 provided the right level of trade-off.



non-zeros in each row/column. Our sufficient conditions
can also be used to conclude that when A∗ and B∗ are
drawn from certain natural random ensembles, the SDP
(2) succeeds in exact recovery with high probability.

Our analysis extends beyond the results presented here.
In the model selection problem presented in Section 2
the graphical connections between latent and observed
variables may be sparse (i.e., the matrix Jo,h in (1)
may be sparse). This may potentially pose problems in
terms of the incoherence conditions described in Section 5
being satisfied, as we require that the row and column
spaces of B∗ (in this case B∗ = −Jo,hJ−1

h Jh,o from (1))
must be incoherent with the coordinate axes. However,
one can overcome this problem using the graph-theoretic
concept of an expander (Hoory et al. [2006]) to describe
connections between latent and observed variables in order
to impose a minimal level of incoherence. In addition,
our analysis can also be used to develop an “uncertainty
principle” that characterizes rank-sparsity incoherence for
arbitrary matrices using the quantities ξΩ and ξT defined
by (3) and (4). We will discuss more details in a longer
report.

An important problem for further research is that of
approximately decomposing a matrix into sparse and low-
rank components when the specified matrix C is not
exactly of this form (for example, due to noise). Another
interesting question is that of exploiting structure in the
SDP (2) in order to provide for a more efficient solution
than that provided by generic solvers, which may not
exploit special structure.
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Appendix A. SEMIDEFINITE FORMULATION

The problem (2) can be recast as a semidefinite program
(SDP). We appeal to the fact that the spectral norm ‖ · ‖
is the dual norm of the nuclear norm ‖ · ‖∗:

‖M‖∗ = max{trace(M ′Y )| ‖Y ‖ ≤ 1}.
Further, the spectral norm admits a simple semidefinite
characterization (Recht et al. [2007]):

‖Y ‖ = min
t

t s.t.

(
tIn Y

Y ′ tIn

)
� 0.

The dual of this SDP is

‖M‖ = min
W1,W2

1
2
(trace(W1) + trace(W2))

s.t.

(
W1 M

M ′ W2

)
� 0.

Putting these facts together, (2) can be rewritten as

min
A,B,W1,W2,Z

γtrace(Z1n×n) +
1
2
(trace(W1) + trace(W2))

s.t.

(
W1 B

B′ W2

)
� 0

− Zi,j ≤ Ai,j ≤ Zi,j , ∀(i, j)
A + B = C. (A.1)

Here, 1n×n ∈ Rn×n refers to the matrix that has 1 in every
entry.


