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Abstract— Max-product belief propagation is a local, iterative as an integer program, which has a natural LP relaxation. In
algorithm to find the mode/MAP estimate of a probability distri-  this paper we prove the following

bution. While it has been successfully employed in a wide variety S
of applications, there are relatively few theoretical guarantees 1) If the LP relaxation is tight, then max-product always

of convergence and correctness for general loopy graphs that converges, and that too to the correct answer.
may have many short cycles. Of these, even fewer provide exact 2) If the LP relaxation is loose, then max-product does not
“necessary and sufficient” characterizations. converge.

In this paper we investigate the problem of using max-product . ) . .
to find the maximum weight matching in an arbitrary graph with Bayati, Shah and Sharma [8] were the first to investigate

edge weights. This is done by first constructing a probability max-product for the weighted matching problem. They showed
distribution whose mode corresponds to the optimal matching, that if the graph is bipartite then max-product always con-
and then running max-product. Weighted matching can also be yerges to the correct answer. Recently, this result has been
posed as an integer program, for which there is an LP relaxation. o, 4ended td-matchings on bipartite graphs [9]. Since the LP
This relaxation is not always tight. In this paper we show that . ) . . ) ' .
relaxation is always tight for bipartite graphs, the firsttpa

1) If the LP relaxation is tight, then max-product always . .
converges, and that too to the correct answer. of our results recover their results and can be viewed as the

2) If the LP relaxation is loose, then max-product does not COITect generalization to arbitrary graphs, since in ttasec
converge. the tightness is a function of structure as well as weights.
This provides an exact, data-dependent characterization of max ~ We would like to point out three features of our work:

product performance, and a precise connection to LP relaxation, 1) It provides anecessary and sufficienbndition for con-
which is a well-studied optimization technique. Also, since LP

relaxation is known to be tight for bipartite graphs, our results
generalize other recent results on using max-product to find
weighted matchings in bipartite graphs.

vergnce of max-product in arbitrary problem instances.
There are very few non-trivial classes of problems for
which there is such a tight characterization of message-

passing performance.
l. INTRODUCTION 2) The characterization islata dependentit is decided

Message-passing algorithms, like Belief Propagation and Pased not only on the graph structure but also on the
its variants and generalizations, have been shown empir- Weights of the particular instance. _
ically to be very effective in solving many instances of 3) Tightness of LP relaxations is well-studied for broad
hard/computationally intensive problems in a wide range of  classes of problems, making this chracterization promis-
fields. These algorithms were originally designed for exact INg in terms of both understanding and development of
inference (i.e. calculation of marginals/max-marginaisyee- new algorithms.
structured probability distributions. Their applicatitm gen- Relations, similarities and comparisons between maxymod
eral graphs involves replicating their iterative local amd and linear programming have been used/mentioned by several
rules on the general graph. In this case however, there atghors [10-12], and an exact characterization of thigiogla
no guarantees of either convergence or correctness inajenehip in general remains an interesting endeavor. In paaticu

Understanding and characterizing the performance ibwould be interesting to investigate the implications ln¢ge
message-passing algorithms in general graphs remainsresults as regards elucidating the relationship betweeative
active research area. [1,2] show correctness for graphs witecoding of channel codes and LP decoding [13].
at most one cycle. [3,4] show that for gaussian problems
the sum-product algorithm finds the correct means upon con-
vergence, but does not always find the correct variances. [SA matchingin a graph is a set of edges such that no two
6] show asymptotic correctness for random graphs assdciagglges in the set are incident on the same node. Given a graph
with decoding. [7] shows that if max-product convergesnthez = (V, E), with non-negative weighta), on the edgeg €
it is optimal in a relatively large “local” neighborhood. E, theweighted matching probleis to find the matching//*

In this paper we consider the problem of using max-produathose edges have the highest total weight. In this paper we
to find the maximum weight matching in an arbitrary grapfind it convenient to refer to edges bothas E and as(s, j),
with arbitrary edge weights. This problem can be formulategherei,j € V.

II. WEIGHTED MATCHING AND ITS LP RELAXATION



Weighted matching can be written as the following integer  what this computation tree distribution corresponds to

program (IP): for the weighted matching problem in the next section.
max Zwexe 2) If max-productdoesconverge, the resulting beliefs are
optimal in a large “local” neighborhood [7]: let be
s.t. Z z;; <1 forallieV Q) the assignment as given by the converged max-product
JEN(3) andz be any other assignment. If the variables assigned

different values inz and z form an induced graph
containing at most one cycle in each component, then
The LP relaxation of the above problem is to replace the  p(Z) > p(Z).
constraintz, € {0,1} with the constraintz, > 0. This
relaxation is in general not tighti.e. there might exist non-
integer solutions with strictly higher value than any intdg
solution. It is known however that the LP relaxatioraisvays
E?ph;rftﬁref)riz{:rsn;gtrj?sg ‘:’iéﬂ?nr::;tg; ;ﬁgalf;hreegigi (;l:l]zlgiﬁ’ ways to construct this distribution for treameinstance of a
graphG. We now present one constructfon

is not bipartite, the tightness of the LP relaxation will ded . . . .
on the edge weights: the same graph may have tightness foﬁ‘SSOCIate a binary variable. € {0,1} with each edge

one set of weights and looseness for another set. e € B, and let )
The dual of the above linear program is thertex cover plz) = = 1 WeTe )
L . {2 eny zii <13 €
problem: minimize the total of the weights that need to be 4 ile_x[/ A eEl—[E

placed on nodes so as to “cover” the edge weights: (DP) ere /(i) represents the neighborhood of nade G, andZ
min Z 2 is a normalizing constant. The variable can be interpreted

as follows: z, = 1 indicates thate € M*, while z, = 0
st. wy <z +z; forall (i,j) € E indicatese ¢ M*. The termly~ . <1y enforces the
cosntraint that of the edges incident to naogleat most one

can be assigned the value “1". Thus, it is easy to see that

Lemma 1 (complimentary slackness)then the LP relax- p(z) > 0 if and only if the edges withr, = 1 constitute a
ation is tight, the optimal matching/* and the optimal dual matching inG. Furthermore, the mode gfcorresponds to the

z. €{0,1} foralecFE

IV. MAX-PrODUCT FORWEIGHTED MATCHING

The problem of finding\/* can be formulated as the prob-
lem of finding the mode of a suitably (artifically) construtte
probability distributionp. In fact, there are in generakveral

z; >0 foralli

variablesz and satisfy the following properties: max-weight matching\/*.
1) if (i,5) € M* thenw;; = z + z The factor graph max-product involves.messages between
2) if (i,7) ¢ M* thenw;; < z + 2; vgrl_ables and factors. In our case the_ variables are thesedge
3) if no edge inM* is incident on node, then z; = 0 (_z,j) € E, an_d the factors are nodeésc V. Thus at any
4) 2 < max.w, for all i time ¢ there will be messages;; , ;) from node (factor)i

to edge (variable)i, j), as well as messageﬂzi_j)ﬂ.. Each
[1l. BACKGROUND ON THEMAX-PRODUCTALGORITHM  message will be a length-two vector of real numbers, indexed
Thefactor graph[14] of a probability distribution representsby 0 and 1. The message update rules can be simplified to the
the conditional independencies of the distribution. ThexMafollowing:

Product (MP) algorithm is a simple, local, iterative messag L] = et ]

passing algorithm that can be used (in an attempt) to find ij;fl)” , = (09)

the mode/MAP estimate of a probability distribution. Nodes ™ ;0] = mj_; ;[0]

and factors pass messages to each other, and nodes maintain ,t+1 n] = H mty . [0]

“peliefs”, which represent the max-marginals. When max- i) RN ) (k)

product is applied to problems involving general “loopy” 1 ! .

graphs, one of the following three scenarios may result: mi—»(i,j)[o] = max{ H M iy —il0]
1) The algorithm may not converge. REN (D)) .
2) The algorithm may converge, but to an incorrect answer. ol M, iy—il1l}

3) The algorithm may converge to the correct answer. . . o .
i . Also, at every time each edge (variable) maintains a belief
As has been mentioned, here has been siginifcant work %’ctorbfij) as follows:

tempting to understand the properties of MP for loopy graphs

For the results in this paper, we will use the following two b yl0] = mi_; 0] x mi_ ;0]

insights: bzi Sl
1) At any time, the belief of the max-product algorithm ’

for a given variable corresponds to the belief at the rootlThis construction is different from the one in [8], which hadbairwise
model with variables corresponding to nodes in the graph.d@dew the results

of the_ correspondin@om_putation treed_iStribUtion (2] _of this paper continue to hold when the construciton in [8inisdified to be
associated with that variable at that time. We descrila@plicable to general graphs

_ ewqjjmfj (i,5) [1} X mfg(l,]) [1]

= J



The p defined above can be used to fifd* as follows: first
run max-product. At any timeé and for each edge there will

be two belief$? [0] andbt[1]. If max-product converges, assign

V. EQUIVALENCE OF MAX-PRODUCT AND LP
RELAXATION

We are now ready to prove the main result of this paper:

to each variable the value (i.e. “0” or “1") that correspondge equivalence of Max-Product and LP Relaxation. Before
to the stronger belief. Then, declare the set of all edgetoset, o proceed, we define the following terms

“1” to be the max-product output.

A. The Computation Tree for Weighted Matching

Our proofs rely on the computation tree interpretation [2, 2)
15] of the Max-product beliefs. We now describe this inter-

pretation when max-product is applied gaas given in (2).

For an edge let T (k) be thefull depth% computation tree
rooted ate. This is generated recursively: take (k — 1) and

to each lealy add as children a copy of each of the neighbors

of v in G, except for the unique neighbor ofwhich is already

present inl’,(k—1). Also, each new edge has the same weight
as its copy in the originaly. The recursion is started with
the single-edge tre@'.(1) = e, both of whose endpoints are

leaves. This initial edge is the@ot of T.

Consider now the “full synchronous” max-product, where a
each time every message in the network is updated. In thés ¢

the computation tre&, (k) for edgee at timek will be T, (k).

Alternatively, max-product may be executed asynchronou

1) We say that theLP relaxation is tightif the linear
program (LP) obtained by relaxing the integer program
(1) has a unique optimal solution at which all valugs
are either 0 or 1.

We say thatmax-product converges by stépif the
variable assignments (0 or 1) that maximize the beliefs

at each node remain constant once the associated com-

putation tree is full up to depth at least Note that this

includes both synchronous and asynchronous message

updates. We say thanhax-product converged there
exists somek < oo such that max-product converges
by stepk. Finally, we say thamax product converges
to the correct answeif the beliefsb. at convergence
are such thab.[1] > b.[0] if and only if e € M™*, and
be[1] < b[0] if and only if e ¢ M*

well-recognized that max-product may perform poorly in the
presence of multiple optima, and that characterizing perfo

dpance in this case is hard. For the rest of this paper we will

with only a subset of the messages updated in every time sfgtSume the following:

In this caseT. (k) will be a sub-tree ofl’. (k). In either case,
the computation tree interpretation states at titnee have
bE[1] > v*[0] if and only if the root ofT. (k) is a member of
a max-weight matching on the tré& (k).

Al M is the unique optimal matching.

A2 The linear program always has a unique optimal solu-
tion. Note that this can be fractional, but it has to be
unique.

The figure below shows an example where on the left j§ Max-product is as Powerful as LP Relaxation

G: the four-cycleabed and the chordac, with a matching

M = {(a,b),(c,d)} depicted in bold. On the right is the

computation tre€l’, ;) (4) which is the full tree of depth 4
rooted at edgéa, b). The bold edges depict the projectidfy
of M onto T(a,b) (4): an edgee in the tree is inMy if and
only if its copy inG is in M.

Lemma 2:Let M be a matching inG and T.(k) be a
computation tree. Lefr be the set of all copies iff.(k)
of all edges inM. Then, My is a matching ifl, (k). Also, if
M is maximal inG, My is maximal inT,.

In this section we prove that if the LP relaxation is tightrthe
Max-Product converges to the correct answer. Recall thahwh
the LP is tight, part 2 of Lemma 1 says that(if j) ¢ M*
thenw;; < z; + z;. The uniqueness assumptiof$-2 further
imply that the inequality is strictw;; < z; + z;. Another way
of saying this is that there exists an> 0 such that

for all (4, 7) ¢ M* 3)

Theorem 1:Consider a weighted graph for which the LP
relaxation is tight. Then max-product converges to theezarr
answer by steﬁ%, wherew,, ., = max. w, is the weight
of the heaviest edge, andsatisfies (3).

Proof:

Let M* be the optimal matching o&'. For max-product to
be convergent and correct, we need th{dl] > b:[0] for all
e € M* andd.[1] < bL[0] for all e ¢ M*, and for all¢ such
that 7..(t) is full upto depth2¥mes,

So suppose that for suchtahere exists am ¢ M* such
that b [1] > bL[0]. Then, there exists a matching in 7,(t)
such thai(a) the roote € M, and(b) M has the largest weight

wijgzi—i—zj—e

Of courseT, will also contain other matchings that are noamong matchings off(¢). Let M}, be the set of all edges
projections of matchings it+. Finally, we say that a (possibly in T.(¢) that are copies of edges iW*. By lemma 2,M}

not full) tree T, (k) is full upto depthk;, if the full tree T, (k;)
is contained irnl, (k).

is a maximal matching off.(t). Also, the roote ¢ M7 by
assumption.

t We also need to make some unigueness assumptions. It is



The symmetric differenceM;AM consists of disjoint is not possible for max-product to converge to an incorrect
alternating paths if.(¢): each path will have every alternateanswer: it will either not converge at all, or convergeMt".
edge inM; and all other edges /. Let P be the path We do not use this explicitly in the proofs below, but it
that contains the root. We now show thato(P N M;) > strengthens the results as mentioned above.
w(PNM). We now proceed with showing that max-product does not

Recall that the optimal dual solution assigns to each riodeonverge to the correcd/* when LP is loose. As a first
in G a “dual value”z; > 0. Associate now with each node instep, we need a combinatorial characterization of when the
T.(t) the dual value of its copy id7. Then, by Lemma 1 we LP relaxation is loose. We now make some definitions. We
have thatw,; = z; + z; for each(i,j) € P N Mj. Suppose say that a node is saturatedby a matching) if there exists
now that neither endpoint a? is a leaf ofT,(¢). In this case, an edgee € M that is incident tov.

we have A blossomwith respect to a matching/ is an odd cycle
w(PNM7) = Y 2 C with 1“1 edges inM.2 Note that a blossom has a unique

iep base a node not saturated by any edgelim M. A stemmed

On the other hand, we know that (3) holds for each edge ltossomB,; (w.r.t M) is a blossonC, along with an alternating

PN M. Adding these up gives path (stem)P that starts at the base 6f, and starts with an

edge inM. Also, P should be such that the s&f — (P N
M) + (P — M) remains a matching id.

A bad stemmed blossoi® one in which the edge weights
By assumption, the roat € PN M, so|P N M| > 1 and satisfy
hencew(P N M}) > w(P N M) when no endpoints oP are

w(PAM) < > z —elPNM|
i€EP

leaves. w(CNM)+2w(PNM) < w(C—-M)+2w(P—M)
Suppose now that exactly one of the endpointsf P is a
leaf of Te(t) In this case, we have that Note that it may well be the case t”dﬂ = O, in which case
B, is just an odd cycle. The following is an example of a
wPOM;) > >z — 2z = D % — Wnas bad stemmed blossom. The bold edges are the on&s, ithe
iep iep numbers denote the weights of the corresponding edges, and

where the last inequality follows from part 4 of Lemma 1 Alsagthe last node has no edge ol incident on it. The blossom
T.(t) is assumed to be full up to depth so this implies that C'in this case is the cyclebcde, and noder is its base. The
|PN M| > % This means that path/stemP is cfghi.
k
w(PNM) < z; —€—
( ) ; 5
Now, sincek > 2%¢maz this implies thato(PNM;) > w(PN
M). The final case, where both endpoints Bfare leaves,
works out in the same way, except that ndfdn M| > k and
wPNMF) >3 icpzi — 2Wnaz-

Thus, in any case, we have tha{P N M}) > w(P N M).
Consider now the set of edgéd — (P N M) + (P N M. A blossom pairB; is two blossomsC; and C; and an
This set forms a matching ofi,(¢), and has higher weight alternating pathP between the bases of the two blossoms
than M. This contradicts the choice dff, and so establishessuch thatP begins and ends with edges . A bad blossom
that bt [1] < bi[0] for all e ¢ M*. A similar contradiction pair is one in which the edge weights satisfy
argument can be used to establish thidt] > b%[0] for all
e € M*. This completes the proof. [ w(Cy N M)+ w(Ce N M) + 2w(P N M)
< w(Cy —M)+w(Cy— M)+ 2w(P — M)

B. LP Relaxation is as Powerful as Max-product

In this section we prove that if the LP relaxation is loos&he following is an example of a bad blossom pair.
then max-product does not converge to the correct answer.
Before we do so however, we note that this implies a stronger
result: that when LP is loose then in fact max-product does
not converge at all.

Lemma 3:Consider the distributiop(z) as given in (2). If
Max-Product converges, then its output exactly correspoad
the true optimal matching/*.

The proof of this lemma uses the “local optimality” result
of Weiss and Freeman [7]. In particular, foiit turns out that 2Blossoms were first defined in [16], which also provided the &ficient
local optimality implies global optimality. This means thii algorithm for weighted matching in arbitrary graphs.




The following proposition provides a combinatorial charaanax-weight matching off.. Lemma 4 implies thaf\/r will
terization of when the LP relaxation is loose, and is crutdal be a projection ofA/* in a distancgd’| neighborhood of the
the proof of the subsequent theorem. root. Also, starting from the roat, each of P, and P, will
Proposition 1: If the LP relaxation is loose, then therehave a unique copy, sai; and R, respectively, inT,, with
exists a bad stemmed blossom, or a bad blossom pair, wifty |, |R2| < |V|. Since P, and P, are alternating w.r.tA/*,
respect to the optimal matchiny *. it follows that R; and R, will be alternating with respect to
Proof: In appendix. M. Also, the setS = Ry Ue U R, forms an alternating path
We use the presence of these “bad” subgrapl@ to show on Te with respect toMr, and this begins and ends in nodes
that max-product does not converge to the correct answensaturated by/r. Thus, M7 can be augmented by this path:
Before we do so, we need one additional lemma. This statbe setMr — (SN Mr) + (S — Mr) will be a matching on
that if max-product converges by stégo some matchings Te.
on G, then the optimal matchind/; on the computation tree  Also, the weight gain from doing this augmentation will be
looks like M in the neighborhood of the root. exactly d; + da — w(e), which we know is strictly positive.
Lemma 4: Suppose max-product converges to a matchinihus, this shows thaf/r is not the optimal matching on
M in G by stepk. Consider any edge, somem > 1 and a 7., which contradicts the choice al/r. This means that
corresponding computation trée which is full up to depth our assumption about max-product convergenceMo is
k+m. Let My be the max-weight matching on the tree. Thercorrect.
for any edgef € T, that is within distancen of the roote, Thus, we see that if there exists a bad stemmed blossom
f € My if and only if its copy f; in G is such thatf, € M. W.r.t. M* in G then max-product does not converge "
Note that the above lemma also applies to the roof the A similar argument holds for the case of a bad blossom pair
tree. We are now ready to state and prove the main result/8f, except that instead of path and P, above we now
this section. Recall that the belief on an edge at convergencehave to look at alternating walkd; and W that live in By
is incorrect if eithere € M* butb.[0] > b.[1], ore ¢ M* but and are long enough. These walks can then be mapped to an
be[1] > be[0]. augmenting path off, which strictly improvesM, leading
Theorem 2:Consider a weighted grap for which the toa contradiction as was seen in the case of the patrend
LP relaxation is loose. Then, the max-product beliefs do né- This completes the proof. u
converge to the correct/*: for any givenk, there exists a
k1 > k and computation tre€g,, e € E such that eacH, is
full upto depthk;, but the beliefs on some of the edges are The results of this paper can be generalized to the case
incorrect. Lemma 3 further implies that in fact in this casef perfect matchings)-matchings and perfe¢tmatchings in
max-product does not converge at all. general graphs, where similar results hold. In this papet-ma
Proof: product is shown to be as powerful as LP relaxation, but it
Let M* be the max-weight matching o6. Since the Would be more interesting to outline a diremterationallink
LP relaxation is loose, by Prop. 1, there exists either a bA§fween max-product and a linear programming algorithm. As
stemmed blossom or a bad blossom pair wivit:. Suppose an e€xample, [8] shows that for bipartite matching max-pavdu
first that it contains a bad stemmed bloss&n and consider has an operational correspondance with the auction ahgorit
somee € C'N M* that is in the “blossom” part o3, (as [17]- Also, the form of the message update equations suggest
opposed to the stem) and alsoAifi*. From the two nodes of that it can be implemented via an equivalent message passing
e, make maximal alternating pattig and P» that remain in UPdate rule between just the nodes of the gréplinstead of
B, and start out in opposite directions 6h For the stemmed Naving messages go from nodes to edges and vice versa.
blossom example above, ifis the edge(a,b) then the two ~ More generally, it would be interesting to see if the ideas
paths will bebefghi and aedcf ghi. pre;ented in this paper could be usgd/genealized to show con
Letd; = w(P, — M*) —w(P, N M*), and similarlyd, Nections between linear programming and belief propagatio
for P,. d; represents the change in the weight of the matchirfgy Other applications.
if each edge inP; were “switched”, i.e. their membership in

VI. DISCUSSION
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optimality result [7].
By assumptionB; is a bad blossom and hence we have that
dy + da — w(e) > 0. APPENDIX
Suppose max-product convergesit' by stepk. Consider Proof of Proposition 1
now the computation tre&, which is full upto depthk + We now show that if the LP relaxation is loose then there
[V'|, where|V| is the number of nodes i&v. Let My be the exists in the graph either a bad stemmed blossom or a bad



blossom pair, with respect to the optimal matchihg. Let to show is that they are “bad”. Le®; be a stemmed blossom
z be the optimal (fractional) solution to the LP relaxation. in G’, consisting of blossomi’ and stemP. Then, there exists
Let £’ be the set of all edgessuch that eithefa) e € M*, somee > 0 such that ifz.,e € C N M* is increased by,
or (b) e ¢ M* andz. > 0. Then, E’ will contain at least one z.,e € C—M* is decreased by, x.,e € PNM* is increased
edgee ¢ M*, because if ale ¢ M* hadz. = 0 then the by 2¢, andz.,e € C — M* is decreased bge, then the new
LP would be tight. LetG’ = (V, E’) be the subgraph off solution remains feasible for the LP. Also, the new solution
having only the edges it’. An cycle augmentations any weighs
even cycle in which every alternate edge isifi*. A path . . . .
augmentatioris any path in which every alternate edge is if [w(C N M) +2w(P N M) —w(C — M7) - 2w(P - M7)]
M, and which begins and ends in nodes unsaturatedi/by more thanz. Forz to be the unique optimal of the LP, this has
For any augmentatiod, we have that\/* — (ANM*)+(A— to be strictly negative and thus any stemmed blosg®ris
M*) is also a matching i6’. Thus, if M* is the unique max- bad. A similar argument shows that any blossom pair is bad.

weight matching it has to be that(AN M*) > w(A — M™*).

Lemma 5:G’ cannot contain any augmentations: cycles or
paths.

Proof: Let A be an augmentation i&’. By assumption, [1]
z. > 0 for all e € A — M*, which implies thatz, < 1 for
all e € AN M*. Thus, there exists some > 0 such that (2
decreasing each.,e € A — M* by e and increasing each [3]
ZTe,e € AN M* by e represents a valid new feasible point
for the LP. The weight of this new point exceeds the weighf4]
of z by e(w(An M*) —w(A — M*)) > 0. However this
contradicts the optimality of;, and thusG’ cannot contain -
any augmentation. [ ]

Let S be the longest alternating sequence of edge&’in
and letv; andwv, be its endpoints. By the lemma above, bothl6l
cannot be unsaturated. We say thabr v, is asaturated leaf
if it is saturated byM* and there exist no edges & — M*
incident on it. Also, note that an endpoint is saturated d an
only if its corresponding edge if is also in M*.

The fact thatS is the longest sequence means that it canngg;
be extended further beyond andw,. This implies that one
of the following cases must occur:

1) Bothwv; andwvy are both saturated leaves
In this case, the constraints at and v, are loose. So, [10]
there exists are such that if allz.,e € S — M* are
decreased by and all z.,e € SN M* are increased [11]
by e then the new solution remains feasible. This new
solution will have strictly higher weight tham, which
is a contradiction. Thus this case cannot occur.
vy IS a saturated leaf and, is unsaturated.

An e-perturbation argument like the one above can ke
used to show that this case too cannot occur.
vy is saturated byM*. but is not a leafvy is either
[14]
unsaturated, or a saturated leaf.
SinceS cannot be extended, it has to be that all edges in
G’ — M* incident tov; have other endpoints i. Lete [19]
be one such edge. Them,)S forms a stemmed blossom:
the resulting cycle has to be odd, and the remaining paré]
of S will be a stem whose endpoint ig. Note that in
this case it has to be that the constrainbats loose.
Bothwv,; andwvy are saturated by/*, but are not leaves.
Applying the above blossom argument to bath and
vo Yyields the existence of a blossom pair.

Thus if the LP relaxation is loose then there exists a

stemmed blossom or a blossom pair. Now all that is remaining

(7]

[12]
2)

3)

[17]
4)

This finishes the proof of the proposition.
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