
Equivalence of LP Relaxation and Max-Product for
Weighted Matching in General Graphs

Sujay Sanghavi
LIDS, MIT

sanghavi@mit.edu

Abstract— Max-product belief propagation is a local, iterative
algorithm to find the mode/MAP estimate of a probability distri-
bution. While it has been successfully employed in a wide variety
of applications, there are relatively few theoretical guarantees
of convergence and correctness for general loopy graphs that
may have many short cycles. Of these, even fewer provide exact
“necessary and sufficient” characterizations.

In this paper we investigate the problem of using max-product
to find the maximum weight matching in an arbitrary graph with
edge weights. This is done by first constructing a probability
distribution whose mode corresponds to the optimal matching,
and then running max-product. Weighted matching can also be
posed as an integer program, for which there is an LP relaxation.
This relaxation is not always tight. In this paper we show that

1) If the LP relaxation is tight, then max-product always
converges, and that too to the correct answer.

2) If the LP relaxation is loose, then max-product does not
converge.

This provides an exact, data-dependent characterization of max-
product performance, and a precise connection to LP relaxation,
which is a well-studied optimization technique. Also, since LP
relaxation is known to be tight for bipartite graphs, our results
generalize other recent results on using max-product to find
weighted matchings in bipartite graphs.

I. I NTRODUCTION

Message-passing algorithms, like Belief Propagation and
its variants and generalizations, have been shown empir-
ically to be very effective in solving many instances of
hard/computationally intensive problems in a wide range of
fields. These algorithms were originally designed for exact
inference (i.e. calculation of marginals/max-marginals)in tree-
structured probability distributions. Their applicationto gen-
eral graphs involves replicating their iterative local update
rules on the general graph. In this case however, there are
no guarantees of either convergence or correctness in general.

Understanding and characterizing the performance of
message-passing algorithms in general graphs remains an
active research area. [1, 2] show correctness for graphs with
at most one cycle. [3, 4] show that for gaussian problems
the sum-product algorithm finds the correct means upon con-
vergence, but does not always find the correct variances. [5,
6] show asymptotic correctness for random graphs associated
with decoding. [7] shows that if max-product converges, then
it is optimal in a relatively large “local” neighborhood.

In this paper we consider the problem of using max-product
to find the maximum weight matching in an arbitrary graph
with arbitrary edge weights. This problem can be formulated

as an integer program, which has a natural LP relaxation. In
this paper we prove the following

1) If the LP relaxation is tight, then max-product always
converges, and that too to the correct answer.

2) If the LP relaxation is loose, then max-product does not
converge.

Bayati, Shah and Sharma [8] were the first to investigate
max-product for the weighted matching problem. They showed
that if the graph is bipartite then max-product always con-
verges to the correct answer. Recently, this result has been
extended tob-matchings on bipartite graphs [9]. Since the LP
relaxation is always tight for bipartite graphs, the first part
of our results recover their results and can be viewed as the
correct generalization to arbitrary graphs, since in this case
the tightness is a function of structure as well as weights.

We would like to point out three features of our work:

1) It provides anecessary and sufficientcondition for con-
vergnce of max-product in arbitrary problem instances.
There are very few non-trivial classes of problems for
which there is such a tight characterization of message-
passing performance.

2) The characterization isdata dependent: it is decided
based not only on the graph structure but also on the
weights of the particular instance.

3) Tightness of LP relaxations is well-studied for broad
classes of problems, making this chracterization promis-
ing in terms of both understanding and development of
new algorithms.

Relations, similarities and comparisons between max-product
and linear programming have been used/mentioned by several
authors [10–12], and an exact characterization of this relation-
ship in general remains an interesting endeavor. In particular,
it would be interesting to investigate the implications of these
results as regards elucidating the relationship between iterative
decoding of channel codes and LP decoding [13].

II. W EIGHTED MATCHING AND ITS LP RELAXATION

A matchingin a graph is a set of edges such that no two
edges in the set are incident on the same node. Given a graph
G = (V,E), with non-negative weightswe on the edgese ∈
E, theweighted matching problemis to find the matchingM∗

whose edges have the highest total weight. In this paper we
find it convenient to refer to edges both ase ∈ E and as(i, j),
wherei, j ∈ V .

Weighted matching can be written as the following integer
program (IP):

max
∑

wexe

s.t.
∑

j∈N (i)

xij ≤ 1 for all i ∈ V (1)

xe ∈ {0, 1} for all e ∈ E

The LP relaxation of the above problem is to replace the
constraint xe ∈ {0, 1} with the constraintxe ≥ 0. This
relaxation is in general not tight, i.e. there might exist non-
integer solutions with strictly higher value than any integral
solution. It is known however that the LP relaxation isalways
tight for bipartite graphs: no matter what the edge weights,the
bipartite-ness ensures tightness of the LP relaxation. If agraph
is not bipartite, the tightness of the LP relaxation will depend
on the edge weights: the same graph may have tightness for
one set of weights and looseness for another set.

The dual of the above linear program is thevertex cover
problem: minimize the total of the weightszi that need to be
placed on nodes so as to “cover” the edge weights: (DP)

min
∑

zi

s.t. wij ≤ zi + zj for all (i, j) ∈ E

zi ≥ 0 for all i

Lemma 1 (complimentary slackness):When the LP relax-
ation is tight, the optimal matchingM∗ and the optimal dual
variablesz and satisfy the following properties:

1) if (i, j) ∈ M∗ thenwij = zi + zj

2) if (i, j) /∈ M∗ thenwij ≤ zi + zj

3) if no edge inM∗ is incident on nodei, thenzi = 0
4) zi ≤ maxe we for all i

III. B ACKGROUND ON THEMAX -PRODUCT ALGORITHM

Thefactor graph[14] of a probability distribution represents
the conditional independencies of the distribution. The Max-
Product (MP) algorithm is a simple, local, iterative message
passing algorithm that can be used (in an attempt) to find
the mode/MAP estimate of a probability distribution. Nodes
and factors pass messages to each other, and nodes maintain
“beliefs”, which represent the max-marginals. When max-
product is applied to problems involving general “loopy”
graphs, one of the following three scenarios may result:

1) The algorithm may not converge.
2) The algorithm may converge, but to an incorrect answer.
3) The algorithm may converge to the correct answer.

As has been mentioned, here has been siginifcant work at-
tempting to understand the properties of MP for loopy graphs.
For the results in this paper, we will use the following two
insights:

1) At any time, the belief of the max-product algorithm
for a given variable corresponds to the belief at the root
of the correspondingcomputation treedistribution [2]
associated with that variable at that time. We describe

what this computation tree distribution corresponds to
for the weighted matching problem in the next section.

2) If max-productdoesconverge, the resulting beliefs are
optimal in a large “local” neighborhood [7]: let̂x be
the assignment as given by the converged max-product
andx̃ be any other assignment. If the variables assigned
different values inx̂ and x̃ form an induced graph
containing at most one cycle in each component, then
p(x̂) ≥ p(x̃).

IV. M AX -PRODUCT FORWEIGHTED MATCHING

The problem of findingM∗ can be formulated as the prob-
lem of finding the mode of a suitably (artifically) constructed
probability distributionp. In fact, there are in generalseveral
ways to construct this distribution for thesameinstance of a
graphG. We now present one construction1.

Associate a binary variablexe ∈ {0, 1} with each edge
e ∈ E, and let

p(x) =
1

Z

∏

i∈V

1{
P

j∈N(i) xij ≤ 1}

∏

e∈E

ewexe (2)

HereN (i) represents the neighborhood of nodei in G, andZ
is a normalizing constant. The variablexe can be interpreted
as follows: xe = 1 indicates thate ∈ M∗, while xe = 0
indicatese /∈ M∗. The term1{

P

j∈N(i) xij≤1} enforces the
cosntraint that of the edges incident to nodei, at most one
can be assigned the value “1”. Thus, it is easy to see that
p(x) > 0 if and only if the edges withxe = 1 constitute a
matching inG. Furthermore, the mode ofp corresponds to the
max-weight matchingM∗.

The factor graph max-product involves messages between
variables and factors. In our case the variables are the edges
(i, j) ∈ E, and the factors are nodesi ∈ V . Thus at any
time t there will be messagesmt

i→(i,j) from node (factor)i
to edge (variable)(i, j), as well as messagesmt

(i,j)→i
. Each

message will be a length-two vector of real numbers, indexed
by 0 and 1. The message update rules can be simplified to the
following:

mt+1
(i,j)→i

[1] = ewij mt
j→(i,j)[1]

mt+1
(i,j)→i

[0] = mt
j→(i,j)[0]

mt+1
i→(i,j)[1] =

∏

k∈N (i)−j

mt
(k,i)→i[0]

mt+1
i→(i,j)[0] = max {

∏

k∈N (i)−j

mt
(k,i)→i[0] ,

max
k∈N (i)−j

mt
(k,i)→i[1]}

Also, at every time each edge (variable) maintains a belief
vectorbt

(i,j) as follows:

bt
(i,j)[0] = mt

i→(i,j)[0] × mt
j→(i,j)[0]

bt
(i,j)[1] = ewij mt

i→(i,j)[1] × mt
j→(i,j)[1]

1This construction is different from the one in [8], which hada pairwise
model with variables corresponding to nodes in the graph. However, the results
of this paper continue to hold when the construciton in [8] ismodified to be
applicable to general graphs

The p defined above can be used to findM∗ as follows: first
run max-product. At any timet and for each edgee there will
be two beliefsbt

e[0] andbt
e[1]. If max-product converges, assign

to each variable the value (i.e. “0” or “1”) that corresponds
to the stronger belief. Then, declare the set of all edges setto
“1” to be the max-product output.

A. The Computation Tree for Weighted Matching

Our proofs rely on the computation tree interpretation [2,
15] of the Max-product beliefs. We now describe this inter-
pretation when max-product is applied top as given in (2).

For an edgee let T e(k) be thefull depth-k computation tree
rooted ate. This is generated recursively: takeT e(k− 1) and
to each leafv add as children a copy of each of the neighbors
of v in G, except for the unique neighbor ofv which is already
present inT e(k−1). Also, each new edge has the same weight
as its copy in the originalG. The recursion is started with
the single-edge treeT e(1) = e, both of whose endpoints are
leaves. This initial edge is theroot of T e.

Consider now the “full synchronous” max-product, where at
each time every message in the network is updated. In this case
the computation treeTe(k) for edgee at timek will be T e(k).
Alternatively, max-product may be executed asynchronously
with only a subset of the messages updated in every time slot.
In this caseTe(k) will be a sub-tree ofT e(k). In either case,
the computation tree interpretation states at timek we have
bk
e [1] > bk

e [0] if and only if the root ofTe(k) is a member of
a max-weight matching on the treeTe(k).

The figure below shows an example where on the left is
G: the four-cycleabcd and the chordac, with a matching
M = {(a, b), (c, d)} depicted in bold. On the right is the
computation treeT (a,b)(4) which is the full tree of depth 4
rooted at edge(a, b). The bold edges depict the projectionMT

of M onto T (a,b)(4): an edgee in the tree is inMT if and
only if its copy in G is in M .

a

a

b

c

d

a b

dc

d b

aa

c

a b

c

d
a

bd

Lemma 2:Let M be a matching inG and Te(k) be a
computation tree. LetMT be the set of all copies inTe(k)
of all edges inM . Then,MT is a matching inTe(k). Also, if
M is maximal inG, MT is maximal inTe.

Of courseTe will also contain other matchings that are not
projections of matchings inG. Finally, we say that a (possibly
not full) treeTe(k) is full upto depthk1 if the full treeT e(k1)
is contained inTe(k).

V. EQUIVALENCE OF MAX -PRODUCT AND LP
RELAXATION

We are now ready to prove the main result of this paper:
the equivalence of Max-Product and LP Relaxation. Before
we proceed, we define the following terms

1) We say that theLP relaxation is tight if the linear
program (LP) obtained by relaxing the integer program
(1) has a unique optimal solution at which all valuesxe

are either 0 or 1.
2) We say thatmax-product converges by stepk if the

variable assignments (0 or 1) that maximize the beliefs
at each node remain constant once the associated com-
putation tree is full up to depth at leastk. Note that this
includes both synchronous and asynchronous message
updates. We say thatmax-product convergesif there
exists somek < ∞ such that max-product converges
by stepk. Finally, we say thatmax product converges
to the correct answerif the beliefs be at convergence
are such thatbe[1] > be[0] if and only if e ∈ M∗, and
be[1] < be[0] if and only if e /∈ M∗

We also need to make some uniqueness assumptions. It is
well-recognized that max-product may perform poorly in the
presence of multiple optima, and that characterizing perfor-
mance in this case is hard. For the rest of this paper we will
assume the following:

A1 M∗ is the unique optimal matching.
A2 The linear program always has a unique optimal solu-

tion. Note that this can be fractional, but it has to be
unique.

A. Max-product is as Powerful as LP Relaxation

In this section we prove that if the LP relaxation is tight then
Max-Product converges to the correct answer. Recall that when
the LP is tight, part 2 of Lemma 1 says that if(i, j) /∈ M∗

thenwij ≤ zi + zj . The uniqueness assumptionsA1-2 further
imply that the inequality is strict:wij < zi + zj . Another way
of saying this is that there exists anǫ > 0 such that

wij ≤ zi + zj − ǫ for all (i, j) /∈ M∗ (3)

Theorem 1:Consider a weighted graphG for which the LP
relaxation is tight. Then max-product converges to the correct
answer by step2wmax

ǫ
, wherewmax = maxe we is the weight

of the heaviest edge, andǫ satisfies (3).
Proof:

Let M∗ be the optimal matching onG. For max-product to
be convergent and correct, we need thatbt

e[1] > bt
e[0] for all

e ∈ M∗ and bt
e[1] < bt

e[0] for all e /∈ M∗, and for all t such
that Te(t) is full upto depth2wmax

ǫ
.

So suppose that for such at there exists ane /∈ M∗ such
that bt

e[1] > bt
e[0]. Then, there exists a matchingM in Te(t)

such that(a) the roote ∈ M , and(b) M has the largest weight
among matchings onTe(t). Let M∗

T be the set of all edges
in Te(t) that are copies of edges inM∗. By lemma 2,M∗

T

is a maximal matching onTe(t). Also, the roote /∈ M∗
T by

assumption.

The symmetric differenceM∗
T△M consists of disjoint

alternating paths inTe(t): each path will have every alternate
edge inM∗

T and all other edges inM . Let P be the path
that contains the roote. We now show thatw(P ∩ M∗

T) >
w(P ∩ M).

Recall that the optimal dual solution assigns to each nodei
in G a “dual value”zi ≥ 0. Associate now with each node in
Te(t) the dual value of its copy inG. Then, by Lemma 1 we
have thatwij = zi + zj for each(i, j) ∈ P ∩ M∗

T . Suppose
now that neither endpoint ofP is a leaf ofTe(t). In this case,
we have

w(P ∩ M∗
T) =

∑

i∈P

zi

On the other hand, we know that (3) holds for each edge in
P ∩ M . Adding these up gives

w(P ∩ M) ≤
∑

i∈P

zi − ǫ|P ∩ M |

By assumption, the roote ∈ P ∩ M , so |P ∩ M | ≥ 1 and
hencew(P ∩M∗

T) > w(P ∩M) when no endpoints ofP are
leaves.

Suppose now that exactly one of the endpointsv of P is a
leaf of Te(t). In this case, we have that

w(P ∩ M∗
T) ≥

∑

i∈P

zi − zv ≥
∑

i∈P

zi − wmax

where the last inequality follows from part 4 of Lemma 1 Also,
Te(t) is assumed to be full up to depthk, so this implies that
|P ∩ M | ≥ k

2 . This means that

w(P ∩ M) ≤
∑

i∈P

zi − ǫ
k

2

Now, sincek ≥ 2wmax

ǫ
, this implies thatw(P ∩M∗

T) > w(P ∩
M). The final case, where both endpoints ofP are leaves,
works out in the same way, except that now|P ∩M | ≥ k and
w(P ∩ M∗

T) ≥
∑

i∈P zi − 2wmax.
Thus, in any case, we have thatw(P ∩M∗

T) > w(P ∩M).
Consider now the set of edgesM − (P ∩ M) + (P ∩ M∗

T).
This set forms a matching onTe(t), and has higher weight
thanM . This contradicts the choice ofM , and so establishes
that bt

e[1] < bt
e[0] for all e /∈ M∗. A similar contradiction

argument can be used to establish thatbt
e[1] > bt

e[0] for all
e ∈ M∗. This completes the proof. �

B. LP Relaxation is as Powerful as Max-product

In this section we prove that if the LP relaxation is loose
then max-product does not converge to the correct answer.
Before we do so however, we note that this implies a stronger
result: that when LP is loose then in fact max-product does
not converge at all.

Lemma 3:Consider the distributionp(x) as given in (2). If
Max-Product converges, then its output exactly corresponds to
the true optimal matchingM∗.

The proof of this lemma uses the “local optimality” result
of Weiss and Freeman [7]. In particular, forp it turns out that
local optimality implies global optimality. This means that it

is not possible for max-product to converge to an incorrect
answer: it will either not converge at all, or converge toM∗.
We do not use this explicitly in the proofs below, but it
strengthens the results as mentioned above.

We now proceed with showing that max-product does not
converge to the correctM∗ when LP is loose. As a first
step, we need a combinatorial characterization of when the
LP relaxation is loose. We now make some definitions. We
say that a nodev is saturatedby a matchingM if there exists
an edgee ∈ M that is incident tov.

A blossomwith respect to a matchingM is an odd cycle
C with |C|−1

2 edges inM .2 Note that a blossom has a unique
base: a node not saturated by any edge inC ∩M . A stemmed
blossomB1 (w.r.t M) is a blossomC, along with an alternating
path (stem)P that starts at the base ofC, and starts with an
edge inM . Also, P should be such that the setM − (P ∩
M) + (P − M) remains a matching inG.

A bad stemmed blossomis one in which the edge weights
satisfy

w(C ∩ M) + 2w(P ∩ M) < w(C − M) + 2w(P − M)

Note that it may well be the case that|P | = 0, in which case
B1 is just an odd cycle. The following is an example of a
bad stemmed blossom. The bold edges are the ones inM , the
numbers denote the weights of the corresponding edges, and
the last nodei has no edge ofM incident on it. The blossom
C in this case is the cycleabcde, and nodec is its base. The
path/stemP is cfghi.

i
3

3

3

3
3

1 1

1

0.5

b

a

c

d

e

f

g

h

A blossom pairB2 is two blossomsC1 and C2 and an
alternating pathP between the bases of the two blossoms
such thatP begins and ends with edges inM . A bad blossom
pair is one in which the edge weights satisfy

w(C1 ∩ M) + w(C2 ∩ M) + 2w(P ∩ M)

< w(C1 − M) + w(C2 − M) + 2w(P − M)

The following is an example of a bad blossom pair.

3

3

3

3

3
3

1

3

3

3

3

2Blossoms were first defined in [16], which also provided the first efficient
algorithm for weighted matching in arbitrary graphs.

The following proposition provides a combinatorial charac-
terization of when the LP relaxation is loose, and is crucialto
the proof of the subsequent theorem.

Proposition 1: If the LP relaxation is loose, then there
exists a bad stemmed blossom, or a bad blossom pair, with
respect to the optimal matchingM∗.

Proof: In appendix.
We use the presence of these “bad” subgraphs inG to show

that max-product does not converge to the correct answer.
Before we do so, we need one additional lemma. This states
that if max-product converges by stepk to some matchingM
on G, then the optimal matchingMT on the computation tree
looks like M in the neighborhood of the root.

Lemma 4:Suppose max-product converges to a matching
M in G by stepk. Consider any edgee, somem ≥ 1 and a
corresponding computation treeTe which is full up to depth
k+m. Let MT be the max-weight matching on the tree. Then,
for any edgef ∈ Te that is within distancem of the roote,
f ∈ MT if and only if its copyf1 in G is such thatf1 ∈ M .

Note that the above lemma also applies to the roote of the
tree. We are now ready to state and prove the main result of
this section. Recall that the beliefbe on an edge at convergence
is incorrect if eithere ∈ M∗ but be[0] > be[1], or e /∈ M∗ but
be[1] > be[0].

Theorem 2:Consider a weighted graphG for which the
LP relaxation is loose. Then, the max-product beliefs do not
converge to the correctM∗: for any givenk, there exists a
k1 ≥ k and computation treesTe, e ∈ E such that eachTe is
full upto depthk1, but the beliefs on some of the edges are
incorrect. Lemma 3 further implies that in fact in this case
max-product does not converge at all.
Proof:

Let M∗ be the max-weight matching onG. Since the
LP relaxation is loose, by Prop. 1, there exists either a bad
stemmed blossom or a bad blossom pair w.r.t.M∗. Suppose
first that it contains a bad stemmed blossomB1, and consider
somee ∈ C ∩ M∗ that is in the “blossom” part ofB1 (as
opposed to the stem) and also inM∗. From the two nodes of
e, make maximal alternating pathsP1 andP2 that remain in
B1 and start out in opposite directions onC. For the stemmed
blossom example above, ife is the edge(a, b) then the two
paths will bebcfghi andaedcfghi.

Let d1 = w(P1 − M∗) − w(P1 ∩ M∗), and similarlyd2

for P2. d1 represents the change in the weight of the matching
if each edge inP1 were “switched”, i.e. their membership in
the matching was reversed from its original value. It is easy
to see that

d1 + d2 − w(e) = w(C − M∗) + 2w(P − M∗)

−w(C ∩ M∗) − 2w(P ∩ M∗)

By assumptionB1 is a bad blossom and hence we have that
d1 + d2 − w(e) > 0.

Suppose max-product converges toM∗ by stepk. Consider
now the computation treeTe which is full upto depthk +
|V |, where|V | is the number of nodes inG. Let MT be the

max-weight matching onTe. Lemma 4 implies thatMT will
be a projection ofM∗ in a distance-|V | neighborhood of the
root. Also, starting from the roote, each ofP1 and P2 will
have a unique copy, sayR1 andR2 respectively, inTe, with
|R1|, |R2| < |V |. SinceP1 and P2 are alternating w.r.t.M∗,
it follows that R1 and R2 will be alternating with respect to
MT . Also, the setS = R1 ∪ e∪R2 forms an alternating path
on Te with respect toMT , and this begins and ends in nodes
unsaturated byMT . Thus,MT can be augmented by this path:
the setMT − (S ∩ MT) + (S − MT) will be a matching on
Te.

Also, the weight gain from doing this augmentation will be
exactly d1 + d2 − w(e), which we know is strictly positive.
Thus, this shows thatMT is not the optimal matching on
Te, which contradicts the choice ofMT . This means that
our assumption about max-product convergence toM∗ is
incorrect.

Thus, we see that if there exists a bad stemmed blossom
w.r.t. M∗ in G then max-product does not converge toM∗.
A similar argument holds for the case of a bad blossom pair
B2, except that instead of pathsP1 and P2 above we now
have to look at alternating walksW1 andW2 that live in B2

and are long enough. These walks can then be mapped to an
augmenting path onTe which strictly improvesMT , leading
to a contradiction as was seen in the case of the pathsP1 and
P2. This completes the proof. �

VI. D ISCUSSION

The results of this paper can be generalized to the case
of perfect matchings,b-matchings and perfectb-matchings in
general graphs, where similar results hold. In this paper max-
product is shown to be as powerful as LP relaxation, but it
would be more interesting to outline a directoperationallink
between max-product and a linear programming algorithm. As
an example, [8] shows that for bipartite matching max-product
has an operational correspondance with the auction algorithm
[17]. Also, the form of the message update equations suggests
that it can be implemented via an equivalent message passing
update rule between just the nodes of the graphG, instead of
having messages go from nodes to edges and vice versa.

More generally, it would be interesting to see if the ideas
presented in this paper could be used/genealized to show con-
nections between linear programming and belief propagation
in other applications.

ACKNOWLEDGEMENTS

The author would like to acknowledge Dmitry Malioutov,
whose experiments suggested a strong link between LP relax-
ation and max-product performance for non-bipartite graphs.
Dmitry is also responsible for pointing the author to the local
optimality result [7].

APPENDIX

Proof of Proposition 1
We now show that if the LP relaxation is loose then there

exists in the graph either a bad stemmed blossom or a bad

blossom pair, with respect to the optimal matchingM∗. Let
x be the optimal (fractional) solution to the LP relaxation.

Let E′ be the set of all edgese such that either(a) e ∈ M∗,
or (b) e /∈ M∗ andxe > 0. Then,E′ will contain at least one
edgee /∈ M∗, because if alle /∈ M∗ had xe = 0 then the
LP would be tight. LetG′ = (V,E′) be the subgraph ofG
having only the edges inE′. An cycle augmentationis any
even cycle in which every alternate edge is inM∗. A path
augmentationis any path in which every alternate edge is in
M∗, and which begins and ends in nodes unsaturated byM∗.
For any augmentationA, we have thatM∗−(A∩M∗)+(A−
M∗) is also a matching inG′. Thus, ifM∗ is the unique max-
weight matching it has to be thatw(A∩M∗) > w(A−M∗).

Lemma 5:G′ cannot contain any augmentations: cycles or
paths.

Proof: Let A be an augmentation inG′. By assumption,
xe > 0 for all e ∈ A − M∗, which implies thatxe < 1 for
all e ∈ A ∩ M∗. Thus, there exists someǫ > 0 such that
decreasing eachxe, e ∈ A − M∗ by ǫ and increasing each
xe, e ∈ A ∩ M∗ by ǫ represents a valid new feasible point
for the LP. The weight of this new point exceeds the weight
of x by ǫ(w(A ∩ M∗) − w(A − M∗)) > 0. However this
contradicts the optimality ofx, and thusG′ cannot contain
any augmentation. �

Let S be the longest alternating sequence of edges inG′,
and letv1 andv2 be its endpoints. By the lemma above, both
cannot be unsaturated. We say thatv1 or v2 is asaturated leaf
if it is saturated byM∗ and there exist no edges inG′ −M∗

incident on it. Also, note that an endpoint is saturated if and
only if its corresponding edge inS is also inM∗.

The fact thatS is the longest sequence means that it cannot
be extended further beyondv1 and v2. This implies that one
of the following cases must occur:

1) Both v1 andv2 are both saturated leaves
In this case, the constraints atv1 andv2 are loose. So,
there exists anǫ such that if allxe, e ∈ S − M∗ are
decreased byǫ and all xe, e ∈ S ∩ M∗ are increased
by ǫ then the new solution remains feasible. This new
solution will have strictly higher weight thanx, which
is a contradiction. Thus this case cannot occur.

2) v1 is a saturated leaf andv2 is unsaturated.
An ǫ-perturbation argument like the one above can be
used to show that this case too cannot occur.

3) v1 is saturated byM∗. but is not a leaf.v2 is either
unsaturated, or a saturated leaf.
SinceS cannot be extended, it has to be that all edges in
G′−M∗ incident tov1 have other endpoints inS. Let e
be one such edge. Then,e∩S forms a stemmed blossom:
the resulting cycle has to be odd, and the remaining part
of S will be a stem whose endpoint isv2. Note that in
this case it has to be that the constraint atv2 is loose.

4) Bothv1 andv2 are saturated byM∗, but are not leaves.
Applying the above blossom argument to bothv1 and
v2 yields the existence of a blossom pair.

Thus if the LP relaxation is loose then there exists a
stemmed blossom or a blossom pair. Now all that is remaining

to show is that they are “bad”. LetB1 be a stemmed blossom
in G′, consisting of blossomC and stemP . Then, there exists
someǫ > 0 such that ifxe, e ∈ C ∩ M∗ is increased byǫ,
xe, e ∈ C−M∗ is decreased byǫ, xe, e ∈ P ∩M∗ is increased
by 2ǫ, andxe, e ∈ C − M∗ is decreased by2ǫ, then the new
solution remains feasible for the LP. Also, the new solution
weighs

ǫ [w(C ∩ M∗) + 2w(P ∩ M∗) − w(C − M∗) − 2w(P − M∗)]

more thanx. Forx to be the unique optimal of the LP, this has
to be strictly negative and thus any stemmed blossomB1 is
bad. A similar argument shows that any blossom pair is bad.
This finishes the proof of the proposition. �

REFERENCES

[1] S. M. Aji, G. B. Horn, and R. J. McEliece, “On the convergence of
iterative decoding on graphs with a single cycle,” inISIT, 1998, p. 276.

[2] Y. Weiss, “Correctness of local probability propagation in graphical
models with loops,”Neural Computation, vol. 12, no. 1, pp. 1–41, 2000.

[3] Y. Weiss and W. Freeman, “Correctness of belief propagation in gaussian
graphical models of arbitrary topology,”Neural Computation, vol. 13,
no. 10, pp. 2173–2200, 2001.

[4] D. Malioutov, J. Johnson, and A. Willsky, “Walk-sums and belief
propagation in gaussian graphical models,”Journal of Machine Learning
Research, vol. 7, pp. 2031–2064, Oct. 2006.

[5] T. Richardson and R. Urbanke, “The capacity of low-density parity
check codes under message-passing decoding,”IEEE Transactions on
Information Theory, vol. 47, pp. 599–618, 2001.

[6] P. Rusmevichientong and B. V. Roy, “An analysis of belief propagation
on the turbo decoding graph with gaussian densities,”IEEE Transactions
on Information Theory, vol. 47, no. 2, pp. 745–765, 2001.

[7] Y. Weiss and W. Freeman, “On the optimality of solutions of the
max-product belief-propagation algorithm in arbitrary graphs,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 736–744, Feb.
2001.

[8] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching via
max-product belief propagation,” inISIT, Sept. 2005, pp. 1763 – 1767.

[9] B. Huang and T. Jebara, “Loopy belief propagation for bipartite
maximum weight b-matching,” inArtificial Intelligence and Statistics
(AISTATS), March 2007.

[10] C. Yanover, T. Meltzer, and Y. Weiss, “Linear programmingrelaxations
and belief propagation – an empirical study,”Jourmal of Machine
Learning Research, vol. 7, pp. 1887–1907, 2006.

[11] M. Wainwright, T. Jaakkola, and A. Willsky, “Map estimation via
agreement on (hyper)trees: Message-passing and linear-programming
approaches,”IEEE Transactions on Information Theory, vol. 51, no. 11,
pp. 3697–3717, Nov. 2005.

[12] J. Feldman, D. Karger, and M. Wainwright, “Linear programming-based
decoding of turbo-like codes and its relation to iterative approaches.” in
Allerton Conference on Communication, Control, and Computing, 2002.

[13] J. Feldman, M. Wainwright, and D. Karger, “Using linear programming
to decode binary linear codes,”IEEE Transactions on Information
Theory, vol. 51, pp. 954–972, 2005.

[14] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,”IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, Feb. 2001.

[15] S. Tatikonda and M. Jordan, “Loopy belief propagation and gibbs
measures,” inUncertainty in Artificial Intelligence, vol. 18, 2002, pp.
493–500.

[16] J. Edmonds, “Paths, trees and flowers,”Canadian Journal of Mathemat-
ics, vol. 17, pp. 449–467, 1965.

[17] D. Bertsekas, “Auction algorithms for network flow problems: A tutorial
introduction,”Computational Optimization and Applications, vol. 1, pp.
7–66, 1992.

