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Abstract

Loopy belief propagation has been employed in a wide variety of applications with great empirical
success, but it comes with few theoretical guarantees. In this paper we analyze the performance of the
max-product form of belief propagation for the weighted matching problem on general graphs.

We show that the performance of max-product is exactly characterized by the natural linear pro-
gramming (LP) relaxation of the problem. In particular, we first show that if the LP relaxation has no
fractional optima then max-product always converges to the correct answer. This establishes the ex-
tension of the recent result by Bayati, Shah and Sharma, which considered bipartite graphs, to general
graphs. Perhaps more interestingly, we also establish a tight converse, namely that the presence of any
fractional LP optimum implies that max-product will fail to yield useful estimates on some of the edges.

We extend our results to the weighted b-matching and r-edge-cover problems. We also demonstrate
how to simplify the max-product message-update equations for weighted matching, making it easily
deployable in distributed settings like wireless or sensor networks.

1 Introduction

Loopy Belief Propagation (LBP) and its variants [6], [9], [14] have been shown empirically to be effective
in solving many instances of hard problems in a wide range of fields. These algorithms were originally de-
signed for exact inference (i.e. calculation of marginals/MAP estimates) in probability distributions whose
associated graphical models are tree-structured. While some progress has been made in understanding
their convergence and accuracy on general “loopy” graphs (see [8], [13], [14] and their references), it still
remains an active research area.

In this paper we study the application of the widely used max-product form of LBP (or simply max-
product (MP) algorithm), to the weighted matching problem1. Our motivation for doing so is two-fold:
firstly, weighted matching is a classical problem with much structure, and this structure can be used to
provide a much finer characterization of max-product performance than would be possible for general

1This publication is the journal version of earlier results reported in [2]. Also related are recent results by Bayati, Borgs,
Chayes and Zecchina [3]. See the end of Section 1 for a discussion.
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graphical models. Secondly, fast and distributed computation of weighted matchings is often required in
areas as diverse as resource allocation, scheduling in communications networks [10], and machine learning
[5].

Given a graph G = (V,E) with non-negative weights we on its edges e ∈ E, the weighted matching
problem is to find the heaviest set of mutually disjoint edges (i.e. a set of edges such that no two edges share a
node). Weighted matching can be naturally formulated as an integer program (IP). The technique of linear
programming (LP) relaxation involves replacing the integer constraints with linear inequality constraints.
In general graphs, the linear program for weighted matching can have fractional optima – i.e. those that
assign fractional mass to edges. The primary contribution of this paper is an exact characterization of
max-product performance for the weighted matching problem: we show that

• If the LP has no fractional optima (i.e. if the optimum of LP is unique and integral), then max-
product will converge and the resulting solution will be exactly the max-weight matching (Theorem
1).

• For any edge, if there exists an optimum of LP that assigns fractional mass to that edge, then the
max-product estimate for that edge will either oscillate or be ambiguous (Theorem 2). For the entire
graph, this implies that if fractional optima exist then max-product will fail (Corollary 1).

Most of the existing analysis of classical loopy belief propagation either provides sufficient conditions for
correctness of solutions (e.g. [1], [8]), or provides an analysis/interpretation of fixed points (e.g. [13], [14]).
However, there are relatively few results that provide necessary conditions for the convergence/correctness
of the iterative procedure. Theorem 2 is thus significant in this regard, and we believe it is more general
than the weighted matching and covering problems discussed in this paper.

Many tantalizing connections between belief propagation and linear programming (in various forms)
have been observed/conjectured [11]. This paper provides a precise connection between the two for the
weighted matching problem. An interesting insight in this regard, obtained from our work, is the impor-
tance of the uniqueness of the LP optimum, as opposed to uniqueness of the IP optimum. In particular, it
is easy to construct examples where the LP has a unique integer optimum, but also has additional spurious
fractional optima, for which max-product fails to be informative. A more detailed discussion of this is
presented in Section 4.

We extend our analysis to establish this equivalence between max-product and LP relaxation for two
related problems: weighted b-matching and r-edge-cover. Given a graph with edge weights and node
capacities bi, the weighted b-matching problem is to pick the heaviest set of edges so that at most bi edges
touch node i, for each i ∈ V . Similarly, if the graph has node requirements ri, the weighted r-edge-cover
problem is to pick the lightest set of edges so that each node i ∈ V has at least ri edges incident on it.
Theorems 3 and 4 pertain to b-matching, and theorems 5 and 6 to r-edge-cover.

In an insightful paper, Bayati, Shah and Sharma [1] were the first to analyze max-product for weighted
matching problems; they established that max-product correctly solves weighted matching in bipartite
graphs, when the optimal matching is unique. Theorem 1 represents a generalization of this result2, as for
bipartite graphs it is well known that the extreme points of the matching LP polytope are integral. This

2[1] uses a graphical model which is different from ours to represent weighted matching, but this does not change the
results.

2



means that if the LP has a fractional optimum, it has to also have multiple integral optima, i.e. multiple
optimal matchings. So, requiring unique optima in bipartite graphs is equivalent to requiring no fractional
optima for the LP relaxation. In [5] the results of [1] were extended to weighted b-matchings on bipartite
graphs. Theorem 3 represents the corresponding extension of our results to b-matching on general graphs.

A preliminary version [2] of this paper contained a different proof of both Theorems 1 and 2. The
proofs in that paper can be adapted handle more general message update rules (as opposed to the “fully
synchronous” case considered in this paper). Both [2] and this paper consider the case of “imperfect”
matchings, where each node can have at most one edge in the matching, but may have none. Independently
developed recent results by Bayati et. al. [3] provide an alternative proof for one of the two theorems –
Theorem 1 which shows that tightness of LP implies BP success – for the conceptually harder case of
perfect matchings. Their proof also holds for arbitrary message update schedules.

The outline of the paper is as follows. In Section 2 we set up the weighted matching problem and
its LP relaxation. We describe the max-product algorithm for weighted matching in Section 3. The main
result of the paper is stated and proved in Section 4. In Section 5 we establish the extensions to b-matching
and r-edge-cover. Finally, in Section 6 we show how max-product can be radically simplified to make it
very amenable for implementation.

2 Weighted Matching and its LP Relaxation

Suppose that we are given a graph G with edge-weights we. A matching is any subset of edges such that
the total number of edges incident to any node i is at most 1. The weighted matching problem is to find
the matching of largest weight. Weighted matching can be formulated as the following integer program:

IP : max
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≤ 1 for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E

Here Ei is the set of edges incident to node i. The linear programming (LP) relaxation of the above problem
is to replace the constraint xe ∈ {0, 1} with the constraint 0 ≤ xe ≤ 1, for each e ∈ E. We denote the
corresponding linear program by LP.

In this paper, we are interested in the presence or absence of fractional optima for LP. An optimum x∗

of LP is fractional if there exists some edge e to which it assigns fractional mass, i.e. if there is an e such
that 0 < x∗e < 1. Note that LP will have no fractional optima if and only if LP has a unique optimum,
and this optimum is integral.

Example 0 (Fractional optima of LP): Consider, for example, the following three graphs.

1

3 1

1

1 1

1

2 1
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In the cycle on the left, the LP has no fractional optima: the unique optimum (1,0,0) places mass 1 on
the edge with weight 3, and 0 on the other two edges. The two cycles on the right, however, do have
fractional optima. The middle cycle has (1

2 ,
1
2 ,

1
2) as its unique optimum, while the one on the right has

many optima: (1,0,0), (1
2 ,

1
2 ,

1
2), and every convex combination of the two. Note that in the rightmost cycle

the LP relaxation is “tight”, i.e. the optimal values of IP and LP are equal. Also, the IP has a unique
optimum. However, there still exist fractional optima for the LP. �

Note that if the graph is bipartite (i.e. it contains no odd cycles), then all the extreme points of the
LP polytope are integral. As a result, in this case, fractional optima exist if and only if there are multiple
integral optima of the LP. This is the reason our Theorem 1 is a generalization of [1].

We need the following lemma for the proof of Theorem 1. Its proof is obvious, and is omitted.

Lemma 1 Let P be the polytope of feasible solutions for LP, and let the optimum x∗ be unique. Define

c = inf
x∈P−x∗

w′(x∗ − x)

|x∗ − x|

Then, it has to be that c > 0.

Remark: In the above lemma, |x∗−x| =
∑

e |x
∗
e −xe| is the ℓ1-norm of the perturbation from x∗. The

fact that the LP has a unique optimum means that moving away from x∗ along any direction that remains
within P will result in a strict linear decrease in the objective function. The constant c is nothing but the
smallest such rate of decrease. Uniqueness of x∗ implies that c should be strictly positive.

3 Max-Product for Weighted Matching

The Max-product form of belief propagation is used to find the most likely state – the MAP estimate – of a
probability distribution, when this distribution is known to be a product of factors, each of which depends
only on a subset of the variables. Max-product operates by iteratively passing messages between variables
and the factors they are a part of. In order to apply max-product, we now formulate weighted matching
on G as a MAP estimation problem, by constructing a suitable probability distribution. This construction
is naturally suggested by the form of the integer program IP. Associate a binary variable xe ∈ {0, 1} with
each edge e ∈ E, and consider the following probability distribution:

p(x) ∝
∏

i∈V

ψi(xEi
)
∏

e∈E

exp(wexe), (1)

which contains a factor ψi(xEi
) for each node i ∈ V , the value of which is ψi(xEi

) = 1 if
∑

e∈Ei
xe ≤ 1, and

0 otherwise. Note that we use i to refer both to the nodes of G and factors of p, and e to refer both to the
edges of G and variables of p. The factor ψ(xEi

) enforces the constraint that at most one edge incident to
node i can be assigned the value “1”. It is easy to see that, for any x, p(x) ∝ exp(

∑
ewexe) if the set of

edges {e|xe = 1} constitute a matching in G, and p(x) = 0 otherwise. Thus the max-weight matching of
G corresponds to the MAP estimate of p.

The factor-graph version of the max-product algorithm [6] passes messages between variables and the
factors that contain them at each iteration t. For the p in (1), each variable is a member of exactly two
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factors. The output is an estimate x̂ of the MAP of p. We now present the max-product update equations
adapted for the p in (1). We use e and (i, j) to denote the same edge. Also, for two sets A and B the set
difference is denoted by the notation A\B.

Max-Product for Weighted Matching

(INIT) Set t = 0 and initialize each message to 1.

(ITER) Iteratively compute new messages until convergence as follows:

Variable to Factor: mt+1
e→i[xe] = exp(xewe) × mt

j→e[xe]

Factor to Variable: mt+1
i→e[xe] = max

xEi\e



ψi(xEi

)
∏

e′∈Ei\e

mt
e′→i[xe′ ]





Also, at each t compute beliefs nt
e[xe] = exp(wexe) × mt

i→e[xe] × mt
j→e[xe]

(ESTIM) Each edge e has estimate x̂t ∈ {0, 1, ?} at time t:
x̂t

e = 1 if nt
e[1] > nt

e[0],
x̂t

e = 0 if nt
e[1] < nt

e[0],
x̂t

e =? if nt
e[1] = nt

e[0].

Note that estimate x̂t
e = 1 means that, at time t, Max-product estimates that edge e is part of a

max-weight matching, while x̂t
e = 0 means that it is not. x̂t

e =? means that Max-product cannot decide on
the membership of e. In this paper, we will say that the max-product estimate for an edge is uninformative
if its value keeps changing even after a large amount of time has passed, or if its value remains constant
and equal to ?.

The message update rules are described above in a form familiar to readers already acquainted with
Max-product. In Section 6 we show that the update rules can be substantially simplified into a “node-to-
node” protocol that is much more amenable to implementation.

4 Main Results

We now state and prove the main results of this paper. Theorem 1 states that whenever the LP relaxation
has no fractional optima, max-product is successful at finding the max-weight matching. Theorem 2, and
Corollary 1, state the converse: if there exist fractional optima, then max-product will fail.

Theorem 1 Let G = (V,E) be a graph with nonnegative real weights we on the edges e ∈ E. If the linear
programming relaxation LP has no fractional optima, then the max-product estimate x̂t is correct (i.e. it
is the true max-weight matching) for all times t > 2wmax

c
, where wmax is the maximum weight of any edge

in the graph, and c is as defined in Lemma 1.
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Remark: Note that the requirement of “no fractional optima” is equivalent to saying that the LP has
a unique optimum, and that this optimum is integral. The time after which the estimates x̂t will converge
to correct values is determined by the “pointedness” of the LP polytope at the optimum, as represented
by the constant c of Lemma 1.

As noted previously, the requirement of absence of fractional optima is in general strictly stronger than
tightness of the LP relaxation. It is illustrative at this point to consider the performance of max-product
on the right-most graph in Example 0: the three-cycle with weights 2,1,1. For this there are infinitely many
optimal solutions to LP: (1,0,0), (1

2 ,
1
2 ,

1
2), and all convex combinations of the two. Thus, even though the

LP relaxation is tight, there exist fractional optima. For this graph, it can be easily verified (e.g. using
the computation tree interpretation below) that the estimates as a function of time will oscillate as shown
in the table below.

2

11
t = 1 2 3 4 5 6 . . .

if we = 1, estimate x̂t
e = 1 0 ? 0 ? 0 . . .

if we = 2, estimate x̂t
e = 1 ? 1 ? 1 ? . . .

We see that the edges with weights 1 will have estimates that oscillate between 0 and ?, while the
edge with weight 2 will oscillate between 1 and ?. The oscillatory behavior of this example is not just a
particular case, it holds in general – as stated in the following theorem. We first state the most general
form of the theorem, followed by corollaries and discussion.

Theorem 2 Let G = (V,E) be a graph with nonnegative real weights we on the edges e ∈ E. The
corresponding LP may, in general, have multiple optima. Then, for any edge e in G,

1. If there exists any optimum x∗ of LP for which the mass assigned to edge e satisfies x∗e > 0, then
the max-product estimate x̂t

e is 1 or ? for all odd times t.

2. If there exists any optimum x∗ of LP for which the mass assigned to edge e satisfies x∗e < 1, then
the max-product estimate x̂t

e is 0 or ? for all even times t.

Remark: In light of this theorem, it is easy to see that max-product yields useful estimates for all
edges if and only if each x∗e has an integral value that is consistent at all optima x∗ of LP. This means that
LP has to have a unique optimum, and this optimum has to be integral. Hence, Theorem 1 is tight: any
deviation from the sufficient condition therein will result in useless estimates for some edges.

Corollary 1 Suppose the LP has at least one fractional optimum. Then, Theorem 2 implies that max-
product estimates will be un-informative for all edges that are assigned non-integral mass at any LP opti-
mum.

In the case of non-unique optima, note that in Theorem 2 the choice of LP optimum x∗ is allowed
to depend on e, the edge of interest. Thus, if there are optima x and x̃ of LP such that xe < 1 and
x̃e > 0, then the estimate x̂t

e will either keep changing at every iteration, or will remain fixed at x̂t
e =?, an
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uninformative estimate. It is thus easy to see that Theorem 2 covers both the case when the LP relaxation
is loose (has no integral optima), and the case when the LP relaxation is tight, but multiple optima exist.

In general, when fractional optima exist, max-product may converge to useful estimates for some edges
and oscillate or be uninformative for others. It follows from theorem 2 that

• The useful estimates are exactly as predicted by the LP relaxation: if x̂e = 1 for some e ∈ G, then
x∗e = 1 for all optima x∗ of LP, and correspondingly if x̂e = 0 then x∗e = 0.

• Any edge with fractional mass 0 < x∗e < 1 will not have useful estimates. However, the converse
is not true: there may exist edges that are assigned the same integral mass in every max-weight
matching, but for which max-product is un-informative. Thus, in a sense Max-product is weaker
than LP relaxation for the matching problem. Consider the example below.

1

1

1

1

1

1.1

1

1

1

The unique LP optimum puts mass 1
2 on all

six edges in the two triangles, mass 1 on the
middle edge of weight 1.1, and mass 0 on the
other two edges in the path.
Max-product estimates oscillate between 0
and 1 on all edges.

We now proceed to prove the two theorems above. Both proofs rely on the well-known computation
tree interpretation of Max-product beliefs [12, 13], which we describe first. The proofs follow immediately
after.

The Computation Tree for Weighted Matching

Recall the variables of the distribution p in (1) correspond to edges in G, and nodes in G correspond to
factors. For any edge e, the computation tree at time t rooted at e, which we denote by Te(t), is defined
recursively as follows: Te(1) is just the edge e, the root of the tree. The two endpoints of the root (nodes
of G) are the leaves of Te(1). The tree Te(t) at time t is generated from Te(t− 1) by adding to each leaf of
Te(t− 1) a copy of each of its neighbor edges in G, except for the neighbor edge that is already present in
Te(t − 1). Each edge in Te is a copy of an edge in G, and the weights of the edges in Te are the same as
the corresponding edges in G.

For any edge e and time t, the max-product estimate accurately represents the membership of the
root e in max-weight matchings on the computation tree Te(t), as opposed to the original graph G. This is
the computation tree interpretation, and is stated formally in the following lemma.

Lemma 2 For any edge e at time t,

• x̂t
e = 1 if and only if the root of Te(t) is a member of every max-weight matching on Te(t).

• x̂t
e = 0 if and only if the root of Te(t) is not a member of any max-weight matching on Te(t).
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• x̂t
e =? else.

Remarks: The beliefs nt
e[xe] are the max-marginals at the root of the computation tree Te(t). If

nt
e[1] > nt

e[0] then any matching in Te(t) which excludes the root has a suboptimal weight. Similarly, if
nt

e[1] < nt
e[0], then any matching in Te(t) including the root is suboptimal. However, when nt

e[1] = nt
e[0],

then there exists an optimal matching with xt
e = 0, and another optimal matching with xt

e = 1.

Note that max-product estimates correspond to max-weight matchings on the computation trees Te(t),
as opposed to on the original graph G. Suppose M is a matching on the original graph G, and Te is a
computation tree. Then, the image of M in Te is the set of edges in Te whose corresponding copy in G is
a member of M . We now illustrate the ideas of this section with a simple example.

d

a

b

c

d

a b

dc

d b

aa a b

c

a

d a

a b

dc

d b

aa a b

c

d a

1.1

1

1

1.1 1

b b

c d c a

Example 1 (Concepts related to computation trees): Consider the figure above. G appears on
the left, the numbers are the edge weights and the letters are node labels. The max-weight matching on G
is M∗ = {(a, b), (c, d)}, depicted in bold on G. In the center plot we show T(a,b)(4), the computation tree
at time t = 4 rooted at edge (a, b). Each node is labeled in accordance to its copy in G. The bold edges
in the middle tree depict M∗

T , the matching which is the image of M∗ onto T(a,b)(4). The weight of this
matching is 6.6, and it is easy to see that any matching on T(a,b)(4) that includes the root edge will have
weight at most 6.6. In the rightmost tree, the dotted edges represent M , the max-weight matching on the
tree T(a,b)(4). M has weight 7.3. In this example we see that even though (a, b) is in the unique optimal
matching in G, it turns out that root (a, b) is not a member of any max-weight matching on T(a,b)(4), and
hence we have that x̂4

(a,b) = 0. Note also that the dotted edges are not an image of any matching in the
original graph G. This example thus illustrates how “spurious” matchings in the computation tree can
lead to incorrect beliefs, and estimates. In the example above the reason why Max-product disagrees with
LP relaxation is that Max-product has not yet converged. �

Proof of Theorem 1

We now prove that the uniqueness and tightness of the LP relaxation ensures that each estimate x̂e is 0
or 1, and also that the estimate corresponds to the optimal matching. Let M∗ be the optimal matching,
and x∗ the corresponding 0-1 vector that is the unique optimum of LP.

To prove the theorem, we need to show that, for a large enough time t, the estimates satisfy

x̂t
e = 0 for all edges e /∈M∗

x̂t
e = 1 for all edges e ∈M∗

Consider now any time t > 2wmax

c
, where wmax = maxewe is the weight of the heaviest edge, and c is as in
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Lemma 1 above. Suppose that there exists an edge e ∈M∗ for which the estimate at time t is not correct:
x̂t

e 6= 1 (i.e. x̂t
e ∈ {0, ?}). We now show that this leads to a contradiction.

We start with a brief outline of the proof. Let Te(t) be the computation tree at time t for that edge
e. From Lemma 2, the fact that x̂t

e 6= 1 means that there exists a max-weight matching M on Te(t) that
does not contain the root e. Due to the uniqueness of the LP optimum we can use M∗ to modify M and
obtain a matching M ′ on Te(t) which has strictly larger weight than M . This contradicts the optimality
of M on Te(t), and proves that x̂t

e has to be equal to 1.

We now give the details in full. Let M∗
T be the image of M∗ onto Te(t). By assumption, e ∈ M∗ in

original graph G, and hence the root e ∈ M∗
T . Recall that, from Lemma 2, x̂t

e 6= 1 implies there exists
some max-weight matching M of Te(t) that does not contain the root, i.e. root e /∈ M . Thus the root
e ∈ M∗

T −M . From root e, build an alternating path P on Te(t) by successively adding edges as follows:
first add e, then add all edges adjacent to e that are in M −M∗

T , then all their adjacent edges that are
in M∗

T −M , and so forth until no more edges can be added. This will occur either because no edges are
available that maintain the alternating structure, or because a leaf of Te(t) has been reached. Note also
that P will be a path, because M and M∗

T are matchings and so any node in Te(t) can have at most one
adjacent edge in each of the two matchings.

For illustration, consider Example 1 of section 3. e in this case is the edge (a, b), and M∗ is denoted
by the bold edges in the leftmost figure G. The computation tree Te(4) at time 4 is shown in the center,
with the image M∗

T marked in bold. Note that the root e ∈ M∗
T . In the rightmost figure is depicted M ,

a max-weight matching of Te(t). The alternating path P , as defined above, would in this example be the
path adcabcda that goes from the left-most leaf to the right-most leaf. It is easy to see that this path
alternates between edges in M −M∗

T and M∗
T −M . We now use the following lemma to complete the proof

of Theorem 1.

Lemma 3 Suppose LP has no fractional optima. Let M be a matching in Te(t) which disagrees with M∗
T

on the root, i.e. root e ∈ {M −M∗
T } ∪ {M∗

T −M}. Let P be the maximal alternating path containing the
root. Then w(P ∩M∗

T ) > w(P ∩M), provided t > 2wmax

c
.

Lemma 3 is proved in the appendix, using a perturbation argument: if lemma is false, then it is
possible to perturb x∗ to obtain a new feasible point x ∈ P such that w′x ≥ w′x∗, thus violating the
optimality and uniqueness of x∗ for the LP on G.

Now consider the matching M , and change it by “flipping” the edges in P . Specifically, let M ′ =
M − (P ∩M) + (P ∩M∗

T ) be the matching containing all edges in M except the ones in P , which are
replaced by the edges in P ∩M∗

T . It is easy to see that M ′ is a matching in Te(t). Also, from Lemma 3(a)
it follows that w(M ′) > w(M). This however, violates the assumption that M is an optimal matching in
Te(t). We have arrived at a contradiction, and thus it has to be the case that x̂t

e = 1 for all e ∈M∗.

A similar argument can be used to establish that x̂t
e = 0 for all e /∈ M∗. In particular, suppose that

x̂t
e 6= 0 for some e /∈M∗. This means there exists a max-weight matching M in Te(t) that contains the root
e. Again, let M∗

T be the image of M∗ onto Te(t). Note that the root e ∈ M −M∗
T . Let P be a maximal

alternating path that the root e. Using Lemma 3, it follows that w(P ∩M∗
T ) > w(P ∩M). Now, as before,

define M ′ = M − (P ∩M) + (P ∩M∗
T ). It follows that w(M ′) > w(M), violating the assumption that M

is an optimal matching in Te(t). Thus the root e has to have x̂t
e = 0. This proves the theorem.
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Proof of Theorem 2

We now prove Theorem 2. Suppose part 1 is not true, i.e. there exists edge e, an optimum x∗ of LP with
x∗e > 0, and an odd time t at which the estimate is x̂t

e = 0. Let Te(t) be the corresponding computation
tree. Using Lemma 2 this means that the root e is not a member of any max-weight matching of Te(t).
Let M be some max-weight matching on Te(t). We now define the following set of edges

E∗
1 =

{
e′ ∈ Te(t) : e′ /∈M, and copy of e′ in G has x∗e′ > 0

}

In words, E∗
1 is the set of edges in Te(t) which are not in M , and whose copies in G are assigned strictly

positive mass by the LP optimum x∗.

Note that by assumption the root e ∈ E∗
1 and hence e /∈ M . Now, as done in the proof of Theorem

1, build a maximal alternating path P which includes the root e, and alternates between edges in M and
edges in E∗

1 . By maximal, we mean that it should not be possible to add edges to P and still maintain its
alternating structure. Note that in contrast to Theorem 1 we may have multiple edges in E∗

1 touching a
node. In such a case we pick an arbitrary one of them and add to P . We use the following lemma:

Lemma 4 The weights satisfy w(P ∩M) ≤ w(P ∩ E∗
1).

The proof is included in the appendix and is similar in principle to that of Lemma 3: if the weights
are not as specified, then it is possible to perturb x∗ to obtain a feasible solution of LP with strictly higher
value than x∗, thus violating the assumption that x∗ is an optimum of LP. The fact that t is odd is used
to ensure that the perturbation results in a feasible point.

We now use Lemma 4 to finish the proof of part 1 of Theorem 2. ConsiderM ′ = M−(M∩P )+(E∗
1∩P ),

which is a new matching of Te(t). Lemma 4 implies that w(M ′) ≥ w(M), i.e. M ′ is also a max-weight
matching of Te(t). However, note that the root e ∈M ′, and so this contradicts the fact that root e should
not be in any max-weight matching of Te(t). This proves part 1 of the theorem.

Part 2 is proved in a similar fashion, with the perturbation argument now requiring that t be odd.
Specifically, suppose part 2 is not true, then there exists an edge e, an optimum x∗ of LP with x∗e < 1, and
an even time t at which the estimate is x̂t

e = 1. This implies that root e is a member of every max-weight
matching of Te(t). Let M be any such max-weight matching in Te(t), and define the following set of edges

E∗
2 =

{
e′ ∈ Te(t) : e′ /∈M, and copy of e′ in G has x∗e′ > 0

}

In words, E∗
2 is the set of edges in Te(t) which are not in M , and whose copies in G are assigned strictly

positive mass by the LP optimum x∗. Note that the root e ∈ M and hence e /∈ E∗
2 . Let P be a maximal

alternating path which includes the root e, and alternates between edges in M and edges in E∗
2 .

Lemma 5 The weights satisfy w(P ∩M) ≤ w(P ∩ E∗
2).

The proof of this lemma is similar to that of Lemma 4, and is given in the appendix. It uses the fact
that t is even. Now, as before, consider M ′ = M − (M ∩ P ) + (E∗

2 ∩ P ), which is a new matching of Te(t).
Lemma 5 implies that w(M ′) ≥ w(M), i.e. M ′ is also a max-weight matching of Te(t). However, note that
the root e /∈ M ′, and so this contradicts the fact that root e should be in every max-weight matching of
Te(t). This proves part 2 of the theorem.
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5 Extensions

We now establish the extensions of Theorems 1 and 2 to the weighted b-matching and r-edge-cover problems.
The main ideas remain unchanged, and thus the proofs are outlines, with just the important differences
from the corresponding proofs for the simple matching highlighted.

Weighted b-matching

The weighted b-matching problem is given by the following integer program: given numbers bi ≥ 0 for each
node i,

bIP : max
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≤ bi for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E

The LP relaxation of this integer program is obtained by replacing the constrains xe ∈ {0, 1} by the
constraints xe ∈ [0, 1] for each e ∈ E. We will denote the resulting linear program by bLP.

To apply Max-product, first consider a probability distribution as in (1), but with ψi(xEi
) now defined

to be 1 if
∑

e∈Ei
xe ≤ bi, and 0 otherwise. The max-product updates remain as specified in Section 3. The

following two theorems are the respective generalizations of Theorems 1 and 2.

Theorem 3 If bLP has no fractional optima, then the max-product estimate x̂t is correct (i.e. it is the
true max-weight b-matching) for all times t > 2wmax

c
, where wmax is the maximum weight of any edge in

the graph, and c is as defined in Lemma 1 (but with P being the b-matching polytope)

Theorem 4 For any edge e in G,

1. If there exists any optimum x∗ of bLP for which the mass assigned to edge e satisfies x∗e > 0, then
the max-product estimate x̂t

e is 1 or ? for all odd times t.

2. If there exists any optimum x∗ of bLP for which the mass assigned to edge e satisfies x∗e < 1, then
the max-product estimate x̂t

e is 0 or ? for all even times t.

The proofs of both theorems are similar to those of Theorems 1 and 2 respectively. In particular,
note that there will be an alternating path between any two b-matchings on the computation tree. All the
alternating path and perturbation arguments remain as before.
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Weighted r-edge-cover

The min-weight r-edge-cover problem is given by the following integer program: given numbers ri ≤ di for
each node i, where di is the degree of node i,

rIP : min
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≥ ri for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E

The LP relaxation of rIP is obtained by replacing the constrains xe ∈ {0, 1} by the constraints xe ∈ [0, 1]
for each e ∈ E. We will denote the resulting linear program by rLP. To apply max-product, consider the
following probability distribution

q(x) ∝
∏

i∈V

ψi(xEi
)
∏

e∈E

exp(−wexe), (2)

Here the factor ψi(xEi
) for node i takes value 1 if and only if

∑
e∈Ei

xe ≥ ri, and 0 otherwise. It is easy
to see that any maximum of q corresponds to a min-weight r-edge-cover of the graph. The max-product
updates remain as specified in Section 3, except that we should be replaced by −we. The two theorems
are now stated below.

Theorem 5 If r-LP has no fractional optima, then the max-product estimate x̂t is correct (i.e. it is the
true min-cost r-edge-cover) for all times t > 2wmax

c
, where wmax is the maximum weight of any edge in the

graph, and c is as defined below (P is the feasible polytope of rLP)

c = inf
x∈P−x∗

w′x− w′x∗

|x− x∗|

Theorem 6 For any edge e in G,

1. If there exists any optimum x∗ of rLP for which the mass assigned to edge e satisfies x∗e > 0, then
the max-product estimate x̂t

e is 1 or ? for all odd times t.

2. If there exists any optimum x∗ of rLP for which the mass assigned to edge e satisfies x∗e < 1, then
the max-product estimate x̂t

e is 0 or ? for all even times t.

Theorems 5 and 6 are most easily obtained by mapping the max-product updates for the r-edge-cover
problem to those of the b-matching problem. In particular, if di is the degree of node i, set

bi = di − ri

Then, any edge e will be included in the min-weight r-edge-cover if and only if it is not included in the
max-weight b-matching. The following lemma shows that there is an exact relationship between the max-
product updates for the r-edge-cover problem and the corresponding b-matching problem. It can easily be
proved by induction, we include the proof in the appendix.
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Lemma 6 Given a weighted r-edge-cover problem, let m denote the max-product messages and n the
beliefs. Consider now the weighted b-matching problem where edge weights remain the same and each
bi = di − ri. Let m̃ and ñ denote the messages and beliefs for this b-matching problem. Then, we have that
for time t, node i and edge e ∈ Ei,

mt
i→e[0]

mt
i→e[1]

=
m̃t

i→e[1]

m̃t
i→e[0]

,
mt

e→i[0]

mt
e→i[1]

=
m̃t

e→i[1]

m̃t
e→i[0]

,
nt

e[0]

ne[1]
=

ñt
e[1]

ñe[0]

Note now that the estimate x̂t
e depends only on the ratio ne[0]

ne[1]
. In particular, x̂t

e = 0, 1, ? if and only if
ne[0]
ne[1]

is respectively >,<,= to 1. Thus, Lemma 6 implies that the r-edge cover max-product estimate for
edge e will be 1 if and only if the corresponding b-matching max-product estimate is 0. Similarly, 0 maps
to 1, and ? to ?. Thus, Theorems 5 and 6 follow from Theorems 3 and 4 respectively.

6 Protocol Simplification

In this section we show that max-product for the weighted matching problem can be simplified for im-
plementation purposes. Recall that in the specification given in Section 3, messages are passed between
edges and nodes. However, it would be more desirable to just have an implementation where messages are
passed only between nodes. Towards this end, for every pair of neighbors i and j, let e = (i, j) be the edge
connecting the two, and define

at
i→j = log

(
mt

i→e[0]

mt
i→e[1]

)

The protocol with the a-messages is specified below.

Simplified Max-Product for Weighted Matching

(INIT) Set t = 0 and initialize each a0
i→j = 0

(ITER) Iteratively compute new messages until convergence as follows: (y+ = max(0, y))

at+1
i→j = max

k∈N (i)−j

(
wik − at

k→i

)
+

(ESTIM) Upon convergence, output estimate x̂: for each edge set x̂(i,j) = 0, 1 or ? if (ai→j+aj→i) is respectively
>,< or = wij .

The update equations for b-matching and r-edge-cover can also be simplified by defining a’s as above.

7 Appendix

Proof of Lemma 3:

13



The outline of the proof is as follows: we will use P to define a new feasible point x of the LPby
modifying x∗, the unique optimum of the LP. We obtain x by subtracting ǫ from x∗e′ for every edge in
P ∩M∗

T and adding ǫ for every edge in P ∩M , counting repeated occurrences. The fact that the weight
w′x is strictly less than w′x∗ will prove the lemma.

Formally, We define two length-|E| vectors α and β as follows: for every e′ in the original graph,
αe′ = number of (copies of) e′ that appear in P ∩M∗

T .
Note that αe′ > 0 only for edges e′ ∈M∗, and αe′ = 0 for other edges e′ /∈M∗.

βe′ = number of (copies of) e′ that appear in P ∩M , excluding copies that touch a leaf of Te(t).
Note that βe′ > 0 only for e′ /∈M∗, and βe′ = 0 for e′ ∈M∗.

In the above, the leaves of tree Te(t) are nodes at the last level of Te(t), i.e. furthest away from the root.
The path P has two endpoints, and hence it can have at most two leaf edges in P ∩M . Let w1 and w2 be
equal to the weights of these two edges, if they exist, and wi = 0 if the corresponding edge does not exist.
Then, we have that

w′α = w(P ∩M∗
T ) (3)

w′β = w(P ∩M) − w1 − w2 (4)

For an illustration of these definitions, look at the footnote3. We are now ready to define the perturbation:
let ǫ > 0 be a small positive number, and

x = x∗ + ǫ(β − α) (5)

We now need the following auxiliary lemma, which is proved later in the appendix.

Lemma 7 The vector x as defined in (5) is a feasible point of LP, for a small enough choice of ǫ.

We now find it convenient to separately consider two possible scenarios for the path P and weights
w1, w2.

Case 1: w1 = w2 = 0

Suppose now that the statement of Lemma 3 is not true, i.e. suppose that w(P ∩M∗
T ) ≤ w(P ∩M).

From (3) and (4), and the assumption w1 = w2 = 0, it then follows that w′α ≤ w′β. From (5) it then
follows that w′x ≥ w′x∗. Note also that x 6= x∗ because β−α 6= 0. We have thus obtained a feasible point
x of the LP with weight at least as large as the unique optimum x∗. This is a contradiction, and hence
for this case it has to be that w(P ∩M∗

T ) > w(P ∩M).

Case 2: At least one of w1 or w2 is non-zero.

For w1 or w2 to be non-zero, at least one endpoint of P has to be a leaf of Te(t). The tree has
depth t, and P contains the root and a leaf, so the path length |P | ≥ t. Now, for each edge e′ ∈ M∗,

3For illustration of these definitions, we refer back to example 1 of Section 4. The computation tree in the center shows the
projection M∗

T , and the tree on the right shows a max-weight matching M on T(a,b)(4). Suppose now P is the path starting
from the left-most leaf of T(a,b)(4) and ending at the right-most leaf. It alternates between M and M∗

T . For this P , we have
that the vectors are: α(a,b) = 1, α(c,d) = 2 and αe′ = 0 for all other edges e′. β(a,c) = 1, β(b,c) = 1 and βe′ = 0 for all other
edges e′. The weights w1 = w2 = weight of edge (a, d).
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|xe′ − x∗e′ | = ǫαe′ , and for each e′ /∈M∗, |xe′ − x∗e′ | = ǫβe′ . Thus we have that

|x− x∗| = ǫ

(
∑

e′∈G

αe′ + βe′

)
= ǫ |P |

Thus we have that the ℓ1-norm satisfies |x− x∗| ≥ ǫt. Now, by the definition of c in Lemma 1,

w′x∗ − w′x ≥ c|x− x∗| ≥ cǫt,

and thus, w′(α− β) ≥ ct. Also, w1 + w2 ≤ 2wmax. Thus we have that

w(P ∩M∗
T ) − w(P ∩M) ≥ ct− 2wmax

However, by assumption t > 2wmax

c
, and hence it has to be that w(P ∩M∗

T ) > w(P ∩M). This finishes the
proof. �.

Proof of Lemma 4:

The proof of this lemma is also a perturbation argument. For each edge e′, let me′ denote the number
of times e′ appears in P ∩M and ne′ the number of times it appears in P ∩ E∗

1 . Define

x = x∗ + ǫ(m− n)

We now show that this x is a feasible point for LP, for small enough ǫ. To do so we have to check edge
constraints 0 ≤ xe′ ≤ 1 and node constraints

∑
e′∈Ei

xe′ ≤ 1. Consider first the edge constraints. For any
e′ ∈ E∗

1 ∩ P , by definition, x∗e′ > 0. Thus, for any me′ and ne′ , making ǫ small enough can ensure that
x∗e′ + ǫ(me′ − ne′) ≥ 0. On the other hand, for any e′ ∈ M ∩ P , x∗e′ < 1, because a neighboring edge that
belongs to E∗

1 has positive weight. Making ǫ small enough ensures that x∗e′ + ǫ(me′ − ne′) ≤ 1.

Consider now the node constraints for a node v. For every copy of v that appears in the interior of
P , the mass on one edge is increased by ǫ, and on another is decreased by ǫ. Thus the only nodes where
there is a potential for constraint violation are the endpoints of P for which the corresponding last edge
is in P ∩M . Suppose that v is one such endpoint, and assume for now that v is not a leaf node of Te(t).
Note now that, by construction, every edge in e′ ∈ P ∩M has x∗e′ < 1. So, the fact that P could not be
extended beyond v means that

∑
e′∈Ev

x∗e′ = x∗uv < 1, where uv is the edge in P (and M) touching v. This
means that the constraint at v is inactive for x∗, and so for small ǫ the new x will be feasible. The only
remaining case to check is if the endpoint v of P is a leaf node of Te(t). If this is the case, the fact that t
is odd, and that the root e does not belong to P ∩M means that the edge touching v will be in P ∩ E∗

1 ,
and not in P ∩M . Thus x is a feasible point of LP.

Note that the weights satisfy

w′x− w′x∗ = w(P ∩M) − w(P ∩ E∗
1)

Thus, if w(P ∩M) > w(P ∩E∗
1), then we would have that w′x > w′x∗, which violates the assumption that

x∗ is an optimum of LP. So it has to be that w(P ∩M) ≤ w(P ∩ E∗
1). This proves the lemma. �

Proof of Lemma 5:

Let m, n and x be defined exactly as in the proof of Lemma 4 above, with E∗
1 replaced by E∗

2 . By
reasoning exactly as above, it follows that all edge constraints 0 ≤ xe′ ≤ 1 are satisfied, and also all node
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constraints are satisfied except possibly for nodes v that are endpoints of P which are leafs of Te(t) and
also the last edge e′ is in P ∩M . However, the fact that the root e is in M , and that t is even, means that
last edge e′ ∈ P ∩ E∗

2 and not in P ∩M . Thus x is a feasible point of LP.

Now, as before, we have that w′x = w′x∗ +w(P ∩M)−w(P ∩E∗
2). Thus, if the lemma is not true, it

follows that w′x > w′x∗, violating the optimality of x∗. The lemma is thus proved. �

Proof of Lemma 7:

We now show that x as defined in (5) is a feasible point of LP, for small enough ǫ. For this we have
to show that it satisfies the edge constraints 0 ≤ xe′ ≤ 1 for all edges e′ ∈ G and the node constraints∑

e′∈Ei
xe′ ≤ 1 for all nodes i ∈ G (here Ei is the set of all edges touching node i)

First the edge constraints. If e′ ∈ M∗, then the assumption that x∗ is integral means that x∗e′ = 1,
and hence xe′ = 1− ǫαe′ . Thus for small enough ǫ, it will be the case that 0 ≤ xe′ ≤ 1. On the other hand,
if e′ /∈M∗ then x∗e′ = 0 and xe′ = ǫβe′ . Thus, again, a small enough ǫ will ensure 0 ≤ xe′ ≤ 1.

We now turn to the node constraints. Note that

∑

e′∈Ei

xe′ =
∑

e′∈Ei

x∗e′ + ǫ



∑

e′∈Ei

βe′ −
∑

e′∈Ei

αe′




The term
∑

e′∈Ei
αe′ counts the number of times edges in P∩M∗

T touch (copies of) node i in the computation
tree. Similarly,

∑
e′∈Ei

βe′ counts the number of times edges in P ∩M touch i. Suppose first that i is not
an endpoint of P , so that every time P touches i it will do so with one edge in M∗

T and one in M . This
means that

∑
e′∈Ei

αe′ =
∑

e′∈Ei
βe′ and hence that

∑
e′∈Ei

xe′ =
∑

e′∈Ei
x∗e′ . Thus the node constraint at

i is not violated.

Suppose now that i appears as an endpoint of P , and (i, j) is the corresponding last edge of P . If
(i, j) ∈ P ∩ M∗

T , this means that
∑

e′∈Ei
βe′ ≤

∑
e′∈Ei

αe′ , and hence
∑

e′∈Ei
xe′ ≤

∑
e∈Ei

x∗e′ – so the
constraint at node i is not violated4. If last edge (i, j) ∈ M and it touches a leaf-node then it is not
counted in βe′ (see how β is defined). If (i, j) ∈ M and it ends in the interior of Te(t), then the fact
that P could not be extended beyond i means that there are no edges of M∗

T touching i in the tree Te(t).
Since M∗

T is the image of M∗, this means there are no edges in M∗ touching node i in original graph G.
Thus

∑
e′∈Ei

x∗e′ = 0. So, for small enough ǫ we can ensure that ǫ
∑

e′∈Ei
(βe′ − αe′) ≤ 1, ensuring that the

constraint at node i is not violated. �
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