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Abstract—The free-rider problem arises in the provi- distributed database, containing information availablelt
sioning of public resources, when users of the resource haveysers, without exclusion. Each user contributes towards th
to contribute towards the cost of production. Selfish users piding / maintenance of this database, either in direct
may have a tendency to misrepresent preferences — so as to .
reduce individual contributions — leading to inefficient levels mpnetary .terms 9“ through contrlbut_ed storage resources.
of production of the resource. Groves and Loeb formulated Since the information in the database is assumed to be freely
a classic model capturing this problem, and proposed (what available to all users, each user has an incentive to migimiz
later came to be known as) the VCG mechanism as a solution. the amount of resources it contributes. However, if every
However, in the presence of heterogeneous users and commuy,ser acts according to these selfish considerations, the net
nication constraints, or in decentralized settings, implementing . L
this mechanism places an unrealistic communication burden. result could .be.a pOSS|ny.severe ynder-prowsmmng ,Of the
In this paper we propose a class of alternative mechanisms for 'esource. This is the classic “free-rider problem:” inedfit
the same problem as considered by Groves and Loeb, but with provisioning of a public good due to selfish behavior. Beside
the added constraint of severely limited communication between socially inefficient production, free-riding may also lead
users and the provisioning authority. When these mechanisms budgetary shortfalls: user contributions may cover only

are used, efficient production is ensured as a Nash equilibrium fracti f th t of efficient fficient
outcome, for a broad class of users. Furthermore, a natural bid & Traction of the cost of eflicient, or even near-efiicient,

update strategy is shown to globally converge to efficient Nash Production.
equilibria. Also, upper bounds are provided for the revenue
that can be generated by any individually rational mechanism Mechanisms for the production of public goods pro-
that ensures efficient production at any Nash equilibrium. It ceed as follows. Users are asked to submit bids to the
is shown that there exist mechanisms in our class that achieve producer. Based on the received bids the producer then
ﬁ]"’t‘gné};ttgg 5;’&2%%@?52}52sg?gsfn[gﬂf“p'e public goods with e ciges, according to a pre-specified and globally known
rule, the quantity of the public good to be produced and
the contributions to be made by each of the users. Groves
and Loeb [1] proposed a generic model capturing the free-
rider problem in the production of a real-valued amount of
a public good. The mechanism they proposed for solving
the problem was one of the earliest instances of what later
came to be known as the general class of VCG mechanisms.

Thi | f hani fThis paper proposes alternative mechanism designs for the
IS Paper proposes a New class of MEechanisms 1o, yasoyrce allocation problem as formulated in [1]: we
addressing the free-rider problem that arises in the pitiatuc

: : are interested in mechanisms that ensure the production of
of public goods. Bypublic goodwe refer to a resource whose P

. lUsi it b d simult d the efficient real-valued quantity of a public good, in the
usage IS non-exclusionary. it can be used Simultaneousy aftosence of users whose objectives are the maximization of
equally by all users. This is in contrast topsivate good

hich has to be divided th h of htheir individual net profits. The auctions presented in this
which has 1o be divided up among the USers, each of w per are not suitable for combinatorial settings.
has exclusive access to its portion after the auction. Cammo

examples of public goods in everyday life are television /|t js well known (see e.g. [2]) that VCG mechanisms
radio broadcasts, weather reports and public works suchz#g the only ones that ensure efficient production as dortinan
libraries. strategy outcomes in a wide variety of resource allocation
problems, including the ones investigted in this paper. It
5 also increasingly apparent that in many settings the im-
ementation of VCG mechanisms places a heavy commu-
ftation and computational demand on the auctioneer and
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I. INTRODUCTION

In proposing the mechanisms described in this pap:
we are motivated by public goods in modern communicati
and computation systems. Consider for example a lar



set of user preferences, to be made public for the purposeshe amount produced. Furthermore, the mechanisms in [3]
of resource allocation. Even when bids may be submitteahd [4] require that the price of production be known, and use
anonymously, users may be unwilling or unable to completeltyas a parameter in the payment function. The mechanisms
revel their preferences. proposed in this paper are not budget balanced, but are
individually rational and work for any convex productionsto

In this paper we consider the same problem as Wagnction. Also, the payment function in our mechanism does
considered in [1], but add a severe communication constraifot depend on the cost function.

Specifically, we require that each user’s bid bsiregle real
number. This is in contrast to the VCG implementation,  Allocation of continuous-valued (i.e. infinitely divisig)
which asks that the bid be an entire real-valdfadction private goods based on single-valued bids, as well as the
Since dominant strategy equilibria are unreasonable tea@xpdynamics of convergence to equilibria, has received attent
in this setting, we settle for Nash strategies as the equitib previously in networking contexts, with the good primarily
concept. We propose ex-post individually rational mechéeing represented by bandwidth. Kelly [5] assumes users
nisms that result in the production of an optimal quantitsre price takers, and a primal-dual price selection algarit
of the public good at any Nash equilibrium. Furthermorés shown to converge to the optimal allocation. In [6-9],
Nash equilibria are shown to always exist, and there is a orthe price taking assumption is relaxed, with each user now
to-one correspondance between the set of optimal quantitieing able to anticipate the effect of his/her own bid on
and the set of Nash equilibria. Revelation of single-valugtie price. The work [10] proposes the Nash Bargaining
bids implies that it is not possible to infer a user’s privateolution as a natural mechanism, if the objective is pareto-
valuation information from its bid. optimality, that can be implemented in a distributed fashio
in networks. In the above papers users submit bids indigatin
Such a mechanism design immediately raises the qu@ssir willingness to pay, while in [11], the users send rates
tion of price discovery: how do users know / arrive at a Nasfito the system and accept the resulting charges. In allef th
equilibrium? This is not a concern for VCG mechanisms agove papers, each user has a utility function for its shére o
users are assumed to know their own value functions. For fpg good, but is constrained to bit a single real number (whic
mechanisms in this paper, myopic best response adjustmeis he varied over time). Myopic continuous-time updates
to bids in continuous time result in global convergencgre shown to converge to Nash equilibria in [8, 9]. Our paper
to Nash equilibria. Furthermore, these updates are easyci pe viewed as an extension of these implementation ideas

compute and need very little information — which can bg, the realm of continuous valued public good provisioning
provided by the mechanism designer — about the rest of thgplems.

market.
) o ) In a combinatorial private good setting, Blumrosen and
VCG mechanisms are individually rational becausgisan [12] limit the strategy space even further, requitinag
when bidding optimally each user can ensure that its paymesich pid be limited to a few bits. The problem of provisioning
does not exceed the value it obtains from the good’s produgpypblic good differs from private good problems in the sense
tion. In the mechanism proposed in this paper, the paymeRkt the allocation decision, namely the real-valued dtyant
made by a user will always be less than its single-valugd pe produced, is one-dimensional, while in the privatedgoo

Also, at Nash equilibrium, no user’s payment will exceed the

value it obtains from the good’s production. The mechanism For public goods, under many mechanisms, inefficient
presented in this paper is thus also individually rational. production may occur as an equilibrium outcome. In Section
Il we give an example of a simple intuitive mechanism — the
Nash implementations for public good problems havgay as bid” mechanism — and show that inefficiencies in pro-
been proposed in the literature, primarily with the objeeti gy ction may be quite severe even for reasonable scenarios of
of addressing the issue of budgetary shortfall, which VC{zser value functions. In Section 11l we describe one example
mechanisms are susceptible to. Groves and Ledyard fJline class of new mechanism we propose in this paper, and
devised the first Nash implementation, to be followed byyove the existence, uniqueness, and optimality results fo
Walker [4]. These mechanisms have no budgetary shortfaljash equilibria in the resulting game. In Section IV we show
but are not individually rational: even if, for example, &us that myopic gradient ascent updates in continuous timetresu
values for all levels of the public good atthese mechanismsip global convergence to a Nash equilibrium. In Section V
may still end up charging the user more thaat equilibrium  \ye extend the example mechanism to the case when there are
Also, the mechanisms as stated work only for the special cag@jtiple public goods and users with joint value functions.
when the total cost of producing the public good is lineafje present the full class of mechanisms in Section VI, and



conclude with some discussion in Section VII. while the payment function for uséris

p{9Cb) = |max } 6;(Q) - C(Q)
Il. SYSTEM MODEL T g
(fVCG B vea
A certain quantityQ € R,, of a public good has - ;bﬂ(f (b)) - C(f"" (b))
j#i

to be produced by a producer, wheRe, ;. is the set of
strictly positive reals. The producer can produce a quantit i ) i
Q at costC(Q). Once produced, it is available to users, Given a mechanism and bid vectoy the net rewardof
wheren > 2. Each user obtains a valud/;(Q) from the USeréis given by

good’s production, and contributes a paymgntowards its Ri(b) = Ui(f(b)) — pi(b) (1)
production. It is assumed thét(Q) is strictly increasing and __ )

convex and eacl;(Q) is strictly increasing and concave,Given the mechanism, the users play a non-zero-sum non-
and all functions are continuously differentiable. Thigtie COOPerative game, with each user trying to maximize its own

same as the model in Groves and Loeb f1]. net reward.
A quantity Q* is said to beefficientif producing that As an example of a mechanism susceptible to the free-
quantity maximizes the net social benefit: rider problem, consider thgay as bidmechanism where user

payments are the bids p;(b) = b; — and the production
function is the one that balances the budget:

fr(b) = X(B) )

where X = C~! is the inverse of the cost function and

for all @ € Ry,. If a quantity @ does not satisfy the g — S, is the total of all bids (and payments).
above requirement, it is inefficient. It is assumed thateher

exists some finit&)* > 0 that is efficient. Concavity implies For this mechanism it can be seen that the first-order
that the efficiency ofQ* is characterized by the first-ordernecessary condition for a bid vectbrto be a Nash equilib-
conditions. rium is that

ZUi(Q*) -0 > ZUi(Q) - C(Q)

U/(X(B)) < C'(X(B))

Lemma 2.1:A quantity @Q* is efficient if and only if ] - )

L ULQY) = C'(Q). for eachuseri, with equality if b; > 0. It is easy to see
from Lemma 2.1 that there will not be an efficient Nash

Any mechanism for the production of the good proceedsjuilibrium when more than two users are present,afoy
as follows. First, each useris asked to submit &id b;. set of value functiond/; and cost functionC' — under the
Then, the producer maps the vector of bidsito a produced assumptions of convexity of’, concavity ofU;’s and that
quantity f(b) and a paymenp;(b) for each useri. We any efficient quantityl)* is non-zero.
will call f the production functionand thep;’s the payment
functions The production and payment functions are known
by the users in advance, i.e. before they submit their bids.

Specifying the space of allowed bids and the production and ] )
payment functions specifies the mechanism. In this section we present an gxample' from the new
class of mechanisms that ensure socially optimal produictio

One example of such a mechanism is the classical VCI® do so we need to specify the space of allowable bid
mechanism. A VCG mechanism requires users to submit bigactors, the production functiofy and the payment functions
that are functions ofR . Given these bid functiong;, the p;.
production function is

I1l. ANEW MECHANISM

Each user’s bid is a strictly positive real numbgy:c
R, .. Given the vector of bid®, we propose the using the
Y% (b) = arg max > hi(Q) - C(Q) same production function
[1(b) = X(B)

1Except that in [1] it is assumed th& > 0 and C'(Q) = pQ for some a_s n (2) above.' No/te thakt is mcireasmg, concave f"‘”d
p > 0. Also theU; functions need not be differentiable. differentiable, with X'(C(Q)) = AR For each uset,



denote the total bid of users other thaby B_; = Zj# b;. assumption there exists at least one such quantity that is

We propose the following payment functions finite. Define for each user the bid
3 7 A U{(Q*) *
b = b p (1)@ b2 g C@) ©

C'(
The mechanism is thus fully specified. The other mechanisrien, by Lemma 2.1, U;(Q") = C’(Q") and hence the
we propose in Section VI use the same allocation functidatal bid satisfies3 = C(Q*). Thus (5) can be rewritten as
f*, but different choices for the payment functioms ~

172 Q ! ( )* .
The following properties are easy to see: vi@") = B ¢(Q) foralli

1) The reward function®; (b;, B_;) is concave inb; for SinceQ” = X(B), b satisfies the necessary and sufficient
all fixed values ofb;, j # i. conditions of (4), and hence is a Nash equilibrium. Theeefor
2) 0 < pi(b;, B_;) < b; for all b andi: a user is never b corresponds to the efficient quantiy”. 0

asked to pay more than its bid. It is clear that the mechanism is not budget-balanced.

Theorem 3.1:For the public good model described inflowever, it is possible to bound the subsify— 3, pi(b)
the previous section if the mechanigif, p?) is used, there @S & fraction of the total cost.
is a one-to-one correspondence between the set of efficient
guantities and the set of Nash equilibria for the game. Also,
at any of these Nash equilibria the corresponding efficient B —>".pi(b)
quantity is provisioned. B

Proposition 3.1:Whenn users are present,

< (n—1)log

n—1

Note: Rosen’s theorem [13] cannot be directly used tdhis is tight if then bids are equal.

show’the existence of Nash equmbrl'a n this game since tlb-*?oof of Proposition 3.1: For a bid vectoib, the subsidy is
users’ strategy spaces are Rll ,, which is not closed.

given by
Proof of Theorem 3:1 B
B-Y pi(b) = ) Bilog i
Since each user’s reward function (1) is concave in i i -t

the users’ own bid, the simultaneous satisfaction of the OB B_; 1 (n—1)B
following first-order conditions by all users at a bid vector (n—1) Z (n—1)B 08 B_;
is necessary and sufficient forto be a Nash equilibrium: — (n—1)Blog(n —1)

UAX(B)X'(B) — 1+ =P~ — 0 foralli = (n=DBH(B-) - (n—1)Blog(n—1)
b + B_;
If Q = X(B) then X'(B) = L_and so the above where H(B_) is the entropy of then-length probability
conditions can be rewritten as @@ vector whoseith element is%. Now, for any B_,
- H(B-) < logn, with equality if and only if the elements
UNG) = b—iC’(@) for all i (4) Oof B- are all equal. Hence
' B
- o _ - B—3.ipi(b) < (n—1)log —~
Suppose now thdb is a Nash equilibrium, an@) = f*(b) B n—1
is the corresponding quantity that is produced. Summing ttﬁa‘lus proved. O

conditions in (4) over the set of users yields

o~ = The tightness of the above proposition implies that for a
Z Ui(Q) = Q) large number of identical users the subsidy will form a large
! portion of the total cost. As shown in Section VI, significant
By Lemma 2.1, this means thél is efficient. Thus efficient Subsidies cannot be avoided in a large class of mechanisms
quantities are provisioned at Nash equilibria. that ensure optimal provisioning at Nash equilibria and use
f(b) = X(B) as the production function. In spirit, this
For showing the existence of Nash equilibria, we simplsesult for our mechanism is similr to results for the VCG
turn the above argument around. L@t be efficient — by mechanism: large subsidies may be required.



IV. DYNAMICS by (2) and (3) is used, leb* be the corresponding Nash
equilibrium bid vector. Then, for the bid updates given by
The above section shows that for the mechanism pr), the vector of bids will converge tb* from any initial
sented, Nash equilibria always exist and are efficient. Howendition inR,

ever, users still have to find out these Nash equilibria. In ) o
this section we show that if users follow a natural bi(lj’roof of Theorem 4:1The proof involves breaking time into

update strategy, then the vector of bids converges to a N4&Q Phases. In the fir*st phase*the suinof the bids gets
equilibrium from any valid initial condition. close to the optimalB* = C'(Q"), and in the next phase
each of the individual bids; get close tab;.
Specifically, consider the user update rule when each

user attempts gradient ascent, in continuous time, of its Civend >0, we want to show the existence of a finite
reward function (1): time instant7; such that|b; — 0| < ¢ for all < and all

p 9 t > Ts. Towards this end, lety > 0 be such thatyB* < %

bi = ——R;(b;,B_;) andeg < Jl_i for all i. Then lete; > 0 be such that for alt

dt b b the following holds
= Uj(X(B)X'(B) - (6) .
B U/(X(B))X'(B) — b < ¢ wheneverB — B*| <e¢
To follow this bid update procedure at a given time, the user’ B| = ° =

only needs to know the amount currently provisioned, the

cost function’s derivative and the total of all the usersishi >UCch anei exis,ts by t*he c?nti*nuity Cl’)yv:/ (X (B))X '(B) an.d
The user does not need detailed information about what edBf fact thatU; (X (B*))X'(B*) = F=, for all i. For this

user's bid is, or even how many users are present. choice ofeg andey, let 7y be a finite time such thdi3(t) —
B*| < ¢ for all ¢ > T;. Lemma 4.1 ensures the existence

If the above gradient ascent update procedure is faf such aT;. Ty is the end of phase one.
lowed by each of the users, then the s@mof their bids ] ) .
is seen to follow a gradient ascent of the social utility ~ Since the update equation (6) holds forét 71, this
function. This observation, formalized in the lemma beloWn€ans thab;(t) € [b;(t),bi(t)] for all ¢ > Ti, where the
is used to show global convergence of each of the bids to tePer and lower bounds satisy(71) = bi(T1) = bi(T1)
corresponding Nash equilibrium bids. For ease of expasiti@nd fort > T; are updated according to the equations

we will assume that there is a unique optimal quantity. db. b b
— = Z* — € — *71
Lemma 4.1:Let {U;} and C' be such that there is a dt B B —a
unique optimal quantityQ*. Then, for any initial starting dbi b b b
bid vectorb, havingb; > 0 for at least two, if the users dt B Y Bry €1
follow the updates given by (6), then the sum of the bigls
converges taB* = C(Q"). Solving the first of the above two equations yields
Proof of Lemma 4.1 b*
bi(t) = (BZ* —60) (B* —e1)
Adding the update equations (6) over the set of all users "
1, we see that + (bi(Tl) _ (Bz* _ 60> (B* _ 61)> 63*7611
dB = X'(B U/(X(B 1 ; ;
dt - (B) Z i(X(B)) | = Now by the assumptions made @i, §, ¢; andey, this means
dt .
' that for ¢ large enoughp,(¢t) > b — ¢. Similarly it can be
_d ' B shown thath;(t) < b + &, and hence thal;(t) — b for all
" dB (Z Ui(X(B)) B) i. This finishes the proof. O

Now, >, U;(X (B))—B is a concave increasing continuously ~ Although we have assumed thgt* > 0, the above
differentiable function ofB, and is maximized at one point,dynamics also work if the efficient allocation @* = 0.
B*, by assumption. Hence the above update equation impliesieed, if . U;(0) — C(0) > >, U;(Q) — C(Q) for all
that B — B*. O @ > 0, then the above dynamics will result iB — 0.

~ Hence production will be efficient in the limit.
Theorem 4.1:Let U; and C' be such that there is a

unique optimal quantityQ*. When the mechanism given The continuous time dynamics of (6) have a natural



discrete-time version; section we show that if the production costs are decoupled,
bi(k)2 then using the mechanism proposed in this paper separately

bi(k+1) = bi(k) +~ <U{(X(B(k)))X/(B(/€)) ~ B for each good results in efficient joint provisioning of all

goods.

where~ > 0 is the step size. For these dynamics, we have

the following theorem. Suppose now that there ar® public goods, with

the vector of quantities denoted by = [Q1,...,Qnm].
Theorem 4.2:Let U; and C be twice continuously Each user has a value functid®(Q), which is assumed
differentiable and such that there is a unique optim¥p Pe jointly continuous, differentiable, concave andcslyi
quantity Q*, and there are at least two users in thicreasing? in each coordinate. The production of each good
system. When the mechanism given by (2) and (3) i8curs a cost, as specified by the cost functids(Qm)
used, letb* be the corresponding Nash equilibirum bidor 1 < m < M. Each cost functiorC:,, is assumed to
vector. Then, for the discrete-time updates given by (7)€ convex, strictly increasing and differentiabi@.€ R}/,
the vector of bids converges t* from any initial con- Means that each coordinate is strictly positifg;, € R,
dition, as long as~ is small enough to ensure thatfor all m.
Iy (32 UF(X(B))[X'(B))? + U](X(B))X"(B)) | < 1 for

B*<B<B +n. A vector of quantitiesQ* is said to beefficientif it

maximizes the net social benefit:

Proof of Theorem 4.2: Z Us(Q*) — ZCm(an) > ZUi(Q) _ Zom(Qm)
Adding (7) over the set of users gives ‘ m i m

for all @ € R{‘ﬁ. It is assumed that there is at least one
Bk+1) = B(k)+~ (Z U/(X (BR)) X' (B(K)) — 1) efficient @* € RY, in which each quantity is finite.
i With these assumptions, running a separate market for
Let G(B) = >, U/(X(B))X'(B) — 1. Note thatG(B) is a each good results in efficient production. Each useow
strictly decreasing function aB, that G(B*) = 0, and that Submits a vector of bids; = [b} ... b}"]: thus each bid is an
G(B) > —1 for all B. Note also that the above condition on}/-dimensional vectob; € R}’ . As before define, for each
v can be restated d5G’(B)| < 1 for B* < B < B*++.  goodm, the bid sumsB™ 2 >, b and B™, 2 > i b
. Let X,, be the inverse function of’,, as in the single

) Suppose now*thaB(k:) > *B for somek. The factthat 45,4 case. For notational brevity, denote the vector of tota
WG’ (B)| <1for B* < B < B+ implies thatB(k + 1) pigs py B — [B',...,BM] and the vector production
will be fuch thatB™ < B(k+1) < B(k), which means that f,ction by x. Thus X (B) stands for the vector of quantities
B — B for this case. [X1(BY),..., X (BM)). Also, B_; = [B,,..., BM)].

So suppose now thaB(k) < B* for somek. Then, Consider the mechanism that, given all the bids, pro-

G(B(k)) > 0and henceB(k+1) > B(k). If B(k+1)isalso g ces quantityy,,(B™) of each goodn and charges user
greater thanB*, then by the argument aboveé — B*. Else 4, amount>" p™, where

we have thaB(k) < B(k+1) < B*, i.e. B has gotten closer .
to B*. Thus, in the next steP either(a) gets closer to (but (™, B™) = b — B™ log (1 + b; >
remains less thanp*, or (b) exceedsB* and subsequently B,
decreases monotonically t#8*. Thus B — B* for this case s the payment useérmakes towards the provisioning of good
as well. m. The level of production of each good is thus a local
decision, with the users balancing payments across goods
.~ S0 as to maximize their net rewards. For the mechanism as
— b, as was doneDm described, the net reward for useis given by

Ri(bi,B_;) = Ui(X(bi+B_;)) — >_p"(t", B™)

m

m

Using the convergence d8 — B*, we can show the
convergence of the individual bids
the continuous case.

V. MULTIPLE GOODS A vector of bid vectorgbs, .. ., b,) is a Nash equilibrium if

T D n M
The mechanism presented above has a natural extension Ri(bi,B-i) 2 Ri(bi,B-i) forall b; € R,

to the case when there are_ _multlple _pUbllc QPOdS to b@The strictly increasing requirement fof; can be relaxed somewhat, but
produced for users who have joint valuation functions. Ia thwe will not discuss it here for brevity



As in the single good case, efficient allocations and Nash One primary reason for exploring a more general class
equilibria are fully characterized by first-order condigo of mechanisms is to optimize the revenue generated at Nash

Thus @Q* is optimal if and only if equilibirum. The following proposition gives an upper bdun
P on the revenue of a broad class of mechanisms thatftise
> 20, Vi@ = C(Qy,) for eachm as the production function.

~ ~ . _ . . Proposition 6.1:Let user value functions b&;, C be
Thus, (b, - bn) is & Nash equilibrium if and only if the production cost function, and consider any mechanism
0 ~ Z’;n , o~ ) that(i) usesf*(b) (as given in (2)) as its production function,
@Ui(@ =~ Bm Cin(@m) foralliandm and (i) has payment functions such that0,b_,) = 0, and
such thatp;(b) is convex and continuously differentiable in

where@ = X(B). This is the multiple-goods analogue of;, for fixedb_.. If b is a Nash equilibrium then the payments
(4), and we can prove the existence and efficiency of Naghye to satisfy

equilibria for the multiple goods case in the same way as was ~ P

done for a single good. We state this as a theorem below and Zﬂfj(b) < max Ui(Q)

omit the proof. B Tt CN(Q)

Theorem 5.1:Consider the model with multiple public Where @ = X(B) is the quantity produced at the Nash
goods described in this section with the mechanigm p: :  €quilibrium.

1 < ¢ < n) used for the provisioning of each good. Therhepark: The conditionp;(0,b_,) = 0 above ensures that
Q ot

there is a one-to-one correspondence between the se SR . )
" ) ... _the mechanism is individually rational, and the convexity o
efficient quantity vectors and the set of Nash equilibria for . o .
;(b) in b; ensures that Nash equilibria exist.

the game, such that at any of these Nash equilibria th
corresponding efficient quantity vector is provisioned. Proof of Prop. 6.1

As in the single good case, if each user updates its bid For each uset,
vector according to gradient ascent in continuous time then ~ ~

!
there is global convergence to an efficient Nash equilibrium pi(b) < Opi (b) = Ui(Q)

The update equations are now given by the gradient b, b C'(Q)

d where the inequality holds becaupggbi,ﬁ_i) is a convex
0= Ui(X(B)) = > pi"(b*, B™) (8) increasing function ofb; with p;(0,b_,) = 0, and the
m equality is the first order necessary condition tgrto be

which is the same as a Nash bid for uset. The proof of the proposition follows
d 0 b immediately from these relations. |
S = (o U(X(B))) XLy (B™) —
i <8QmU( ( ))) m(B™) = 5

S ) Consider now a mechanism that satisfies the conditions
The proof of global convergence is similar to that for a singly¢ Proposition 6.1 and has a Nash equilibritanat which

good. We state the theorem below and omit the proof. 4y efficient quantity* is produced. Efficiency requires that

/ *) / * ici H H H H
Theorem 5.2:For the bid updates given by (8), thezi Ui(Q") = C"(Q"). This immediately implies that if there

vector of bids converges to a Nash equilibrium from an@re two or more users, it is not possible to recover the entire
initial condition where for each gooth there are at least OStB” = C@h) .from.th<la pa}ym(?nts. .Furthﬁrmore, n?é‘r;ere
two users with strictly positive bids for that good. are n. users with identical value functions then at meg

of the total costB* is recovered. The above upper bound
can thus be quite small if the number of users is large. This
V| M ORE GENERAL EFF|C|ENT MECHAN|SMS AND alSO indicates that effiCient meChanismS that require bl:ldge
REVENUE BOUNDS balance must either sacrifice individual rationality, or be
applicable to more restricted classes of user value fungtio

The mechanism presented in Section Il is one example . .
L : ' The design of the class of mechanisms presented below
of a more general class of individually rational mechanisms

. - IS based on the following realization: if in addition to the
that all guarantee the existence and efficiency of Na?:onditions of Proposition 6.1 the payment functions sgatisf
equilibria, and useg™(b) as given in (2) as their production P ' pay A

function. In this section we present this more general class Ipi (b) = 1
of mechanisms. — 0b;




for all b € R”} ,, then any Nash equilibrium will result in b at which Q* will be produced. The first-order conditions
efficient production. Of course, this does not guarantee thply that, for eachi
existence of Nash equilibria, which needs to be established

seperately. dp;(b) _ b(bi) o Ui Q) (13)

. . : . : b; . . , "(Q*
Let ¢(s) be a strictly increasing continuous function ? D(bi) + 225 ¥(b5) (@)
from [0, c0) to [0, 00), with ¢/(0) = 0. Given a vectorb of
bids, withb; € R, consider the mechanism given by

We will first prove (11). LetZ be the set of users with the
highest marginal value a@*: U;(Q*) = U/(Q*) > U(Q)
fr(b) = X(B) (9) foralli,jcZandk¢Z. Foriy(s) =1— e, the above
bi U(s) condition means that for all j
pi(b) = / ds (10)
o Y(s)+ Ej;éi ¥(by) 1 oobg U(Q")
In terms of this notation, the mechanism given by (2) and (3) | o—abt = U]’(Q*)
corresponds ta)(xz) = z. It can be shown that the reward c g

function i; is concave in the player’s bil, and that; < bi,  gjnce the sumB® of the bids is equal ta3* for all a, if
for all <. The following theorem is an analogue of Theore 3.1 7 thenpe - 0. Thus, ifi j €T andk ¢ T thenb® = be
(3 " 1 ) 7 J

and can be proved in a similar way.

for all , and as — oo, the bids2: — 0 while b2 — =

Theorem 6.1:For the mechanism given by (9)-(10),in the limit, the users with the highest marginal valuations
there is a one-to-one correspondence between the setwdf contribute equally to the payment, while all others wil
efficient quantities and the set of Nash equilibria. Alsgat have no contribution.
of these Nash equilibria the corresponding efficient qiyanti

is provisioned. More formally, givene > 0 there exists am; such that

The mechanism designer may be interested in max-2_ _ € < b < B* + < forallieZ anda > o
imizing revenue. Alternatively, it may be the designers |Z| 2 Izl 2

objective to provision optimally at minimal cost to the use
The following theorem shows that either objective can

r .
t$%Iso, there existsyv, such that for all > s,

achieved by a suitably designed mechanism from the class Tp— ‘
described in this section. The result is stated and proved —— = l—e¢ foralls> 5
for the case when there is a unique optimal quantity, but 1- e_a(\f\_f)
it generalizes to the case of multiple optima. )
Thus, if @ > max{a;,as} then fori € Z,
Theorem 6.2:Let user value function#/;....,U, and
production cost functiorC' be such that there is a unique oo b 1—e @8
optimal quanitity @* > 0 costing B* = C(Q*). Let pi(b%) = /O l—eos 43 (1—e by ds

p(b) be the payment function for the mechanism having

a l—e”*°
P(s) =1—e 2%, andpf(b) be the payment function for the B b; 1ot p
mechanism havingy(s) = e¢** — 1. Then, if b® andb” are Y Y urQn) 48
the corresponding Nash equilibria, 1—e % J#i U[(QF)
DALY U/(Q) e Ty
Jim SO = maxmes @) > [T S GO
) SO 2
im 2P 12) b 1‘
B—00 B* 17T~ 2 1—e€
> S—
. £ 1+ E . M
Note however that the convergence of either of the 2 j#i TI(Q")
above limits is not uniform in the choice of the user value Ul(Q") (B* ) (10
functions. = A\ € —€
> U5 (@) \ 7]
Proof of theorem 6.2 o Ui@) B” (1—e)—

. _ Q) |71
If pis a payment function based an from the class
given by (9)—(10), then it will have a unique Nash equilibniu By symmetry, ifi, j € Z thenpf*(b®) = p§(b®). Hence, for



a > max{ag, as},

2.; P (b) N > ez PP (BY)
B* - B*

\Y
/7~

£

i
<

Thus, giveny > 0, choose: such thak (1 + g‘) < 4. Then,

there existsys such that

% > (mﬁx g{g:;) -

10

Given 4, chooser so that(1 + 2%)e < §. Then, there exists
Bs such that for allg > 3;,

2 pf(bﬁ)
B -
The theorem is thus proved. |

VII. DISCUSSION

This paper proposes a class of mechanisms to alleviate
the free-rider problem by ensuring efficiency at Nash equi-
libria of a static game. It then shows that user bids converge
to Nash equilibria globally, provided they use myopic upedat
strategies. Using iterative price and bid update procexfiare

for « > as Since proposition 6.1 already establishes the@omputationally infeasible problems in auctions and ressu

upper bound, this proves (11).

The proof of (12) follows along similar lines. By

substitutingy(z) = %* — 1 in (13), we get

pv] 4 U (O*
¢ - = (@) for all 4, j
el — 1

Ui(@*)

As 3 — oo, this means thaih! — b| — 0. However, the
sum of the bidsB?, is equalt toB* for all 3. Hence given

e there exists3; such that for allg > 3y,

B_egbiﬁSB

+ ¢ forall ¢
n

Also, there exists3, such that for allg > 3,

el < e (65(57*_6) — 1) for all s < B — 2¢
n
Thus, forg > 31, 32, and any uset,
b2 Bs
g e’ —1
% = / W ds
0 efs—1+3. (e —1)
- te Bs _q
< / ¢ 5 ds
0 efs — 1+ Zj#i(eﬁbj -1)
Br 2 oPs
0 Zj;ti,(e i—=1)
/B:—Qe eﬁs
< —————ds + 3¢
0 eﬁ(Bn _E) —1
B*
<

Thus the total payment received is bounded by

pr(bﬁ) < (B"+3n)e

— 26) + e

allocation have been proposed recently for multi-unit ieunst
where users have bundle bids [14, 15], as well as in the al-
location of divisible goods [8, 9]. All these mechanismsegiv
efficiency and truthful revelation guarantees only whenrsise
are assumed to follow myopic best response bid updates. The
analysis of user dynamics as repeated games in the true sense
is hard. Furthermore, in general, it seems unlikely that the
efficiency properties shown for static mechanisms will hold
when the dynamics of convergence are repeated games. The
issue of dynamics is thus a genuine point of criticism for
this approach. In the settings of modern information system
however, two comments can be made to partially address
this issue. Firstly, it may be that the mechanism is not an
honest auction, but rather an implementable algorithm to
find efficient allocations in the presence of communication
constraints. Secondly, in large distributed settings,ifipch
viable alternative to best-response dynamics may be hard.
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