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Abstract—The free-rider problem arises in the provi-
sioning of public resources, when users of the resource have
to contribute towards the cost of production. Selfish users
may have a tendency to misrepresent preferences – so as to
reduce individual contributions – leading to inefficient levels
of production of the resource. Groves and Loeb formulated
a classic model capturing this problem, and proposed (what
later came to be known as) the VCG mechanism as a solution.
However, in the presence of heterogeneous users and commu-
nication constraints, or in decentralized settings, implementing
this mechanism places an unrealistic communication burden.
In this paper we propose a class of alternative mechanisms for
the same problem as considered by Groves and Loeb, but with
the added constraint of severely limited communication between
users and the provisioning authority. When these mechanisms
are used, efficient production is ensured as a Nash equilibrium
outcome, for a broad class of users. Furthermore, a natural bid
update strategy is shown to globally converge to efficient Nash
equilibria. Also, upper bounds are provided for the revenue
that can be generated by any individually rational mechanism
that ensures efficient production at any Nash equilibrium. It
is shown that there exist mechanisms in our class that achieve
each of the bounds. An extension to multiple public goods with
interrelated valuations is also presented.

Index Terms—Free-riders, Public Goods, Game Theory,
Convex Optimization,

I. I NTRODUCTION

This paper proposes a new class of mechanisms for
addressing the free-rider problem that arises in the production
of public goods. Bypublic goodwe refer to a resource whose
usage is non-exclusionary: it can be used simultaneously and
equally by all users. This is in contrast to aprivate good,
which has to be divided up among the users, each of whom
has exclusive access to its portion after the auction. Common
examples of public goods in everyday life are television /
radio broadcasts, weather reports and public works such as
libraries.

In proposing the mechanisms described in this paper
we are motivated by public goods in modern communication
and computation systems. Consider for example a large
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distributed database, containing information available to all
users, without exclusion. Each user contributes towards the
building / maintenance of this database, either in direct
monetary terms or through contributed storage resources.
Since the information in the database is assumed to be freely
available to all users, each user has an incentive to minimize
the amount of resources it contributes. However, if every
user acts according to these selfish considerations, the net
result could be a possibly severe under-provisioning of the
resource. This is the classic “free-rider problem:” inefficient
provisioning of a public good due to selfish behavior. Besides
socially inefficient production, free-riding may also lead
to budgetary shortfalls: user contributions may cover only
a fraction of the cost of efficient, or even near-efficient,
production.

Mechanisms for the production of public goods pro-
ceed as follows. Users are asked to submit bids to the
producer. Based on the received bids the producer then
decides, according to a pre-specified and globally known
rule, the quantity of the public good to be produced and
the contributions to be made by each of the users. Groves
and Loeb [1] proposed a generic model capturing the free-
rider problem in the production of a real-valued amount of
a public good. The mechanism they proposed for solving
the problem was one of the earliest instances of what later
came to be known as the general class of VCG mechanisms.
This paper proposes alternative mechanism designs for the
same resource allocation problem as formulated in [1]: we
are interested in mechanisms that ensure the production of
the efficient real-valued quantity of a public good, in the
presence of users whose objectives are the maximization of
their individual net profits. The auctions presented in this
paper are not suitable for combinatorial settings.

It is well known (see e.g. [2]) that VCG mechanisms
are the only ones that ensure efficient production as dominant
strategy outcomes in a wide variety of resource allocation
problems, including the ones investigted in this paper. It
is also increasingly apparent that in many settings the im-
plementation of VCG mechanisms places a heavy commu-
nication and computational demand on the auctioneer and
agents, even to the extent that they are deemed infeasible
to implement. Another criticism of the VCG mechanism is
that it asks for detailed private information, namely the entire
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set of user preferences, to be made public for the purposes
of resource allocation. Even when bids may be submitted
anonymously, users may be unwilling or unable to completely
revel their preferences.

In this paper we consider the same problem as was
considered in [1], but add a severe communication constraint.
Specifically, we require that each user’s bid be asingle real
number. This is in contrast to the VCG implementation,
which asks that the bid be an entire real-valuedfunction.
Since dominant strategy equilibria are unreasonable to expect
in this setting, we settle for Nash strategies as the equilibrium
concept. We propose ex-post individually rational mecha-
nisms that result in the production of an optimal quantity
of the public good at any Nash equilibrium. Furthermore,
Nash equilibria are shown to always exist, and there is a one-
to-one correspondance between the set of optimal quantities
and the set of Nash equilibria. Revelation of single-valued
bids implies that it is not possible to infer a user’s private
valuation information from its bid.

Such a mechanism design immediately raises the ques-
tion of price discovery: how do users know / arrive at a Nash
equilibrium? This is not a concern for VCG mechanisms as
users are assumed to know their own value functions. For the
mechanisms in this paper, myopic best response adjustments
to bids in continuous time result in global convergence
to Nash equilibria. Furthermore, these updates are easy to
compute and need very little information – which can be
provided by the mechanism designer – about the rest of the
market.

VCG mechanisms are individually rational because
when bidding optimally each user can ensure that its payment
does not exceed the value it obtains from the good’s produc-
tion. In the mechanism proposed in this paper, the payment
made by a user will always be less than its single-valued
bid. This is true at all times, not just at the final equilibrium.
Also, at Nash equilibrium, no user’s payment will exceed the
value it obtains from the good’s production. The mechanism
presented in this paper is thus also individually rational.

Nash implementations for public good problems have
been proposed in the literature, primarily with the objective
of addressing the issue of budgetary shortfall, which VCG
mechanisms are susceptible to. Groves and Ledyard [3]
devised the first Nash implementation, to be followed by
Walker [4]. These mechanisms have no budgetary shortfall,
but are not individually rational: even if, for example, a user
values for all levels of the public good atǫ, these mechanisms
may still end up charging the user more thanǫ, at equilibrium.
Also, the mechanisms as stated work only for the special case
when the total cost of producing the public good is linear

in the amount produced. Furthermore, the mechanisms in [3]
and [4] require that the price of production be known, and use
it as a parameter in the payment function. The mechanisms
proposed in this paper are not budget balanced, but are
individually rational and work for any convex production cost
function. Also, the payment function in our mechanism does
not depend on the cost function.

Allocation of continuous-valued (i.e. infinitely divisible)
private goods based on single-valued bids, as well as the
dynamics of convergence to equilibria, has received attention
previously in networking contexts, with the good primarily
being represented by bandwidth. Kelly [5] assumes users
are price takers, and a primal-dual price selection algorithm
is shown to converge to the optimal allocation. In [6–9],
the price taking assumption is relaxed, with each user now
being able to anticipate the effect of his/her own bid on
the price. The work [10] proposes the Nash Bargaining
solution as a natural mechanism, if the objective is pareto-
optimality, that can be implemented in a distributed fashion
in networks. In the above papers users submit bids indicating
their willingness to pay, while in [11], the users send rates
into the system and accept the resulting charges. In all of the
above papers, each user has a utility function for its share of
the good, but is constrained to bit a single real number (which
can be varied over time). Myopic continuous-time updates
are shown to converge to Nash equilibria in [8, 9]. Our paper
can be viewed as an extension of these implementation ideas
to the realm of continuous valued public good provisioning
problems.

In a combinatorial private good setting, Blumrosen and
Nisan [12] limit the strategy space even further, requiringthat
each bid be limited to a few bits. The problem of provisioning
a public good differs from private good problems in the sense
that the allocation decision, namely the real-valued quantity
to be produced, is one-dimensional, while in the private good
case the allocation is a vector including each user’s quantity.

For public goods, under many mechanisms, inefficient
production may occur as an equilibrium outcome. In Section
II we give an example of a simple intuitive mechanism – the
“pay as bid” mechanism – and show that inefficiencies in pro-
duction may be quite severe even for reasonable scenarios of
user value functions. In Section III we describe one example
of the class of new mechanism we propose in this paper, and
prove the existence, uniqueness, and optimality results for
Nash equilibria in the resulting game. In Section IV we show
that myopic gradient ascent updates in continuous time result
in global convergence to a Nash equilibrium. In Section V
we extend the example mechanism to the case when there are
multiple public goods and users with joint value functions.
We present the full class of mechanisms in Section VI, and
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conclude with some discussion in Section VII.

II. SYSTEM MODEL

A certain quantityQ ∈ R++ of a public good has
to be produced by a producer, whereR++ is the set of
strictly positive reals. The producer can produce a quantity
Q at costC(Q). Once produced, it is available ton users,
wheren ≥ 2. Each useri obtains a valueUi(Q) from the
good’s production, and contributes a paymentpi towards its
production. It is assumed thatC(Q) is strictly increasing and
convex and eachUi(Q) is strictly increasing and concave,
and all functions are continuously differentiable. This isthe
same as the model in Groves and Loeb [1].1

A quantityQ∗ is said to beefficient if producing that
quantity maximizes the net social benefit:

∑

i

Ui(Q
∗) − C(Q∗) ≥

∑

i

Ui(Q) − C(Q)

for all Q ∈ R++. If a quantity Q does not satisfy the
above requirement, it is inefficient. It is assumed that there
exists some finiteQ∗ > 0 that is efficient. Concavity implies
that the efficiency ofQ∗ is characterized by the first-order
conditions.

Lemma 2.1:A quantity Q∗ is efficient if and only if∑
i U

′
i(Q

∗) = C ′(Q∗).

Any mechanism for the production of the good proceeds
as follows. First, each useri is asked to submit abid bi.
Then, the producer maps the vector of bidsb into a produced
quantity f(b) and a paymentpi(b) for each useri. We
will call f the production functionand thepi’s the payment
functions. The production and payment functions are known
by the users in advance, i.e. before they submit their bids.
Specifying the space of allowed bids and the production and
payment functions specifies the mechanism.

One example of such a mechanism is the classical VCG
mechanism. A VCG mechanism requires users to submit bids
that are functions onR+. Given these bid functionsbi, the
production function is

fV CG(b) = arg max
Q≥0

∑

i

bi(Q) − C(Q)

1Except that in [1] it is assumed thatQ ≥ 0 andC(Q) = pQ for some
p > 0. Also theUi functions need not be differentiable.

while the payment function for useri is

pV CG
i (b) =


max

Q≥0

∑

j 6=i

bj(Q) − C(Q)




−



∑

j 6=i

bj(f
V CG(b)) − C(fV CG(b))




Given a mechanism and bid vectorb, thenet rewardof
useri is given by

Ri(b) = Ui(f(b)) − pi(b) (1)

Given the mechanism, the users play a non-zero-sum non-
cooperative game, with each user trying to maximize its own
net reward.

As an example of a mechanism susceptible to the free-
rider problem, consider thepay as bidmechanism where user
payments are the bids –pi(b) = bi – and the production
function is the one that balances the budget:

f∗(b) = X(B) (2)

whereX = C−1 is the inverse of the cost function and
B =

∑
i bi is the total of all bids (and payments).

For this mechanism it can be seen that the first-order
necessary condition for a bid vectorb̃ to be a Nash equilib-
rium is that

U ′
i(X(B̃)) ≤ C ′(X(B̃))

for each user i, with equality if b̃i > 0. It is easy to see
from Lemma 2.1 that there will not be an efficient Nash
equilibrium when more than two users are present, forany
set of value functionsUi and cost functionC – under the
assumptions of convexity ofC, concavity ofUi’s and that
any efficient quantityQ∗ is non-zero.

III. A N EW MECHANISM

In this section we present an example from the new
class of mechanisms that ensure socially optimal production.
To do so we need to specify the space of allowable bid
vectors, the production functionf , and the payment functions
pi.

Each user’s bid is a strictly positive real number:bi ∈
R++. Given the vector of bidsb, we propose the using the
same production function

f∗(b) = X(B)

as in (2) above. Note thatX is increasing, concave and
differentiable, withX ′(C(Q)) = 1

C′(Q) . For each useri,
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denote the total bid of users other thani by B−i =
∑

j 6=i bj .
We propose the following payment functions

p∗i (b) = bi −B−i log

(
1 +

bi
B−i

)
(3)

The mechanism is thus fully specified. The other mechanisms
we propose in Section VI use the same allocation function
f∗, but different choices for the payment functionspi.

The following properties are easy to see:

1) The reward functionRi(bi, B−i) is concave inbi for
all fixed values ofbj , j 6= i.

2) 0 < pi(bi, B−i) < bi for all b and i: a user is never
asked to pay more than its bid.

Theorem 3.1:For the public good model described in
the previous section if the mechanism(f∗, p∗i ) is used, there
is a one-to-one correspondence between the set of efficient
quantities and the set of Nash equilibria for the game. Also,
at any of these Nash equilibria the corresponding efficient
quantity is provisioned.

Note: Rosen’s theorem [13] cannot be directly used to
show the existence of Nash equilibria in this game since the
users’ strategy spaces are allR++, which is not closed.

Proof of Theorem 3.1:

Since each user’s reward function (1) is concave in
the users’ own bid, the simultaneous satisfaction of the
following first-order conditions by all users at a bid vectorb̃

is necessary and sufficient for̃b to be a Nash equilibrium:

U ′
i(X(B̃))X ′(B̃) − 1 +

B̃−i

b̃i + B̃−i

= 0 for all i

If Q̃ = X(B̃) then X ′(B̃) = 1

C′(Q̃)
and so the above

conditions can be rewritten as

U ′
i(Q̃) =

b̃i

B̃
C ′(Q̃) for all i (4)

Suppose now that̃b is a Nash equilibrium, and̃Q = f∗(b̃)
is the corresponding quantity that is produced. Summing the
conditions in (4) over the set of users yields

∑

i

U ′
i(Q̃) = C ′(Q̃)

By Lemma 2.1, this means that̃Q is efficient. Thus efficient
quantities are provisioned at Nash equilibria.

For showing the existence of Nash equilibria, we simply
turn the above argument around. LetQ∗ be efficient – by

assumption there exists at least one such quantity that is
finite. Define for each user the bid

b̃i
△
=

U ′
i(Q

∗)

C ′(Q∗)
C(Q∗) (5)

Then, by Lemma 2.1,
∑

i U
′
i(Q

∗) = C ′(Q∗) and hence the
total bid satisfiesB̃ = C(Q∗). Thus (5) can be rewritten as

U ′
i(Q

∗) =
b̃i

B̃
C ′(Q∗) for all i

SinceQ∗ = X(B̃), b̃ satisfies the necessary and sufficient
conditions of (4), and hence is a Nash equilibrium. Therefore
b̃ corresponds to the efficient quantityQ∗. �

It is clear that the mechanism is not budget-balanced.
However, it is possible to bound the subsidyB −

∑
i pi(b)

as a fraction of the total cost.

Proposition 3.1:Whenn users are present,

B −
∑

i pi(b)

B
≤ (n− 1) log

n

n− 1

This is tight if then bids are equal.

Proof of Proposition 3.1: For a bid vectorb, the subsidy is
given by

B −
∑

i

pi(b) =
∑

i

B−i log
B

B−i

= (n− 1)B
∑

i

B−i

(n− 1)B
log

(n− 1)B

B−i

− (n− 1)B log(n− 1)

= (n− 1)BH(B−) − (n− 1)B log(n− 1)

where H(B−) is the entropy of then-length probability
vector whoseith element is B−i

(n−1)B . Now, for any B−,
H(B−) ≤ log n, with equality if and only if the elements
of B− are all equal. Hence

B −
∑

i pi(b)

B
≤ (n− 1) log

n

n− 1

Thus proved. �

The tightness of the above proposition implies that for a
large number of identical users the subsidy will form a large
portion of the total cost. As shown in Section VI, significant
subsidies cannot be avoided in a large class of mechanisms
that ensure optimal provisioning at Nash equilibria and use
f(b) = X(B) as the production function. In spirit, this
result for our mechanism is similr to results for the VCG
mechanism: large subsidies may be required.
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IV. DYNAMICS

The above section shows that for the mechanism pre-
sented, Nash equilibria always exist and are efficient. How-
ever, users still have to find out these Nash equilibria. In
this section we show that if users follow a natural bid
update strategy, then the vector of bids converges to a Nash
equilibrium from any valid initial condition.

Specifically, consider the user update rule when each
user attempts gradient ascent, in continuous time, of its
reward function (1):

d

dt
bi =

∂

∂bi
Ri(bi, B−i)

= U ′
i(X(B))X ′(B) −

bi
B

(6)

To follow this bid update procedure at a given time, the user
only needs to know the amount currently provisioned, the
cost function’s derivative and the total of all the users’ bids.
The user does not need detailed information about what each
user’s bid is, or even how many users are present.

If the above gradient ascent update procedure is fol-
lowed by each of the users, then the sumB of their bids
is seen to follow a gradient ascent of the social utility
function. This observation, formalized in the lemma below,
is used to show global convergence of each of the bids to the
corresponding Nash equilibrium bids. For ease of exposition
we will assume that there is a unique optimal quantityQ∗.

Lemma 4.1:Let {Ui} and C be such that there is a
unique optimal quantityQ∗. Then, for any initial starting
bid vectorb0 having bi > 0 for at least twoi, if the users
follow the updates given by (6), then the sum of the bidsB
converges toB∗ = C(Q∗).

Proof of Lemma 4.1:

Adding the update equations (6) over the set of all users
i, we see that

d

dt
B = X ′(B)

(
∑

i

U ′
i(X(B))

)
− 1

=
d

dB

(
∑

i

Ui(X(B)) −B

)

Now,
∑

i Ui(X(B))−B is a concave increasing continuously
differentiable function ofB, and is maximized at one point,
B∗, by assumption. Hence the above update equation implies
thatB → B∗. �

Theorem 4.1:Let Ui and C be such that there is a
unique optimal quantityQ∗. When the mechanism given

by (2) and (3) is used, letb∗ be the corresponding Nash
equilibrium bid vector. Then, for the bid updates given by
(6), the vector of bids will converge tob∗ from any initial
condition inR++

Proof of Theorem 4.1: The proof involves breaking time into
two phases. In the first phase the sumB of the bids gets
close to the optimalB∗ = C(Q∗), and in the next phase
each of the individual bidsbi get close tob∗i .

Given δ > 0, we want to show the existence of a finite
time instantTδ such that|bi − b∗i | < δ for all i and all
t ≥ Tδ. Towards this end, letǫ0 > 0 be such thatǫ0B∗ < δ

4

andǫ0 <
b∗i
B∗ for all i. Then letǫ1 > 0 be such that for alli

the following holds
∣∣∣∣U

′
i(X(B))X ′(B) −

b∗i
B∗

∣∣∣∣ ≤ ǫ0 whenever|B −B∗| ≤ ǫ1

Such anǫ1 exists by the continuity ofU ′
i(X(B))X ′(B) and

the fact thatU ′
i(X(B∗))X ′(B∗) =

b∗i
B∗ , for all i. For this

choice ofǫ0 andǫ1, let T1 be a finite time such that|B(t)−
B∗| < ǫ1 for all t > T1. Lemma 4.1 ensures the existence
of such aT1. T1 is the end of phase one.

Since the update equation (6) holds for allt > T1, this
means thatbi(t) ∈ [bi(t),bi(t)] for all t > T1, where the
upper and lower bounds satisfybi(T1) = bi(T1) = bi(T1)
and for t > T1 are updated according to the equations

dbi
dt

=
b∗i
B∗

− ǫ0 −
bi

B∗ − ǫ1
dbi
dt

=
b∗i
B∗

+ ǫ0 −
bi

B∗ + ǫ1

Solving the first of the above two equations yields

bi(t) =

(
b∗i
B∗

− ǫ0

)
(B∗ − ǫ1)

+

(
bi(T1) −

(
b∗i
B∗

− ǫ0

)
(B∗ − ǫ1)

)
e

t−T1

B∗−ǫ1

Now by the assumptions made onT1, δ, ǫ0 andǫ1, this means
that for t large enough,bi(t) > b∗i − δ. Similarly it can be
shown thatbi(t) < b∗i + δ, and hence thatbi(t) → b∗i for all
i. This finishes the proof. �

Although we have assumed thatQ∗ > 0, the above
dynamics also work if the efficient allocation isQ∗ = 0.
Indeed, if

∑
i Ui(0) − C(0) >

∑
i Ui(Q) − C(Q) for all

Q > 0, then the above dynamics will result inB → 0.
Hence production will be efficient in the limit.

The continuous time dynamics of (6) have a natural
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discrete-time version:

bi(k + 1) = bi(k) + γ

(
U ′

i(X(B(k)))X ′(B(k)) −
bi(k)

B(k)

)

(7)
whereγ > 0 is the step size. For these dynamics, we have
the following theorem.

Theorem 4.2:Let Ui and C be twice continuously
differentiable and such that there is a unique optimal
quantity Q∗, and there are at least two users in the
system. When the mechanism given by (2) and (3) is
used, letb∗ be the corresponding Nash equilibirum bid
vector. Then, for the discrete-time updates given by (7),
the vector of bids converges tob∗ from any initial con-
dition, as long asγ is small enough to ensure that
|γ
(∑

i U
′′
i (X(B))[X ′(B)]2 + U ′

i(X(B))X ′′(B)
)
| < 1 for

B∗ ≤ B ≤ B∗ + γ.

Proof of Theorem 4.2:

Adding (7) over the set of users gives

B(k + 1) = B(k) + γ

(
∑

i

U ′
i(X(B(k)))X ′(B(k)) − 1

)

Let G(B) =
∑

i U
′
i(X(B))X ′(B) − 1. Note thatG(B) is a

strictly decreasing function ofB, thatG(B∗) = 0, and that
G(B) ≥ −1 for all B. Note also that the above condition on
γ can be restated as|γG′(B)| < 1 for B∗ ≤ B ≤ B∗ + γ.

Suppose now thatB(k) > B∗ for somek. The fact that
|γG′(B)| < 1 for B∗ ≤ B ≤ B∗ + γ implies thatB(k + 1)
will be such thatB∗ ≤ B(k+ 1) < B(k), which means that
B → B∗ for this case.

So suppose now thatB(k) < B∗ for somek. Then,
G(B(k)) > 0 and henceB(k+1) > B(k). If B(k+1) is also
greater thanB∗, then by the argument aboveB → B∗. Else
we have thatB(k) < B(k+1) ≤ B∗, i.e.B has gotten closer
to B∗. Thus, in the next stepB either (a) gets closer to (but
remains less than)B∗, or (b) exceedsB∗ and subsequently
decreases monotonically toB∗. ThusB → B∗ for this case
as well.

Using the convergence ofB → B∗, we can show the
convergence of the individual bidsbi → b, as was done in
the continuous case. �

V. M ULTIPLE GOODS

The mechanism presented above has a natural extension
to the case when there are multiple public goods to be
produced for users who have joint valuation functions. In this

section we show that if the production costs are decoupled,
then using the mechanism proposed in this paper separately
for each good results in efficient joint provisioning of all
goods.

Suppose now that there areM public goods, with
the vector of quantities denoted byQ = [Q1, . . . , QM ].
Each user has a value functionUi(Q), which is assumed
to be jointly continuous, differentiable, concave and strictly
increasing2 in each coordinate. The production of each good
incurs a cost, as specified by the cost functionsCm(Qm)
for 1 ≤ m ≤ M . Each cost functionCm is assumed to
be convex, strictly increasing and differentiable.Q ∈ R

M
++

means that each coordinate is strictly positive:Qm ∈ R++

for all m.

A vector of quantitiesQ∗ is said to beefficient if it
maximizes the net social benefit:
∑

i

Ui(Q
∗) −

∑

m

Cm(Q∗
m) ≥

∑

i

Ui(Q) −
∑

m

Cm(Qm)

for all Q ∈ R
M
++. It is assumed that there is at least one

efficientQ∗ ∈ R
M
++ in which each quantity is finite.

With these assumptions, running a separate market for
each good results in efficient production. Each useri now
submits a vector of bidsbi = [b1i . . . b

M
i ]: thus each bid is an

M -dimensional vectorbi ∈ R
M
++. As before define, for each

goodm, the bid sumsBm △
=
∑

i b
m
i andBm

−i

△
=
∑

j 6=i b
m
j .

Let Xm be the inverse function ofCm as in the single
good case. For notational brevity, denote the vector of total
bids by B = [B1, . . . , BM ] and the vector production
function byX. ThusX(B) stands for the vector of quantities
[X1(B

1), . . . ,XM (BM )]. Also, B−i = [B1
−i, . . . , B

M
−i].

Consider the mechanism that, given all the bids, pro-
duces quantityXm(Bm) of each goodm and charges useri
an amount

∑
m pm

i , where

pm
i (bmi , B

m
−i) = bmi −Bm

−i log

(
1 +

bmi
Bm

−i

)

is the payment useri makes towards the provisioning of good
m. The level of production of each good is thus a local
decision, with the users balancing payments across goods
so as to maximize their net rewards. For the mechanism as
described, the net reward for useri is given by

Ri(bi, B−i) = Ui(X(bi +B−i)) −
∑

m

pm
i (bmi , B

m
−i)

A vector of bid vectors(̃b1, . . . , b̃n) is a Nash equilibrium if

Ri(̃bi, B̃−i) ≥ Ri(bi, B̃−i) for all bi ∈ R
M
++

2The strictly increasing requirement forUi can be relaxed somewhat, but
we will not discuss it here for brevity
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As in the single good case, efficient allocations and Nash
equilibria are fully characterized by first-order conditions.
ThusQ∗ is optimal if and only if

∑

i

∂

∂Qm

Ui(Q
∗) = C ′

m(Q∗
m) for eachm

Thus, (̃b1, . . . , b̃n) is a Nash equilibrium if and only if

∂

∂Qm

Ui(Q̃) =
b̃mi

B̃m
C ′

m(Q̃m) for all i andm

where Q̃ = X(B̃). This is the multiple-goods analogue of
(4), and we can prove the existence and efficiency of Nash
equilibria for the multiple goods case in the same way as was
done for a single good. We state this as a theorem below and
omit the proof.

Theorem 5.1:Consider the model with multiple public
goods described in this section with the mechanism(f∗, p∗i :
1 ≤ i ≤ n) used for the provisioning of each good. Then
there is a one-to-one correspondence between the set of
efficient quantity vectors and the set of Nash equilibria for
the game, such that at any of these Nash equilibria the
corresponding efficient quantity vector is provisioned.

As in the single good case, if each user updates its bid
vector according to gradient ascent in continuous time then
there is global convergence to an efficient Nash equilibrium.
The update equations are now given by the gradient

d

dt
bi = ▽bi

(
Ui(X(B)) −

∑

m

pm
i (bmi , B

m
−i)

)
(8)

which is the same as

d

dt
bmi =

(
∂

∂Qm

Ui(X(B))

)
X ′

m(Bm) −
bmi
Bm

The proof of global convergence is similar to that for a single
good. We state the theorem below and omit the proof.

Theorem 5.2:For the bid updates given by (8), the
vector of bids converges to a Nash equilibrium from any
initial condition where for each goodm there are at least
two users with strictly positive bids for that good.

VI. M ORE GENERAL EFFICIENT MECHANISMS AND

REVENUE BOUNDS

The mechanism presented in Section III is one example
of a more general class of individually rational mechanisms
that all guarantee the existence and efficiency of Nash
equilibria, and usef∗(b) as given in (2) as their production
function. In this section we present this more general class
of mechanisms.

One primary reason for exploring a more general class
of mechanisms is to optimize the revenue generated at Nash
equilibirum. The following proposition gives an upper bound
on the revenue of a broad class of mechanisms that usef∗

as the production function.

Proposition 6.1:Let user value functions beUi, C be
the production cost function, and consider any mechanism
that(i) usesf∗(b) (as given in (2)) as its production function,
and(ii) has payment functions such thatpi(0,b−i) = 0, and
such thatpi(b) is convex and continuously differentiable in
bi for fixedb−i. If b̃ is a Nash equilibrium then the payments
have to satisfy

∑
i pi(b̃)

B̃
≤ max

i

U ′
i(Q̃)

C ′(Q̃)

where Q̃ = X(B̃) is the quantity produced at the Nash
equilibrium.

Remark: The conditionpi(0,b−i) = 0 above ensures that
the mechanism is individually rational, and the convexity of
pi(b) in bi ensures that Nash equilibria exist.

Proof of Prop. 6.1:

For each useri,

pi(b̃)

b̃i
≤

∂pi

∂bi
(b̃) =

U ′
i(Q̃)

C ′(Q̃)

where the inequality holds becausepi(bi, b̃−i) is a convex
increasing function ofbi with pi(0, b̃−i) = 0, and the
equality is the first order necessary condition forb̃i to be
a Nash bid for useri. The proof of the proposition follows
immediately from these relations. �

Consider now a mechanism that satisfies the conditions
of Proposition 6.1 and has a Nash equilibrium̃b at which
an efficient quantityQ∗ is produced. Efficiency requires that∑

i U
′
i(Q

∗) = C ′(Q∗). This immediately implies that if there
are two or more users, it is not possible to recover the entire
costB∗ = C(Q∗) from the payments. Furthermore, if there
are n users with identical value functions then at mostB∗

n

of the total costB∗ is recovered. The above upper bound
can thus be quite small if the number of users is large. This
also indicates that efficient mechanisms that require budget-
balance must either sacrifice individual rationality, or be
applicable to more restricted classes of user value functions.

The design of the class of mechanisms presented below
is based on the following realization: if in addition to the
conditions of Proposition 6.1 the payment functions satisfy

∑

i

∂pi

∂bi
(b) = 1
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for all b ∈ R
n
++, then any Nash equilibrium will result in

efficient production. Of course, this does not guarantee the
existence of Nash equilibria, which needs to be established
seperately.

Let ψ(s) be a strictly increasing continuous function
from [0,∞) to [0,∞), with ψ(0) = 0. Given a vectorb of
bids, with bi ∈ R++, consider the mechanism given by

f∗(b) = X(B) (9)

pi(b) =

∫ bi

0

ψ(s)

ψ(s) +
∑

j 6=i ψ(bj)
ds (10)

In terms of this notation, the mechanism given by (2) and (3)
corresponds toψ(x) = x. It can be shown that the reward
functionRi is concave in the player’s bidbi, and thatpi < bi,
for all i. The following theorem is an analogue of Theore 3.1
and can be proved in a similar way.

Theorem 6.1:For the mechanism given by (9)-(10),
there is a one-to-one correspondence between the set of
efficient quantities and the set of Nash equilibria. Also, atany
of these Nash equilibria the corresponding efficient quantity
is provisioned.

The mechanism designer may be interested in max-
imizing revenue. Alternatively, it may be the designer’s
objective to provision optimally at minimal cost to the users.
The following theorem shows that either objective can be
achieved by a suitably designed mechanism from the class
described in this section. The result is stated and proved
for the case when there is a unique optimal quantity, but
it generalizes to the case of multiple optima.

Theorem 6.2:Let user value functionsU1. . . . , Un and
production cost functionC be such that there is a unique
optimal quanitity Q∗ > 0 costing B∗ = C(Q∗). Let
pα

i (b) be the payment function for the mechanism having
ψ(s) = 1−e−αs, andpβ

i (b) be the payment function for the
mechanism havingψ(s) = eβs − 1. Then, if bα andb

β are
the corresponding Nash equilibria,

lim
α→∞

∑
i p

α
i (bα)

B∗
= max

i

U ′
i(Q

∗)

C ′(Q∗)
(11)

lim
β→∞

∑
i p

β
i (bβ)

B∗
= 0 (12)

Note however that the convergence of either of the
above limits is not uniform in the choice of the user value
functions.

Proof of theorem 6.2:

If p is a payment function based onψ from the class
given by (9)–(10), then it will have a unique Nash equilibrium

b̃ at whichQ∗ will be produced. The first-order conditions
imply that, for eachi

∂pi(b̃)

∂bi
=

ψ(̃bi)

ψ(̃bi) +
∑

j 6=i ψ(̃bj)
=

U ′
i(Q

∗)

C ′(Q∗)
(13)

We will first prove (11). LetI be the set of users with the
highest marginal value atQ∗: U ′

i(Q
∗) = U ′

j(Q
∗) > U ′

k(Q∗)
for all i, j ∈ I andk /∈ I. For ψ(s) = 1 − e−αs, the above
condition means that for alli, j

1 − e−αbα
j

1 − e−αbα
i

=
U ′

j(Q
∗)

U ′
i(Q

∗)

Since the sumBα of the bids is equal toB∗ for all α, if
i ∈ I thenbαi 9 0. Thus, if i, j ∈ I andk /∈ I thenbαi = bαj
for all α, and asα→ ∞, the bidsbα

k

bα
i

→ 0 while bαi → Bα

|I| :
in the limit, the users with the highest marginal valuations
will contribute equally to the payment, while all others will
have no contribution.

More formally, givenǫ > 0 there exists anα1 such that

B∗

|I|
−
ǫ

2
≤ bαi ≤

B∗

|I|
+
ǫ

2
for all i ∈ I andα > α1

Also, there existsα2 such that for allα > α2,

1 − e−αs

1 − e
−α
(

B∗

|I|
− ǫ

2

) ≥ 1 − ǫ for all s ≥
ǫ

2

Thus, if α > max{α1, α2} then for i ∈ I,

pα
i (bα) =

∫ bα
i

0

1 − e−αs

1 − e−αs +
∑

j 6=i(1 − e−αbα
j )
ds

=

∫ bα
i

0

1−e−αs

1−e
−αbα

i

1−e−αs

1−e
−αbα

i
+
∑

j 6=i

U ′
j
(Q∗)

U ′
i
(Q∗)

ds

≥

∫ B∗

|I|
− ǫ

2

ǫ
2

1−e−αs

1−e
−α

(
B∗

|I|
− ǫ

2

)

1 +
∑

j 6=i

U ′
j
(Q∗)

U ′
i
(Q∗)

ds

≥

∫ B∗

|I|
− ǫ

2

ǫ
2

1 − ǫ

1 +
∑

j 6=i

U ′
j
(Q∗)

U ′
i
(Q∗)

ds

=
U ′

i(Q
∗)∑

j U
′
j(Q

∗)

(
B∗

|I|
− ǫ

)
(1 − ǫ)

≥
U ′

i(Q
∗)

C ′(Q∗)

B∗

|I|
(1 − ǫ) − ǫ

By symmetry, ifi, j ∈ I thenpα
i (bα) = pα

j (bα). Hence, for
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α > max{α1, α2},
∑

j p
α
j (bα)

B∗
≥

∑
i∈I p

α
i (bα)

B∗

≥

(
max

i

U ′
i(Q

∗)

C ′(Q∗)

)
(1 − ǫ) − ǫ

|I|

B∗

≥

(
max

i

U ′
i(Q

∗)

C ′(Q∗)

)
− ǫ− ǫ

|I|

B∗

Thus, givenδ > 0, chooseǫ such thatǫ
(
1 + |I|

B∗

)
< δ. Then,

there existsαδ such that
∑

i p
α
i (bα)

B∗
≥

(
max

i

U ′
i(Q

∗)

C ′(Q∗)

)
− δ

for α ≥ αδ Since proposition 6.1 already establishes the
upper bound, this proves (11).

The proof of (12) follows along similar lines. By
substitutingψ(x) = eβx − 1 in (13), we get

eβb
β

j − 1

eβb
β

i − 1
=

U ′
j(Q

∗)

U ′
i(Q

∗)
for all i, j

As β → ∞, this means that|bβj − bβi | → 0. However, the
sum of the bids,Bβ , is equalt toB∗ for all β. Hence given
ǫ there existsβ1 such that for allβ > β1,

B∗

n
− ǫ ≤ bβi ≤

B∗

n
+ ǫ for all i

Also, there existsβ2 such that for allβ > β2,

eβs ≤ ǫ
(
eβ( B∗

n
−ǫ) − 1

)
for all s ≤

B∗

n
− 2ǫ

Thus, forβ > β1, β2, and any useri,

pβ
i (bβ) =

∫ b
β

i

0

eβs − 1

eβs − 1 +
∑

j 6=i(e
βb

β

j − 1)
ds

≤

∫ B∗

n
+ǫ

0

eβs − 1

eβs − 1 +
∑

j 6=i(e
βb

β

j − 1)
ds

≤

∫ B∗

n
−2ǫ

0

eβs

∑
j 6=i(e

βb
β

j − 1)
ds + 3ǫ

≤

∫ B∗

n
−2ǫ

0

eβs

eβ(B∗

n
−ǫ) − 1

ds + 3ǫ

≤ ǫ

(
B∗

n
− 2ǫ

)
+ 3ǫ

Thus the total payment received is bounded by
∑

i

pβ
i (bβ) ≤ (B∗ + 3n)ǫ

Given δ, chooseǫ so that(1 + 3n
B∗ )ǫ < δ. Then, there exists

βδ such that for allβ > βδ,
∑

i p
β
i (bβ)

B∗
≤ δ

The theorem is thus proved. �

VII. D ISCUSSION

This paper proposes a class of mechanisms to alleviate
the free-rider problem by ensuring efficiency at Nash equi-
libria of a static game. It then shows that user bids converge
to Nash equilibria globally, provided they use myopic update
strategies. Using iterative price and bid update procedures for
computationally infeasible problems in auctions and resource
allocation have been proposed recently for multi-unit auctions
where users have bundle bids [14, 15], as well as in the al-
location of divisible goods [8, 9]. All these mechanisms give
efficiency and truthful revelation guarantees only when users
are assumed to follow myopic best response bid updates. The
analysis of user dynamics as repeated games in the true sense
is hard. Furthermore, in general, it seems unlikely that the
efficiency properties shown for static mechanisms will hold
when the dynamics of convergence are repeated games. The
issue of dynamics is thus a genuine point of criticism for
this approach. In the settings of modern information systems
however, two comments can be made to partially address
this issue. Firstly, it may be that the mechanism is not an
honest auction, but rather an implementable algorithm to
find efficient allocations in the presence of communication
constraints. Secondly, in large distributed settings, finding a
viable alternative to best-response dynamics may be hard.
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