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Abstract—We consider the wireless scheduling problem of
jointly activating/de-activating base-stations and (opportunisti-
cally) scheduling from among the active base stations. Such
systems are of increasing relevance in emerging wireless networks
with dense overlapping coverage, where it suffices for only a
(time-varying) subset of the base-stations to be active at any given
time to satisfy traffic demands. In addition to queue stability (to
ensure that traffic demands are met), we focus on optimizing
for costs arising due to activating base-stations (switching base-
station state between active/inactive), and maintaining activation
(these costs arising due to energy consumption).

We propose two algorithms—LASS-Static and LASS-Dynamic
(LASS: Learning Aided Switching and Scheduling), both of which
are explore-exploit policies for base-station switching and channel
scheduling. In our setting, the switching action consists of two key
decisions: when to switch, and what base-station activation state
to switch to. Both LASS-Static and LASS-Dynamic determine the
resulting switching state (i.e. ‘what to switch to’), as well as the
schedule using current queue-lengths and (estimated) channel
states. The crucial difference is in ‘when to switch’—LASS-
Static determines these statically (motivated by an epsilon-greedy
bandit approach), whereas LASS-Dynamic does so using current
queue-lengths (thus correlating switching times, switching states
and schedules). For either algorithm, existing Lyapunov-based
techniques fail to establish stability, as the switching state
dynamics correlate the base-station activation decisions with the
channel evolution over time. Using novel drift based techniques,
in this paper we derive stability, and provide explicit bounds
on the expected cost and queue lengths for both algorithms.
Furthermore, we show that adaptively selecting switching times
in LASS-Dynamic results in an improved upper-tail of queue
lengths compared to LASS-Static.

Index Terms—Switching cost, Constrained Max-weight

I. INTRODUCTION

Ultra-densification, which is essential for supporting ever-
increasing data traffic [1], [2], has become a core feature
in modern cellular networks [3], [4]. Through overlapping
coverage, such ultra-densification has led to high spectral
efficiency and can support large traffic rates [4]. However,
this has led to increased energy consumption of base-stations
(BSs) [5], [6], raising questions about the environmental im-
pact and economic feasibility [7], [8]. One approach to address
this is to extend the framework of opportunistic scheduling,
where in addition to the task of scheduling users to channels,
we could also schedule the activation state (switch on or
off) of base-stations based on instantaneous traffic demands.
A series of papers on dynamic resource optimization and
utility maximization [9]–[13], can be brought to bear on this
problem. These studies have culminated in general techniques

for designing greedy resource allocation algorithms through
Lyapunov optimization, where bounded delay and energy
efficiency is maintained by greedily activating/ deactivating
BSs depending on the queue length fluctuations of the system.

However, under the fast dynamics of today’s networks, these
greedy strategies often lead to frequent switching between
active and sleep modes of BSs, bringing switching costs to the
forefront [12], [14]. Indeed, active to sleep mode transitions
incur costs for hand-off and state exchange between BSs, and
inactive to active transitions may incur start-up costs [12].
Moreover, from hardware standpoint feasibility of such high
frequency switching remains questionable [15].

The current paper addresses the question of jointly opti-
mizing over the operational and switching costs arising in
wireless networks while providing delay guarantees [12], [14].
We propose two algorithms LASS-Static and LASS-Dynamic
(LASS: Learning Aided Switching and Scheduling) that per-
form, without any prior knowledge of channel statistics, BS
switching, activation and channel scheduling in an explore-
exploit fashion. Using a novel switching constrained max-
weight based activation and scheduling strategy we provide
QoS guarantees for both the algorithms (LASS-Dynamic hav-
ing guarantees superior to LASS-Static) while maintaining a
near optimal aggregate cost. We next provide the details of
the proposed algorithms, their corresponding guarantees, and
technical contributions.

A. Main Contributions

The operation of our time varying wireless network consists
of three decisions at each time slot. The first decision is
‘when to switch’: choosing a time slot where a new subset
is activated, followed by ‘what to switch to’: selecting a
subset of BS, a.k.a. switching state, (using channel estimates).
Finally, ‘what to schedule’: observing channels and scheduling
channels to users from active BSs. Furthermore, the channel
estimation is dependent on BS activation as the state of the
channel can only be observed with all BSs active, thus making
our algorithms explore-exploit in nature. The challenge is to
orchestrate all the above processes in such a manner that joint
stability and optimality (w.r.t. operational and switching cost)
of the system is guaranteed.

In the algorithmic side, our contributions include improve-
ments from the state-of-the art in two stages.
1) LASS-Static: Statically constrained Max-weight: The al-
gorithm LASS-Static (Algo. 1 along with Algo. 2) decides the



switching state (‘what to switch’) and the channel schedules
using current queue lengths, in two stages.

In the first stage, at each time slot, the algorithm allows
switching (‘when to switch’) with a constant probability, εs,
independently (of all other events), thus maintaining an explicit
(slow) time-scale for switching, and limiting the switching
cost. If switching is allowed, it chooses a BS subset that
maximizes a drift-plus-penalty function (parameterized with
V ) [10] computed using channel estimate (Max-weight activa-
tion). When switching is not allowed it sticks to the switching
state from previous slot, thus correlating available channels
with past decisions. These past decisions are again correlated
with queue lengths due to max-weight activation. Finally, it
decides whether to exploit (choose the current switching state)
or explore (activate all the BSs), where the latter happens
independently with probability O(log(t)/t) in time slot t.

In the second stage, after channel observation, it opportunis-
tically choses a schedule, feasible w.r.t. the active BS, that
maximizes drift (Max-weight scheduling).
2) LASS-Dynamic: Switch queue constrained Max-weight:
The second algorithm LASS-Dynamic differs from the first in
‘when to switch’, as it switches based on dynamics of two
states, a switch counter and a switch queue, which evolve
jointly with the queues of the system. The switch counter
encodes the time since an optimal BS subset was activated last,
and it is reset to zero whenever this happens. The switch queue,
admits one packet iff a switching event occurs, and, releases
one packet (if non-empty) with probability εs independently
in each time slot. Finally, a switching event occurs when the
switch counter becomes larger or equal to the current switch-
queue length. Thus, all the variables become correlated. More
importantly, switching instances are decided based on queue
length dynamics.
3) Performance guarantees for LASS-Static and Dynamic:
We prove that for both LASS-Static and LASS-Dynamic
algorithms the joint dynamics of rate allocation, activation, and
learning—stabilizes the system for all εs ∈ (0, 1) (switching
parameter), and finite V (drift-plus-penalty parameter), while
the average cost can be steered arbitrarily close to the optimal
cost by choosing sufficiently small εs and large V . Further-
more, we characterize how the upper tail of sum-of-queue
lengths decay with time for all t≥1. Specifically, both LASS—
Static and Dynamic, enjoy exponential decay. However, the
latter has an order-wise larger decay-rate than the former.

Let εg be the capacity gap of the system (defined in Sec. III),
εs and V be two tunable parameters of the algorithm. Our
theoretical guarantees are summarized in Fig. 1. See Theorem
V.1 and Theorem V.3 in Sec.V for formal results.
4) Proof technique: Difficulties and Novelties: The proposed
algorithms have two key features: constrained switching and
vanishing exploration, which make the analysis challenging.
a) Key challenges: Constrained switching correlates the avail-
able control decisions over time: for LASS-Static the switch-
ing states become correlated, and, for LASS-Dynamic both

1For a random variable X , Decay-rate(X) ≡ − lim
x→∞

1
x
log P[X > x].
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Fig. 1: Left: Cdf of sum-of-queue lengths (εs=0.01, V=250,
εg=0.1). Where, LSG: LASS-Static, LD: LASS-Dynamic, and
DP: Max-weight without switching constraint (baseline).
Right: Theoretical bounds for LASS-Static/Dynamic.

switching instances and switching states become correlated
over time. Due to the above correlation, in both algorithms,
expected Lyapunov drift, may not become negative in any
deterministic number of steps. Furthermore, we consider a
system where unknown channel statistics is learned through
vanishing exploration. This makes the drift non-stationary and
correlated in nature. Therefore, the existing Lyapunov drift
based techniques for proving joint stability and optimality of
greedy resource allocation fail to handle such correlations and
learning dynamics. Further, for similar reasons the existing
non-asymptotic analysis for queue lengths ([16],[17]) is insuf-
ficient for our algorithms.
b) Stability and Optimality: To study constrained switching
we introduce the notion of drift regret. Specifically, the drift
is divided into two parts, 1) drift from the unconstrained
drift-plus-penalty algorithm [18] with known channel statistics
(exact optimal), and 2) difference of drift between the exact
optimal and the proposed algorithm—the drift regret. Let the
time since last switching instance at time-slot t be denoted as
T (t). We show that, for all t ≥ 1, the drift regret of the pro-
posed algorithms remain bounded as O(T (t)+ log(t)/t) w.p.
(1−Ω(1/t10)). Finally, we devise techniques to bound T (t)
in LASS-Dynamic.2 In LASS-Dynamic the joint dynamics of
the switch queue and the switch counter is not additive, as
the switch counter resets on each switching event. To address
this, we bound T (t) using a novel Lyapunov function which is
quadratic in switch queue length and linear in switch counter.
c) Non-asymptotic bounds: The novel component in our
non-asymptotic bound is bounding the moment generating
function (mgf) of the drift regret. Firstly, the learning rate
O(log(t)/t) in itself is insufficient: at time t the probability of
error events decay as t−log(t), whereas the mgf of drift regret
may grow as exp(t) in the worst case. We introduce the idea
of fallback: detect extreme events and take immediate actions
to circumvent such events. This ensures such extreme events
do not propagate in time. In our system fallback amounts to
activating all BSs if queues are Ω(log(t)). Secondly, bounding
the mgf of the switch counter and the switch queue requires
a new drift analysis technique due to their non-linear co-
evolution and their interaction with the physical queues. By
creating a separate coupling for each switching interval and
finally combining them we arrive at the mgf bound.

2In LASS-Static bounding T (t) is standard.



II. SYSTEM MODEL

Our system model and notation follows from [14]. We
consider a discrete time wireless network where downlink
traffic for Nu users are served by Nm base stations (BS).

A. Network, BS Configurations and Costs

We assume that the users and BSs are connected (partially)
forming a bipartite graph (possibly incomplete) G, where an
edge (m,u) ∈ G denotes connectivity between user u and BS
m. Our system allows for two distinct mode of operation for
each BS, active mode and sleep mode. Service is available
only from the BSs in active mode.

A BS configuration denotes a subset of BSs. We assume that
in each time slot only configurations belonging to a collection
of subsets J ⊆ 2[Nm] can be activated simultaneously. Let
us denote the BS configuration active in time slot t as J(t),
where Jm(t) = 1 implies that BS m is active in time slot t.
We assume that it is allowed to activate all the BSs at once,
i.e. 1Nm ∈ J . When it is clear from context, we may denote
‘all active’ configuration (1Nm ) as 1.3

In our model, each BS expends zero energy (see remark
afterwards for generalizations) in sleep mode, while in active
mode it expends c1 units of energy per time slot. This
constitutes the operational cost of the system and it is
given as c1‖J(t)‖1. Additionally, when in two subsequent
time slots the BS configuration is switched the energy cost
is given by c0 units. The switching cost in time t is given as
c01(J(t) 6= J(t−1)). Therefore, the aggregate cost (or simply
cost) equals: C(t) = c01(J(t) 6= J(t− 1)) + c1‖J(t)‖1.

B. Queues and Arrival Model

In the above network, each BS maintains a separate queue
for each user it is connected to. Packets bound for the users
accumulate in these queues and are served in a first-in-first-
out (FIFO) manner. Specifically, the queues in time t, for each
t ≥ 1, are collectively denoted as Q(t) = {Qm,u(t)|(m,u) ∈
G}. The number of queues is denoted as NQ.

The queues are fed by exogenous arrivals, where on each
time t, Am,u(t) new packets (unit sized) arrive in the queue
Qm,u(t). The arrival vector in time t is denoted as A(t) =
{Am,u(t)|(m,u) ∈ G}. We assume that the arrival process
is i.i.d. (independent of all past arrivals, past channels and
the system). However, the arrivals across different queues in
a given time slot maybe correlated. The arrival process has
mean E[A(1)] = λ with bounded support [0, A1].

C. Channel States, Visibility and Schedules

In our model, the evolution of the channels is dictated by
an underlying channel state process, H(t), for t ≥ 1, where
each H(t) takes value in a finite set H. We assume that the
channel state process is i.i.d. (independent of all past arrivals,
channel and system state) with channel state probability µ.

The instantaneous channel states H(t) are only visible after
BS activation is completed. Furthermore, we assume that the

3By bold face symbols we denote vectors throughout the paper. The symbol
1n denotes the all 1 vector of dimension n.

channel state visibility is not uniform across all BS configura-
tions. In particular, on time t from the active configuration J(t)
the visible channel state is H(t)|J(t), where h|j is defined for
all h ∈ H and j ∈ J . Activating all BSs provide the complete
information about the channels, thus we have h|1Nm = h for
all channel state h ∈ H.

The feasible service in each time slot depends on both
the channel and the active BS configuration. We model this
after [14] as a set of feasible rate vectors or schedules, R(j, h)
for all j ∈ J and h ∈ H. We assume that given the observed
channel state h|j the set of rate vectors for configuration j can
be computed. Specifically, we assume R(j, h|j) = R(j, h)
for all h ∈ H and j ∈ J . We impose a monotonicity
structure on the sets R(j, h), in its first argument. For all
j1, j2 ∈ J such that j1 ⊆ j2, we have R(j1, h) ⊆ R(j2, h).
This readily implies that maximum service is possible when all
BSs are activated, i.e. R(j, h) ⊆ R(1, h) for all j ∈ J (see
the remark afterwards for more discussion). The maximum
possible service to one queue admits an upper bound R. The
maximum feasible service or arrival to one queue is denoted
as Bmax = max{A,R}.

D. BS Switching and Scheduling

In the beginning of time slot t, the system rests in state J(t−
1) with queue lengths Q(t). In each time slot t, four sequential
events occur. In the order of their occurrences, the events are:
1) BS Activation, 2) Channel Observation, 3) Packet Arrival,
and 4) Scheduling.

BS Activation: Based on switching dynamics a new BS
configuration J(t) is activated with a cost C(t).

Channel Observation: Next, the channel state H(t) is
realized, while only the visible channel state H(t)|J(t) is
revealed. Based on the visible channel state R(J(t), H(t)) is
computed.

Packet Arrival: In the following step, exogenous packets
A(t) arrive and are added to the queues.

Scheduling: Finally, a schedule S(t) ∈ R(J(t), H(t)) is
chosen for service, where Sm,u(t) denotes allocated service
to queue Qm,u(t) for all (m,u) ∈ G. Based on the allocated
schedule packets are served and the queue lengths get updated
to

Q(t+ 1) = (Q(t) + A(t)− S(t))
+
. (1)

Remarks on System Model. 1) Network Cost: The network
cost can be generalized to scenarios, where different BS con-
figurations require different operational powers. Furthermore,
it is possible to allow for switching cost that varies with
the specific switching involved: from j1 to j2; as long as
the cost for switcihng is not less than being in the same
state. In particular, the cost function can be generalized to
C(t) = C1(J(t)) + C0(J(t),J(t − 1)), where 0 ≤ C1(j) ≤
Cmax,1 < ∞ for all j ∈ J , and 0 ≤ Cmin,0 ≤ C2(j1, j2) ≤
Cmax,0 <∞ and C2(j1, j1) = Cmin,0, for all j1, j2 ∈ J .

2) Channel Rate Vectors: The assumption that for all
j1, j2 ∈ J , R(j1, h) ⊆ R(j2, h), is not always true. This
is due to the fact that active BSs may cause interference



causing loss of possible services. We can generalize the
assumption to: there exists a known j∗, such that for all j ∈ J ,
R(j, h) ⊆ R(j∗, h). In that scenario during fall-back events
(see Section IV) we activate the configuration j∗, instead of
1Nm , to retain all the guarantees of this paper.

III. CAPACITY AND COST OPTIMALITY

We now present some necessary definitions and notations
that will be used throughout the paper (some borrowed
from [14]). We denote by Eφ[·] and Pφ[·], the expectation and
probability, resp., under a policy φ (defined shortly). Further,
let P(S) denote the probability simplex on a set S.

A network is defined uniquely by the channel rate vector µ.
A network and an arrival rate λ jointly characterize a system
(λ,µ). Ψsys(t) = {Q(t),J(t − 1)} denotes the system state
at the beginning of time slot t, for all t ≥ 1. A policy is
defined as a sequence of switching and scheduling actions,
{(J(t),S(t)) : t ≥ 1}. A policy φ is causal if in time slot
t the activation, J(t), and scheduling, S(t), are functions of
the history {Ψsys(t

′)|1 ≤ t′ ≤ t} and system statistics (full
information setting). A causal policy φ is admissible if under
the policy φ the system state Ψsys = {Ψsys(t)|t ≥ 1} forms
an irreducible and aperiodic discrete time countable state
Markov chain.

We now define the stability of a system and the capacity
region of a given network.

Definition III.1 (Average queue length and Stability). The
long term average queue length of a system with arrival rate
vector λ, channel rate vector µ under a policy φ, is

Qφ(λ,µ) = lim sup
M→∞

1
M

M∑
t=1

Eφ [‖Q(t)‖1|Ψsys(1)] .

A policy φ stabilizes the system if Qφ(λ,µ) <∞.

The above definition of system stability, further, ensures that
under an admissible policy the queue length process Q(t) is
positive recurrent, implying the queue lengths are bounded
with probability 1. It also implies that the Markov chain Ψsys

is positive recurrent as J is finite.

Definition III.2 (Capacity Region). For a network with chan-
nel rate vector µ the capacity region Λ(µ) is the set of all
arrival rates λ, for which the system (λ,µ) is stable under
some admissible policy.

The capacity region of a network with channel rate
vectors µ, is characterized as: λ∈Λ(µ) if and only if
there exists α(1, h) ∈ P(R(1, h)), ∀h ∈ H, such that
λ≺

∑
h µh

∑
r∈R(1,h) αr(1, h)r (see [19], also [14]). Fur-

ther, for a network µ, and an arrival rate vector λ the capacity
gap is εg = max{ε : λ=(λ′−ε1)+,λ′ ∈ Λ(µ)}. From hereon
we focus on systems with strictly positive capacity gap.

Following [14], the cost of a policy for a given network and
a given arrival rate vector is defined as follows.

Definition III.3 (Average Network Cost). The long term
average cost of a system (λ,µ), under a policy φ, is

Cφ(λ,µ) = lim sup
M→∞

1
M

M∑
t=1

Eφ [C(t)|Ψsys(1)] .

Definition III.4 (Optimal cost and Optimal policy). The
optimal cost of a system (λ,µ) is denoted by C∗Φ(λ,µ),
and is defined as C∗(λ,µ) = inf{Cφ(λ,µ) | Qφ(λ,µ) <
∞, φ ∈ ‘admissible’}. An admissible policy φ with average
cost C∗(λ,µ) is optimal.

The characterization of an optimal policy among the class
of Markov policies was given in [14]. However, the authors
argued: due to computational complexity it is practical to op-
timize with respect to the operational cost, C(t) = c1‖J(t)‖1
with an additional constraint on the BS switching rate.

We take a different approach towards proving optimality of
the proposed policies over the class of admissible policies. For
any system (λ,µ), we show existence of policies that have
operational cost arbitrarily close to C∗(λ,µ). Later we use
properties of such policies to provide our joint optimality (with
switching and operational cost) and queue length guarantees.

A static-split policy, on each time slot t ≥ 1, (i) first
activates BS configuration j w.p. σ(j), and then, after ob-
serving channel state H(t) = h, (ii) schedules a rate vector
r ∈ R(j, h) w.p. αr(j, h). The following theorem proves
optimality of a static split policy (in the above sense).

Theorem III.5. For a system (λ,µ) with capacity gap εg>0,
∀ε′g∈(0, εg), there exists a static-split policy φ(ε′g) such that
1) φ(ε′g) stabilizes arrival rate λ′, i.e. Qφ(ε′g)(λ′,µ) < ∞,
where λ′m,u = λm,u + ε′g1(λm,u > 0) for all (m,u) ∈ G.
2) the average cost of φ(ε′g) w.r.t. cost function C(t) satisfies,

Cφ(ε′g)(λ,µ) ≤ C∗(λ,µ) + κµε
′
g,

where κµ is independent of arrival rate vector λ and the
capacity gap εg , and may depend on the network µ.

IV. POLICIES WITH EXPLICIT LEARNING

In this section we design two algorithms for BS activation
and rate allocation/scheduling with the purpose of stabilizing
the system with near optimal cost (both operation and switch-
ing). In the proposed algorithms, we decouple the optimization
of operational and switching costs. Specifically, to bound
switching cost the BS switching rate is constrained, and to
minimize the operational cost, on each switching instance, a
BS configuration is activated using a greedy drift-plus-penalty
maximization. The drift-plus-penalty based activation allows
the algorithms to adapt to the queue lengths, resulting in
drastically reduced queue lengths compared to stationary BS
activation scheme in [14].

The algorithms differ in the way they allow BS switching
while satisfying the switching constraint. Given an upper
bound on switching rate, say εs > 0, the first algorithm allows
switching at each time slot with probability εs independent of
any other events. This limits the speed at which the algorithm



can react to the changes in queue lengths, and as a result the
queues occasionally become very large. In our last algorithm,
we address this issue by making the switching adaptive to the
changes in the system. This reduces the occasional large queue
backlogs, which we show theoretically and validate through
simulations.

A. Learning Aided Policy

We next specify the proposed max weight based algorithm
augmented with BS activation and learning of channel states.
The algorithm has three parts, (1) BS Activation, (2) Channel
Scheduling, and (3) Channel Estimation.

The two proposed algorithms have similarities in structure,
channel scheduling, and channel estimation. In our presen-
tation, we represent this common structure in Algorithm 1
which performs channel scheduling and channel estimation,
and delegates the BS activation to another process called
ACTIVATE. We now describe Algorithm 1.

Algorithm 1: In each time slot t ≥ 1 Algorithm 1 first
passes the current queue length, Q(t), and channel state
estimate, µ̂(t), to ACTIVATE and waits for a response. The
ACTIVATE routine returns a BS configuration J(t). Upon
receiving J(t), Algorithm 1 activates all BS j ∈ J(t). In
the next step, the current channel state is observed from the
activated BSs, H(t)|J(t). Then a schedule, S(t), is chosen
greedily following Max-weight algorithm (2). Next, after the
new packets arrive, it serves the packets according to the
chosen schedule and updates the queues. Finally, if all BSs
are active, i.e. J(t)=1Nm , the channel state estimate µ̂(t) is
updated.

B. Base Station Activation

The main focus of the paper is designing algorithm for BS
Activation to, simultaneously, stabilize the system and guar-
antee near optimality in terms of operational and switching
cost. Additionally, the proposed algorithm should integrate
smoothly with channel scheduling and estimation. We propose
two different algorithms for the ACTIVATE routine and
explain them separately. The BS activation mechanism on
switching instances are the same, however, the decision of
when to switch is different for the two proposed algorithms.
Algorithm 2: LASS with Static Switching

In each time slot t ≥ 1 the Algorithm 2 first obtains the
current queue lengths Q(t) and the channel state estimate
µ̂(t) from Algorithm 1. The algorithm maintains an internal
state JA(t) to keep track of the past activated BSs. It first
statically decides ‘when to switch’: with probability εs it
allows switching at each time t, otherwise, it keeps the internal
state unchanged, i.e. JA(t) = JA(t − 1). When switching is
allowed, it computes a new optimal BS configuration J∗A(t)
following the drift-plus-penalty method (Equation (3)). Then
it sets JA(t) = J∗A(t). Finally, in time slot t, with probability
2 log(t)/t, it decides to explore, otherwise it may exploit
or fall-back. In an explore step it passes the configuration
1Nm (all ON) to Algorithm 1 (to improve estimate of µ).
If not exploring, it decides to fall back when the sum of

Algorithm 1 Learning-Aided Switching & Scheduling (LASS)
1: Input: Initial State Q(1),
2: Arrivals A(t) and channel states H(t), ∀t ≥ 1,
3: BS configurations J(t), ∀t ≥ 1.
4: Initialize: Channel estimate, µ̂(1) = 0,
5: Number of exploration events, nex(1) = 0.
6: for all t ≥ 1 do

1) BS Activation:
7: Pass Q(t), and µ̂(t) to ACTIVATE (Algo. 2 or 3)
8: Wait and receive J(t) from ACTIVATE (Algo. 2 or 3)
9: Activate BS configuration J(t)

2) Channel Scheduling:
10: Observe, H(t)| J(t) . Partially if J(t)6=1Nm
11: Select schedule S(t) as follows,

S(t) = arg max
r∈R(J(t),H(t)| J(t))

〈Q(t), r〉. (2)

12: Wait and receive new arrivals A(t)
13: Update queues, Q(t+ 1)← (Q(t) + A(t)− S(t))+

3) Channel Estimation:
14: if J(t) = 1Nm then . Updated under full observation
15: nex(t+ 1)← nex(t) + 1

16: µ̂(t+ 1)← µ̂(t)
(

1− 1
nex(t+1)

)
+

eH(t)

nex(t+1)

17: else . Unchanged under partial observation
18: nex(t+ 1)← nex(t)
19: µ̂(t+ 1)← µ̂(t)

queue lengths is larger than Qth log(t), where Qth > 0 is
a constant. In this case it passes the configuration 1Nm (to
ensure maximum service). Otherwise, it exploits by the passing
configuration JA(t) to Algorithm 1 (to jointly optimize and
stabilize the system under the switching constraint).
• Fallback: The fallback is an approach to tackle the

extreme error event where aggregate queue length crosses
threshold Qth log(t). Such error events imply that despite
positive capacity gap, the system is ‘apparently’ unstable. In
that case, the algorithm uses the knowledge that activating all
BSs maximizes service, and falls back to that choice.
• Penalty parameter: The parameter V in the Equation (3)

determines the (sub) optimality of the proposed algorithm, the
larger the value of V the smaller the sub optimality of the
algorithm. It is one of the central ideas in drift-plus-penalty
based network optimization [18].
• Internal State: The exploration or fall-back events do

not affect the evolution of the internal state JA(t), whereas it
changes the switching state J(t). This ensures the exploration
or fall-back decisions do not propagate in time.
Algorithm 3: LASS with Dynamic Switching

In each time slot t≥1, Algorithm 3 first receives the current
queue length and channel state information from Algorithm 1.

It first decides ‘when to switch’. To dynamically make
the decision it maintains two additional states, switch queue
Qsw(t) and switch counter T (t). The switch queue Qsw(t) is
a token queue. Packets are served from the switch queue at
a constant rate of εs, whereas, a packet enters the queue if a



Algorithm 2 ACTIVATE with Static Switching
1: Parameter: Penalty scale V , and switching rate εs,
2: fallback threshold Qth
3: Input: Initial State JA(0),
4: Queue lengths Q(t), and channel estimate µ̂(t), ∀t ≥ 1.
5: for all t ≥ 1 do
6: Wait and receive Q(t) and µ̂(t) from Algorithm 1

1) Static Switching and Dynamic Activation
7: Generate independent r.v. Es(t) ∼ Ber(εs)
8: if Es(t) = 1 then . Switch
9: JA(t)← J∗A(t) = arg max

j∈J
DP(j, t), where

DP(j, t)=
∑
h∈H

µ̂h(t) max
r∈R(j,h)

(〈Q(t), r〉−V c1‖j‖1) (3)

10: else
11: JA(t)← JA(t− 1)

2) Explore, Fallback, or Exploit
12: Generate independent r.v. Eex(t) ∼ Ber

(
2 log(t)

t

)
13: if (Eex(t) = 1) ∨ (‖Q(t)‖1 > Qth log(t)) then
14: Pass J(t) = 1Nm to Algo. 1 . Explore/ Fallback
15: else
16: Pass J(t) = JA(t) to Algo. 1 . Exploit

switching happens. Thus a finite size of switch queue ensures
that the (asymptotic) switching rate is less or equal to εs.

The switching happens whenever the switch counter T (t)
(described shortly) is greater or equal to the switch queue
Qsw(t), indicated by Eext(t) = 1(T (t) ≥ Qsw(t)). The
algorithm next computes an estimated optimal BS config
J∗A(t) following drift-plus-penalty maximization, to decide
‘what to switch to’ (if switching is allowed). For dynamic
activation, it sets JA(t)=J∗A(t) if switching is allowed (i.e.,
Eext(t)=1), otherwise, it sets JA(t)=JA(t−1).

The switch counter T (t) encodes the time since the internal
state was equal to the estimated optimal (JA(t′) = J∗A(t′)).
The algorithm does so by increasing the counter when JA(t) 6=
J∗A(t), and reseting it to 0, otherwise. In the final step,
explore/fall-back/exploit happens similar to Algorithm 2.
• Switch Queue and Switch Counter: In Algorithm 3

we ensure that if the switch queue is large switching is less
aggressive. This enables the switch queue to drain before a
new arrival in switch queue occurs. As a result, the switch
queue rarely becomes large. This in turn ensures that the
switch counter does not grow large. Indeed, inside any two
consecutive switching instances (excluding the later instance)
the switch counter is always less than the switch queue.
• Internal Reset and External Switching: The switch

counter reset occurs due to two possible events. Firstly, a
switching can occur as T (t) becomes large or equal to Qsw(t),
which makes JA(t) = J∗A(t) triggering a reset. Secondly, if
JA(t − 1) = J∗A(t) then, even if T (t) < Qsw(t), we have
JA(t) = JA(t − 1) = J∗A(t) resulting in a switch counter
reset without an arrival to the switch queue. We denote the
latter as an internal reset event, whereas the former is called

Algorithm 3 ACTIVATE with Dynamic Switching
1: Parameter: Same as Algo. 2 Input: Same as Algo. 2
2: Initialize: Switch Queue, Qsw(1) = 0, and T (1) = 0.
3: for all t ≥ 1 do
4: Wait and receive Q(t) and µ̂(t) from Algorithm 1

1) Dynamic Switching and Activation
1.1) Switch Queue Update

5: Eext(t)← 1(T (t)≥Qsw(t)) . Arrival to Qsw/Switch
6: Generate Es(t) ∼ Ber(εs) . Service to Qsw
7: Qsw(t+ 1)← (Qsw(t) +Eext(t)−Es(t))+

1.2) Dynamic Activation
8: Compute J∗A(t)= arg max

j∈J
DP(j, t) [see, Eq. (3)]

9: if Eext(t) = 1 then
10: JA(t)← J∗A(t) . BS configuration Switch
11: else
12: JA(t)← JA(t− 1)

1.3) Switch Counter Update
13: if JA(t) = J∗A(t) then
14: T (t+ 1)← 0 . Reset switch counter
15: else
16: T (t+ 1)← T (t) + 1 . Increment switch counter

2) Explore, Fallback, or Exploit: Same as Algo. 2

an external switching event.
• Time-scale Separation in LASS: Both the proposed

algorithms operate in three timescales. In the slowest time
scale, at a vanishing rate of O(log(t)/t) the algorithms learn
the channel state distribution by activating all the BSs. The
rate used here ensures that the costly exploration vanishes
asymptotically, while the error in channel estimation does not
jeopardize the BS activation.

In the intermediate time scale BS switching occurs at a rate
of εs < 1, an algorithmic parameter. In the switching instances,
a BS configuration is chosen greedily depending upon a drift-
plus-penalty value and it remains fixed until the next switching
instance. In Algo. 2 this second time scale is explicit, whereas
in Algo. 3 this second time scale is maintained implicitly
through the stabilization of the switch queue Qsw(t).

In the third and the fastest time scale, conditioned on the
activated BS configuration a new schedule is chosen in each
time slot. Updating the schedule at each time slot is the
key to opportunistically use the time-varying channels and is
necessary for throughput optimality.

V. PERFORMANCE GUARANTEES OF LASS

In this section we provide performance guarantees of the
two proposed policies. Due to lack of space, the proofs are
deferred to [20].

The combined algorithm and system state is Ψ(t) =
(JA(t−1),Q(t),Qsw(t), µ̂(t), T (t)). Here, T (t) denotes the
duration from the last instance the estimated optimal BS
config was identical to the chosen BS config, i.e. T (t) =
inf{t−t′ : t′ ≤ t,JA(t′) = J∗A(t′)}. Also, Qsw(t) denotes
the switch queue. By convention, for LASS-Static the switch
queue Qsw(t) = 0 for all t ≥ 1. The drift-plus-penalty



function with operational cost as penalty and penalty scale
as V > 0 is (L(t+ 1)− L(t) + V c1‖J(t)‖1), where L(t) =
1
2

∑
(m,u)∈G Q

2
m,u(t).

Our first key result provides bounds on the expected average
of sum-of-queue lengths, Q(λ,µ), and the expected average
cost (operational and switching cost) C(λ,µ). Formally,

Theorem V.1. For system (λ,µ) with a capacity gap εg > 0,
under LASS-Static or LASS-Dynamic with parameters εs ∈
(0, 1] and V > 0,
1) the expected cost satisfies,

C(λ,µ) ≤ C∗(λ,µ) + c0εs +
4B2

maxNQ
V εs

,
2) the expected queue length satisfies,
Q(λ,µ) ≤ (1.25C∗(λ,µ) + κµεg)

V
εg

+
(4+εg/2)B2

maxNQ
εgεs

.

The following bound on the one-step expectation of drift-
plus-penalty in Lemma V.2 plays key role in the proof of the
above theorem.

Lemma V.2 (Parameterized Drift plus Penalty). For system
(λ,µ) with a capacity gap εg > 0, for algorithm φ ∈ {LASS-
Static, LASS-Dynamic} with parameters εs ∈ (0, 1) and V >
0, the following drift plus penalty equation holds for all time
slots t ≥ 1, and for any ε′g ∈ (0, εg) and γ ∈ (0, 1),

Eφ
[
L(t+ 1)−L(t)+(1−γ)ε′g‖Q(t)‖1 + V c1‖J(t)‖1

∣∣Ψ(t)
]

< V Copt(ε
′
g) +B2

maxNQ(1 + (1 + γε′g)T (t)) + err(t) (4)

where, i) err(t) satisfies lim sup
M→∞

1
M

M∑
t=0

Eφ[err(t)|Ψ(1)] = 0,

ii) T (t) satisfies lim sup
M→∞

1
M

M−1∑
t=0

Eφ[T (t)|Ψ(1)] ≤ 3
2 + 1

εs
.

Remarks on Expected Average Bounds.
• Theorem V.1 implies that in presence of switching cost,
the queue length scales as 1/(optimality gap)2 (set V=1/ε2s).
Whereas, when switching cost is absent queue length scales
as 1/(optimality gap) under max-weight algorithm [21].
• The one-step bound in equation (4) depends on two time-
varying processes, in addition to the sum of queue lengths
‖Q(t)‖1. It depends on, i) the empirical estimate, µ̂(t), and
ii) the time since the estimated optimal BS config. equals the
constrained optimal, T (t).
• The Lemma V.2 provides multiple bounds on expected drift-
plus-penalty (4), each parameterized with ε′g∈(0, εg). We use
different such bounds for bounding expected average of cost
and sum-of-queue lengths in Theorem V.1.

Our second key result is the non-asymptotic upper-tail
bounds on the sum-of-queue lengths, ‖Q(t)‖1. Formally,

Theorem V.3. For system (λ,µ) with capacity gap εg > 0,
under algorithm φ ∈ {LASS-Static, LASS-Dynamic} with
parameters εs ∈ (0, 1] and V > 0, for all r ∈ (0, rmax,φ),
and for all t ≥ 1, x > 0,
Pφ[‖Q(t)‖1≥BmaxNQ+θφ+x|Ψ(1)]≤ e

−rx

rεg

(
1+O

(
log(t)
t

))
In particular the following statements hold.

1) For both φ, θφ=Θ
(

2V c1Nm+B2
maxNQ

εg
+
B2

maxNQ
εgεs

)
.

2) For φ = LASS-Static, rmax,φ = Θ
(

εsεg
(BmaxNQ)2

)
.

3) For φ = LASS-Dynamic, rmax,φ = Θ
(

εg
(BmaxNQ)2

)
.

The next lemma bounds the MGF of the sum of queue
lengths as a function of time and leads Theorem V.3.

Lemma V.4. For system (λ,µ) with capacity gap εg > 0,
for algorithm φ ∈ {LASS-Static, LASS-Dynamic}, for any r ∈
(0, rmax,φ), and for all t ≥ 1,
Eφ [exp(r‖Q(t+1)‖1)|Ψ(1)]<O

(
e(r(BmaxNQ+θφ))

rεg
+ log(t)

t

)
where, parameters θφ, and rmax,φ are as given in Theorem V.3.

Remarks on Non-asymptotic Bounds.
• Lemma V.4 provides drift-analysis results including learning
and switching events. It extends the results in [16], [17].
• Theorem V.3 shows LASS-Dynamic has a larger decay
rate, hence better performance, than its static counterpart. This
provides evidence that dynamic utilization of the switching
resources based on the drift regret is more efficient.

VI. SIMULATION RESULTS

A. Simulation Setup
In this section we validate our results using simulations. We

consider a system with Nm = 3 BSs and Nu = 8 users. The
connectivity graph G is: (i) BS 1 is connected to all users
except 2, (ii) BS 2 is connected to {2, 5, 6, 7, 8}, and (iii)
BS 3 is connected to users {5, 6, 7, 8}. All BS configurations
are allowed J = 2[3]. There are three possible channel states
with correlated links. Under each of the channel state any
link (m,u) is either good (serves 10 packets) or bad (serves 0
packet), and is represented jointly by a Nm×Nu binary matrix.
The channel process H(t) is i.i.d. w.p. µ = (0.4, 0.3, 0.3). In
each time slot, a BS, if active, can serve at most one user,
and an user can receive from only one BS. Let λ∗ lie on
the boundary of the capacity region. For a normalized load
ρsim the arrival rate vector is λ = ρsimλ

∗ and the associated
capacity gap εg = (min{λ∗m,u : λ∗m,u > 0})(1 − ρsim). For
each queue Qm,u the arrival process, Am,u(t), is a Poisson
random variable with mean λm,u distributed i.i.d., coordinate
wise and for all t ≥ 1. The network cost constants are c0 = 1
(switching) and c1 = 10 (operational). All the simulations are
run for 5× 105 iterations. We observed that at most 1× 105

iterations, which includes at least 500 switching events, were
sufficient for convergence in all the reported cases.

B. Performance of LASS-Static and Dynamic
We study the performance of the following algorithms:

1) LSG: LASS-Static, 2) LD: LASS-Dynamic,
3) LSF: LASS-Static with fixed period length b1/εsc,
4) DP: Drift-plus-Penalty, unconstrained and with known µ.

The effect of normalized load (ρsim), penalty parameter
(V ) and the switching rate (εs) on the following two met-
rics are studied, 1) queue length Q(λ,µ)

NQ
, and, 2) aggregate

cost, C(λ,µ). Smaller values of the metrics indicate better
performance.

We first focus on the effect of the relevant parameters on
the performance (Fig. 2). We reach the conclusion that at high
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(c) Effect of varying εs; ρsim = 0.9, V = 250

Fig. 2: Influence of parameters on the average aggregate cost
and the average queue length.

ρsim or large V the theoretical results provide qualitatively
correct results. Further, the results for εs seem to follow the
theoretically predicted trend, for a wide range of values. We
now shift our focus on the performance of various algorithms.
Throughout all parameters the performance, in term of average
queue length, follows the trend LSG<LSF<LD<DP. At high
loads, large V or small εs, we observe that the average queue
length under LD is smaller compared to LSG and LSF. For
large V , the average costs under LSF, LSG, and LD have
negligible difference; however, due to unconstrained switching
DP has higher cost.
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Fig. 3: Effect of switching rate on the cdf of queue length.

In Fig. 3 we plot the cumulative distribution function (cdf)
of the queue lengths for different εs, where V = 250 and

ρsim = 0.9. The figure clearly depicts that for a large range
of εs the decay rate follow the order DP>LD>LSF>LSG.
Specifically, LSG has slower rate of decay than LD, thus
corroborating Theorem V.3. The difference in decay rate for
various algorithms becomes more pronounced at smaller εs.
LD remains close to DP in terms of decay rate throughout the
range [0.005, 0.1]. We observe the same behavior for moderate
to high ρsim (≈ [0.75, 0.95]) and large V (100 and above).

VII. RELATED WORK

The energy efficient operation of communication networks
(e.g. cellular networks) that meets user expectations is an
important topic of research ([6], [8], [22], [23]), and various
strategies to tackle this problem have been proposed [5],
[12], [24]–[26]. One promising approach, is the applica-
tion of opportunistic scheduling in BS activation. Under
time varying channels, using this framework, joint stability
and energy efficiency of the networks, has been established
through greedy Lyapunov function optimization—drift-plus-
penalty method [10], [18], [27], and greedy primal dual
method [9], [28]. While these works require instantaneous
information of channel states, in many situations (including
ours) such information may only be revealed through an
action. In these scenarios, two-stage decisions are necessary,
where first stage depends on channel statistics [29], [30].
Authors in [29] assume knowledge of channel statistics to
provide throughput optimality with two-stage decisions. Fur-
ther, in [30] similar guarantees are shown when statistics is
learned through exploration at a constant rate. Notably, these
works use queue length based decisions in both the stages.
In [14] a joint learning and resource allocation algorithm is
developed using decaying rate of exploration. However, in
[14] the first stage decision—BS activation/de-activation, is
made queue independent. Therefore, our work introduces joint
learning and two-staged resource allocation algorithms; where
1) exploration rate decays with time, and 2) in both stages,
resource allocation is queue length dependent.

Furthermore, as the authors in [14] point out, these greedy
strategies (including the two-stage algorithms) are inadequate
for minimizing operational plus switching cost. When com-
plexity is not an issue, this problem can be formulated as
a constrained Markov decision process (CMDP) and solved
optimally [31], [32]. The authors in [14] first proposed a low
complexity near-optimal strategy using constrained switching.
However, in that work the BS activation and switching does
not adapt to the instantaneous load. To mitigate this short-
coming, in LASS-Static, we make the BS activation decisions
queue dependent. Further, in LASS-Dynamic, we make both
BS activation and switching queue dependent.

The concept of slowing down decisions appear in different
contexts, e.g. queues with setup times [33], [34], which do
not explicitly constrain the switching cost. Finally, our non-
asymptotic analysis builds on the previous works [16], [35].



VIII. CONCLUSION AND DISCUSSIONS

In this paper we provided two BS switching and schedul-
ing algorithms for joint stability, and cost-optimality guar-
antees, when BS switching cost is included in addition to
BS operational cost. Proposed algorithm LASS-Static makes
BS activation system load dependent using drift-plus-penalty
based approach [18]. LASS-Dynamic improves further; it
makes both ‘when to switch’ and ‘what to switch to’ system
load dependent. Finally, in both the algorithms the switching
decisions are integrated with max-weight based scheduling and
explore-exploit based learning. We show, when the capacity
gap is εg , both algorithms attain, an expected average queue
length of O(1/ε2sεg) and an additive O(εs) sub-optimality to
the expected cost. Furthermore, we show that the sum-of-
queue lengths under LASS-Static decays exponentially with
rate Θ(εgεs), whereas under LASS-Dynamic it decays at a
rate Θ(εg).
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