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Abstract—It is well-known that TCP connections perform
poorly over wireless links due to channel fading. To combat this,
techniques have been proposed where channel quality feedback
is sent to the source, and the source utilizes coding techniques
to adapt to the channel state. However, the round-trip time-
scales quite often are mismatched to the channel-change time-
scale, thus rendering these techniques to be ineffective inthis
regime. In this paper, we propose a source coding technique
that when combined with a queueing strategy at the wireless
router, eliminates the need for channel quality feedback tothe
source. We show that either in a multi-path environment (e.g.,
the mobile is multi-homed to different wireless networks) or
in the presence of multiple TCP connections sharing the same
wireless spectrum (where bandwidth can be opportunistically
shared between different mobile users), the proposed scheme
enables statistical multiplexing of resources, and thus increases
TCP throughput dramatically.

I. I NTRODUCTION

TCP was designed and optimized with the assumption
that the networks that it was supposed to operate over have
highly reliable node-to-node links such that dropped packets
due to bad links are highly unlikely. It was this trait of
the wired network that TCP utilized to build a congestion
control mechanism; a dropped packet is interpreted by TCP
as a buffer overflow due to a congestion somewhere in the
network.

However, a typical wireless link is designed with BER
on the order of10−5, which translates into a packet drop
probability of 5-10% for a 1KB packet; the drop probability
can be much worse if the wireless channel is in deep, severe
fade. If plain TCP is used over the wireless links without
any modifications, this considerably reduces the average
congestion window size and prevents it from enlarging to
any significant portion of the ideal size, the bandwidth-delay
product, resulting in a low utilization rate [15], [17], [3].

This paper addresses the problem of low TCP throughput
in the simple topology of TCP senders connected via wireline
network to intermediate wireless routers and TCP receivers
connected by a wireless channel to one or more of these
intermediate routers (see figure 1). An example scenario
would be a cellular access network (such as UMTS/WiMax)
where the cellular base station is connected to the wired
backbone, and only the link between the base station and the
mobile user is wireless. In addition, although multi-homing
is not currently implemented in UMTS networks, with the
introduction of femto-cells, it is conceivable that in a campus
scenario with a number of femto-cells, the mobile user may
be able to receive downlink data simultaneously on multiple

links from multiple femto-cells; this motivates the multi-path
model in figure 1.

A. State of the art: a matter of time-scales

To combat the adverse nature of the wireless network, mul-
tiple solutions have been proposed, all involving a separation
of time-scales between the rate of channel variation and the
TCP congestion window evolution. One can break the TCP
connection between a wired server and a mobile into two
components: wired and wireless [4]. However, this approach
needs a proxy at the wireless base-station, and breaks TCP
end-to-end semantics.

By contrast, one could protect TCP (without proxying at
the wireless router) from channel-level variations by suitable
physical layer schemes. Of these, the commonly deployed
solution in UMTS/WiMax systems involves channel coding,
adaptive modulation and/or automatic repeat request (ARQ
or hybrid ARQ) deployed in a lower layer protocol to deal
with packet drops resulting from channel variations that are
at a much faster rate than the end-to-end TCP round-trip time
(RTT). However, these schemes could lead to variations in the
rate provided to the TCP connections, and can lead to sub-
optimal TCP performance [9]. Papers such as [12] improve
TCP performance over downlink wireless networks through
dynamically adjusting PHY layer parameters optimized for
TCP. However, such strategies require measurements both at
the transport layer like TCP sending rate as well as physical
layer information like channel quality.

The alternate solution (see [6], [26], [25]) is to code the
data stream at a specific forward error coding rate at the
application layer so that the decoded TCP data stream can
withstand drops due to bad wireless channels. In [26], the
authors use Reed-Solomon coding at a fixed rate to encode a
stream of TCP packets in order to deal with random losses.
In [25], the authors use network coding combined with an
ACK scheme found in [24] and TCP-Vegas like throughput
measurements to adapt TCP over wireless links. However,
such an approach requires the variation in channel drop rate
to be quasi-static relative to the time-scale of feeding back
this channel drop rate information to the source so that the
coding rate can be adjusted.

B. Motivation

1) Channel variation and RTT have same time-scale:
In reality, however, there exist scenarios where the packet
drop rate can change at the time scale of round-trip time
of the TCP connection. For example, consider a mobile user
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Fig. 1. N TCP-RLC connections (green) made over a well-provisioned
wired network and a wireless router (red) and one connection(black) made
overM paths. One can exploit multi-flow or multi-path diversity toincrease
throughput.

traveling at 2-5km/h using the current UMTS network (carrier
frequency≈ 2GHz in the U.S.) to download a file stored at
a distant end of the Internet. This user’s wireless channel
coherence time is roughly around 20-50ms [21], a number
well within the range of RTT for the Internet. (Coherence
time is roughly a measure of how long a wireless channel
stays constant, and therefore a rough measure of how fast the
packet drop rate changes.)

In such scenarios, multiple ARQ requests and link-level
ACKs and NACKs are unhelpful – they cause retransmission
delays and timeouts that may adversely affect the RTT es-
timation and the retransmission time-out (RTO) mechanism,
and therefore throughput. Moreover, forward error correction
coding at a fixed rate (at the TCP source) is not helpful
since the drop rate at the wireless link is not quasi-static
relative to the feedback time scale. If the drop rate changes
every RTT, the information about the drop rate will not reach
the TCP sender in time to be useful since by the time the
information reaches the sender, the drop rate would have
changed. Thus, this mobile user’s wireless downlink channel
would be useless to track from the perspective of improving
his TCP throughput; the channel quality feedback reaches the
source too late, and is useless by the time the source gets it.

In summary, coding at fixed rate will not work when the
wireless channel variation and RTT have the same time-scale.

2) Multiple path statistical multiplexing:There has been
much research into multipath TCP connections. The obvious
advantage of multipath TCP is that it can balance the load on
the multiple paths such that paths experiencing temporarily
high capacity can carry more packets than paths experiencing
low capacity. Further,multiple TCP connections can be useful
for load balancing among multiple wireless interfaces– for
instance, in a situation where a mobile node is connected to a
3G network base-stations as well as a femto-cell base-station.
In this scenario, one would want to getstatistical multiplexing
gain among the two wireless interfaces, as it is likely that
the wireless fading state between the two interfaces will
differ (e.g., when the 3G interface has a “bad” channel, the
femto-cell interface could have a “good” channel). However
to exploit this, a naive implementation would require that
packets stored at the 3G base-station be transferred to the
other base-station (femto) through a wired back-haul. Clearly,
time-scales of RTT over the back-haul and channel variation
would render this impractical.

A second issue one faces when running a TCP connection
over multiple paths is the problem of out-of-order packet

delivery, which can cause congestion window collapse even if
the network has plenty of capacity [28]. [20] gets around this
problem by delaying and reordering received packets before
they are passed up to the TCP layer on the receive side. [29]
uses duplicate selective ACKs (DSACK) and dynamically
changes the duplicate ACK threshold to address the out-of-
order problem.

By using random linear coding, our proposed TCP modi-
fications can be naturally extended to multiple paths and we
will show that coding + TCP enables the network to behave
as though packets are “virtually shared” among the different
base-stations without the need for a back-haul between
the various base-stations. This in-turn leads to multiplexing
gains. Further, coding + TCP can easily deal with out-of-
order delivery of packets.

C. Other related work

Network coding: Recently, inspired by [1], [16] and others,
network coding schemes have been used in the context of
wireless networks in order to improve throughput. [10] and
[23] use network coding at intermediate nodes and exploit
the shared wireless spectrum to improve TCP throughput. In
our approach, we use random linear coding (RLC) [18] at the
end nodes to improve TCP throughput, and the intermediate
router does not perform any coding operations. The concept
of using random linear coding for TCP over wired networks
has appeared recently [8]; however, our work here is for
hybrid network with the goal of improving TCP throughput
over time-varying wireless channels.
TCP window statistics under AQM: Lastly, we note that
there exists a considerable body of literature [14], [27]
on modeling the TCP window process in the presence of
active queue management (AQM) systems, especially random
early detection (RED) [11]. [27] presents a weak limit of
the window size process by proving a weak convergence
of triangular arrays; some of the mathematical model and
treatment in our paper is based on their work. [2] presents
a fluid limit of the TCP window process, as the number
of concurrent flows sharing a link goes to infinity, and the
authors show that the deterministic limiting system provides
a good approximation for the average queue size and total
throughput.

None of the previous works mentioned above treats the
situation when the loss rate can not be tracked due mismatch
between the channel change time-scale and the RTT time-
scale. Our work shows throughput gains that can be achieved
by exploiting multi-user or multi-path diversity when TCP is
combined with an ACK scheme similar to the one in [25]
and priority queueing strategy found in [7], plus RLC [18].

D. Main contributions

In this work, we employ (i) rateless coding, (ii) priority-
based queueing at wireless routers and (iii) multi-path routing
to demonstrate that throughput can be increased significantly
for TCP over downlink wireless networks even when channel
variations are on the same time-scale as RTT. In fact,the key



theoretical result underlying our proposed architecture shows
full statistical multiplexing gain from multi-path TCP. Even
in single-path routing TCP throughput in wireless access
networks can still be increased due to statistical multiplexing
gain from multiple flows sharing the same wireless router.

Specifically, our theoretical treatment shows that we can
achieve TCP throughput ofΘ (pminC), Θ

(
E [1/P ]−1 C

)
,

and Θ (E [P ] C) in single flow, multiple flow and multiple
path cases, respectively, in the absence of channel quality
feedback from the destination to the sender. Here,pmin,
E [1/P ] and E [P ] are the worst-case, inverse mean, mean
probability of successful packet transmission for the time-
varying wireless channel;C is the capacity of the wireless
router. This in turn implies that the statistical multiplexing
gain between (coding+ multi-path TCP) and (multiple-
single-path TCP) is of the order ofΘ (E [P ] /pmin) , where
there are many path available with roughly comparable
statistics.

Further, our modifications to TCP present an orderwise
gain over the performance of plain TCP, which isΘ(1), in
the presence of random packet loss for wired-wireless hybrid
networks, where the random packet loss rates change at the
RTT time scale and cannot be tracked.

II. A NALYTICAL MODEL & RESULTS

A. Overview

Our modified TCP protocol, dubbed TCP-RLC, operates
via performing random linear coding (RLC) over a block of
data packets; the block size is equal to the TCP congestion
window size, and both the coded and data packets are trans-
mitted by the router at the wired-wireless network boundary
for downlink transmission. When the receiver gets these
data and coded packets, the receiver attempts to reconstruct
the lost data packets from the successfully received data
and coded packets. Before transmission, the sender marks
a packet either high priority or low priority. The number of
low priority packets transmitted is some fixed multiple,r, of
the number of high priority packets transmitted; the number
of high priority packets transmitted in any round-trip time
is equal to the congestion window size maintained by the
source. We refer tor as the redundancy rate.

The wireless router uses a priority transmission rule where
high priority packets are transmitted before any low priority
packets. In this paper, we assume that the wired network has
enough spare capacity to handle the additional low priority
packets. This assumption is a typical feature of the hybrid
wired/wireless network, as the Internet is over-provisioned
with excess capacity to stay ahead of the current traffic
demand and to anticipate for the future increase. In addition,
the wireless link is typically the bottleneck in the hybrid
network architecture because wireless spectrum is expensive
and is used near full capacity to maximize profit for the
network operators.

We will describe the model necessary for our analysis and
present our analytical results first. We will then give a brief

description of the protocol itself in other subsections.

B. Network topology

We consider two network topologies. The first topology we
consider is a set ofN ≥ 1 TCP connections made through a
single wireless routerR. The connections are made over links
where only but the last link to the destinations is wired. We
assume that the wireless routerR is the point of congestion.
The router R receives packets on its wireline interface
and transmits packets across a noisy wireless channel to
destinationDi, i = 1, ..., N . We will consider slotted time,
with each unit time-slot corresponding to an RTT-interval.
For the purpose of analysis, all connections made throughR
have the same RTT. In each RTT-interval the wireless router
can transmitNC packets across the wireless channels, where
C is the nominal capacity per RTT slot per connection of
the wireless channel corresponding to the modulation and
channel coding used. In other words, if the wireless channel
experiences no error, thenNC packets can be transmitted
successfully from the wireless router in an RTT slot. For the
purpose of analysis, we assume that the wireless router has
no buffer space for storing packets from one RTT slot to
another; the router’s buffer is limited to what is needed for
packet processing only. However, in the simulations, we relax
this and allow buffers for storage (roughly one RTT worth
of packets).

The second network topology we consider in this paper is
a TCP connection made overM ≥ 1 paths going through
router R1,..., RM , each with capacityC (black connection
in figure 1). As before well-provisioned wired network is
assumed with the paths having the same RTT, and the
wireless routers do not store packets from one RTT slot to
another in the analytical model.

C. Wireless downlink channel

We model packet drops in the wireless channel between
a wireless router and a TCP destination as a simple i.i.d.
packet drop process whose parameter remains constant for
eachRTT-interval. This is similar to the block-noise model
common in wireless communication literature. We index RTT
intervals witht. Within each RTT-intervalt, the probability
that a packet transmitted over the air for destinationi (or path
i, in the multi-path context) is successfully received is given
by pi(t) ∈ {p1 = pmin, p2, . . . , p|Π| = pmax}. In each
time slot, P(pi(t) = pk) = p̃k. Thus, the channel packet-
delivery-probability parameter itself changes with time (this
corresponds to changing fading state over time), and at any
time the actual packet delivery probability depends on the
instantaneous value of this (random, time-varying) parameter.

D. TCP window dynamics

The TCP sourcei maintains a congestion window of size
Wi(t) for the t-th RTT interval. The congestion window is
in units of packets; packets are assumed to be of fixed size.
In each RTT slot, sourcei wantsWi(t) data packets to be



transferred to sinki. We model the additive increase, multi-
plicative decrease (AIMD) evolution of the TCP congestion
window as follows:

Wi(t + 1)

= 1successmin {Wi(t) + 1, Wmax} + 1drop⌈Wi(t)/2⌉

where the random variable1success
∆
=1 when all data packets

transmitted in thet-th RTT interval for destinationi have
been successfully recovered at the destination;1drop

∆
=1 −

1successtakes the value1 when either (i) the receiver cannot
recover one or more data packets corrupted by the packet
drop process or (ii) a packet is marked by the router due
to the presence of anactive queue manager(AQM). Wmax

represents the limitation placed on the congestion window
size due to limited buffer at the TCP receiver. We will neglect
TCP timeouts in our analysis to simplify our model and
analysis.

E. Random linear coding

We will assume that sourcei takesWi(t) data packets and
generatesrWi(t) coded packets int-th RTT slot as follows:
let each packetxik, k = 1, 2, . . . , Wi(t) be represented
as an element of some finite fieldFq; choose elements
αikj ∈ Fq uniformly at random and generate a coded
packetyij =

∑Wi(t)
k=1 αikjxik for j = 1, 2, . . . , rWi(t). Here,

r > (1 − pmin)/pmin so thatpmin(W (t) + rW (t)) > W (t).
The receiver can decode, with very high probability, any
dropped data packets if sufficient number of innovative coded
and data packets are received, as the field size from which
the coding coefficients are drawn increases.

Accordingly, in the rest of the work, we will make the
following assumption as a simplification.

Assumption 1:SupposeW data packets are used to gener-
ate coded packets via RLC. IfG coded packets are received
by the TCP destination, then uptoG missing data packets
out of theW data packets can be recovered.

Hence, if the number of missing data packets fromW
exceedsG in an RTT slot, the congestion window will
halve. For detailed exposition on RLC and justification of
assumption 1, see [19].

F. Priority transmission and multiple paths

When multiple paths are used, the source TCP-RLC pro-
tocol is made of two types of controllers. The first is the
source controller; this is where the congestion window and
hence coding block sizeW (t) is maintained. The source
controller then passes the data and coded packets to the paths
controllers.

Each path controller maintains a path congestion window
wl(t) for path l. Before a packet is transmitted on pathl in
RTT slot t, it is appended with a block numberbl(t) and the
block size that equalswl(t). The evolution ofwl(t) is similar
to W (t): wl(t + 1) = 1successmin {wl(t) + 1, Wmax} +
1fail ⌈wl(t)/2⌉ where1success= 1 if wl(t) packets are suc-
cessfully received in RTT slott; 1fail = 1 − 1success.

Before the packets are sent out on a path, they are marked
either high or low priority. The number of high priority
packets sent out in any given RTT slot is equal to the path
congestion windowwl(t). For each high priority packet sent
out, the path controller obtainsr packets from the service
queues and marks them low priority and sends them out.

When a single path is used, the source controller is the
lone path controller andW (t) = w1(t); in addition, data and
coded packets are marked high and low priority, respectively.

G. Wireless router

A priority rule is implemented at the routerR to handle
the streams of high and low priority packets – we assume that
the high priority packets are transmitted first by the routerR.
For example, in the single flow model (N = 1, M = 1), the
remainder of the nominal channel capacityC, C −W (t), is
used to transmit low priority packets int-th RTT slot, where
W (t) is the number of high priority packets transmitted by
the source. Further, we assume that at any RTT interval a
sufficient number of auxiliary low priority packets are always
available at the routerR. Thus, the wireline linkSi − R is
considered to be over-provisioned to accommodate sufficient
number of low priority packets for the worst channel error
parameter. See the overview section II-A for our justification
of this assumption.

We also make the assumption that the routerR maintains
a pair of queues for each TCP connection made through
that router, i.e.R maintains2 × N queues. While such
a number that scales with the number of flows would be
prohibitive for routers in the Internet core, we argue that it
is reasonable for wireless downlink routers, as these routers
serve relatively small number of mobile users in the same
cell. In addition, per flow queue maintenance is already done
in cellular architectures for reasons of scheduling, etc. (see
[5]).

Although we assumed no buffer in the analytical mode, we
allow one FIFO queue for high priority packets and one LIFO
queue for low priority packets for each flow. The capacity of
these buffers has no bearing on the performance as long as
the LIFO queue can hold one RTT worth of packets and
FIFO queue is large enough for packet processing and can
smooth out jitters in delay.

H. Analytical results

The proofs to the theorems in this section are in [22];
however, we provide plausible explanations to convince the
readers for the single flow and multi-path cases. For the
purpose of analysis, we assume that the wireless router
has the ability to mark packets either 1 or 0 according to
some probabilistic functionf (see [11] for a similar marking
mechanism). That is, a packet is marked 1 with probability
f ; f depends on such parameters asC, the sum of window
sizes (multiple flow case), etc. For simulations and practical
implementations, this assumption is not needed. When the
sink receives a packet marked 1, it alerts the source to reduce
the congestion window size via a message piggy backed on
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an ACK packet. Note that probabilistic marking related tof
is different from priority marking.

1) Single flow: When we have a single TCP-RLC con-
nection through a wireless router with capacityC, we have
the following results; we useE [W (t)] to denote the mean
window size. For technical reasons, the single-flow analysis
requires thatp1 > 0.5.

Theorem 1:There exists a marking function such that
E [W (t)] ≥ 0.75p1C − 1 asC → ∞.

2) Qualitative explanation - single flow:The reason we
can only guarantee such bound is that as soon as the
congestion window size increases beyondp1C, the wireless
channel may become bad temporarily to be unable to support
p1C packets per RTT. For example, supposeW (t) = p1C+1;
then, onlyC−p1C−1 redundant packets will be transmitted
by the router. If the wireless channel success probability
is p1 in RTT slot t and assuming exactlyp1C packets
are successfully received by the sink, then the number of
successfully received packets will be less thanW (t) and the
congestion window will be halved in RTT slott + 1. (See
figure 2.) Due to our assumption that the wireless channel
conditions change every RTT, this temporary bad condition
happen frequently enough asC → ∞ to preventW (t) from
enlarging it beyondp1C.

3) Multiple paths: When the source is able to manage
M multiple paths, we have the following result that says
we can achieve (normalized per-path) throughput of the
order Θ (E [P ]C) for large M . We assume that all paths
have the same channel characteristic, i.e.pn(t) ∈ {p1 =
pmin, ..., p|Π| = pmax} with P (pn(t) = pk) = p̃k for all paths
n = 1, ..., M and for all t.

Theorem 2:For anyρ > 1 andM . Then,

E [W (t)] ≥ max
{
0.75p1MC/ρ2 − 1,

min

{
0.75E [P ]MC

ρ2

[
1 − 3δ1 − 2

(
e−1 + δ2

)]
,

β′
[
1 − 3⌊β′⌋−1 − 2

(
e−1 + δ2

)]}}

whereδ1, δ2 → 0 asC → ∞ and where

β′ ∈ [p1MC/ρ2, E [P ] MC/ρ2]

is the solution to the equality 1/β′ =
exp (−Ml′(1 − ρβ′/MC)) (for M , C large enough,

we can show a solution exists) and where

l′(a) = max
−∞<Θ<∞

{Θa − log M ′(Θ)} (1)

andM ′(Θ) = E
[
eΘ(1−P )

]
.

4) Qualitative explanation - multiple paths:The path con-
gestion window evolves the same way as in single flow case,
varying betweenp1C and0.5p1C. (See figure 2.) However,
in each RTT slot, the number of packets successfully received
by the sink on pathi is thenp(t, i)C, and summing over all
paths, we get

∑M

i=1 p(t, i)C ≈ E [P ] MC. If the packets are
coded across paths, we can have the normalized congestion
window W (t)/M reach E [P ] C. However, to reach this
number, we might need a large number of paths. However, we
show in simulations, we can increase throughput dramatically
even with 2–3 paths in certain situations.

Note that coding across paths is what allows us to in-
crease throughput. If we were to encode packets on a given
path separately from packets on other paths (i.e. having
M separate single path TCP connections), the throughput
we would achieve is of the orderΘ (MpminC) , whereas
the statistical multiplexing gain due to coding across paths
results in a throughput ofΘ (ME[P ]C) , thus resulting in an
improvement factor ofE[P ]/pmin when there are many path
available with roughly comparable statistics.

5) Multiple flows: When we haveN TCP-RLC flows
going through a single wireless router, and when the router
has the channel information so that it may control the
number of low priority packets for each flow based on
channel information, we have the following result that says
we can achieve throughput of the orderΘ

(
E [1/P ]

−1
C

)
.

We assume that all flows have the same channel statistic;
pi(t) ∈ {p1 = pmin, ..., p|Π| = pmax} with P (pi(t) = pk) =
p̃k for all flows i = 1, ..., N and for all t.

Theorem 3:There exists constantsδ > 0 and ρ and a
suitable marking function such that for anyα > 1,

E[W (t)] ≥
[
α−1

E[1/P ]−1(C − log(C/2)/ρ− 1)
]

× (1 − 2e−1 − 2δ)

asC → ∞.
Note that the bound is intuitive when you consider
that the sum of all capacity demands in RTT slott,∑N

i=1 Wi(t)/pi(t), must be less than or equal toNC. (In
order for W (t) data packets to be transferred to the sink
over that wireless channel whose packet delivery probability
is p(t), the wireless router has to transmit roughly total of
W (t)/p(t) packets (data+coded).) If the router intelligently
controls the number of redundant packets transmitted over the
air for each flow based on the channel quality information
pi(t), we can get close to orderE [1/P ]

−1
C per flow.

Since redundant (low priority) packets are stored in LIFO
queues, determining which redundant packet to transmit is
simple – transmit the head LIFO packet as this packet is
the most relevant one to the current RTT time slot. Lastly,
one can show that orderE [1/P ]

−1
C is the throughput one



can achieve if the channel quality information is instantly
available at the source.

III. TCP-RLC PROTOCOL

We break the description of our proposed protocol into
three subsections.
A. Source architecture

1) ACK and pseudo ACK:TCP-RLC uses two types
of ACK’s: ACK, as used in the plain TCP and pseudo
ACK, which we describe here. Plain ACK’s cumulatively
acknowledge the reception of all packets with frame numbers
smaller than or equal to the ACK.

In our context, a lost data packet can be “made up” by a
future coded packet, and we would like the sliding congestion
window to slide forward and have delay-bandwidth product
worth of packets in transit. Thus, we use a strategy similar
to that in [25], where degrees of freedom are ACKed. In
our context, we refer to this as a pseudo ACK, which simply
ACKs any out of order data packet or coded packet that helps
in decoding the smallest-index missing packet (e.g., if the
sink has received packets 1, 2, 3, and 7, the smallest-index
missing packet is 4). Note that with regular TCP, out-of-order
packets would trigger duplicates ACK’s that would lead to a
loss of throughput.

2) Sliding congestion window:The source maintains a
congestion windowW , which is the same as the size of
the coding block for TCP-RLC. All packets transmitted are
marked either high or low priority; the source allows onlyW
high priority packets to be in transit. Each time a high priority
packet is transmitted, it transmitsr low priority packets as
well.

The source maintains variables, last-ACK and SN. All
packets with frame numbers lower than last-ACK are as-
sumed to have been successfully received. SN is the frame
number of the starting packet in the coding block currently
being transmitted. If pseudo ACK or ACK arrives “acknowl-
edging” the reception of SN, a new coding block is encoded
and readied for transmission, with the coding block size being
W + 1 packets. This is because acknowledgment of packet
number SN implies a RTT has been elapsed, which is enough
time for W packets to have been successfully received and
decoded by the sink.

3) Multiple paths: When multiple paths are used, the
marking of packets is done by the paths independently. Each
path is maintained by a path controller and the controller
maintains a congestion window,cwndi; another top-level
controller maintainscwnd, which is used as the size of the
coding block. After the packets are encoded, they are passed
to path controllers (thus, coded packets are “mixed” across
paths, which in-turn leads to statistical multiplexing across
paths). Each path marks packets either high or low priority.In
each RTT slot, the number of high priority packets in transit
is equal tocwndi. The number of low priority packets (coded
packets) per path is equal tor×cwndi. Each packet going out
on a path contains the block number and block size, which

is also equal tocwndi. In each RTT slot, if the sink on path
i receivescwndi packets (either high or low priority),cwndi

increases by one; elsecwndi reduces by half. Note that single
path is just a special case of multiple paths; and the variables
cwnd andcwnd1 are the same. (In the single-path case, the
role played by the separate path controllers is subsumed into
the source controller.)

There are two levels of ACK’s; one level for source
controller (source level ACK, consisting of ACK and p-ACK)
and the other for path controllers (path level ACK). Note that:
(i) path level ACK is a new ACK introduced for multi-path
TCP – there is no equivalent in the single-path case, and(ii)
the three types of ACKs described here is abstracted into a
single indicator function for success/drop in the analysis(see
Section II-D). Source controller level ACK’s affectcwnd and
moves the coding window; path controller level ACK’s affect
cwndi’s and moves the block numbers.

B. Destination architecture

Upon reception of a packet, the destination examines if it
is the next expected (i.e., smallest-index missing) packet. If it
is, the destination sends an ACK cumulatively acknowledging
all packets upto and including the just received packet. If
not, the destination sees if the packet is an innovative packet
that can be used to decode the next expected. (A packet is
innovative if it is linearly independent of all packets received
so far, i.e. it can help in decoding the next expected packet.
For a complete definition of innovative packets, see [19] and
[13].) In case the packet is helpful, the destination sends
a pseudo ACK with next expected packet number + total
number of innovative packets accumulated that can help in
decoding the next expected packet. If the packet does not
help in decoding the next expected packet, the destination
sends a duplicate ACK.

C. Illustrative example

We illustrate the additive increase, multiplicative decrease
component of TCP-RLC and the pseudo ACK’s using three
examples. The examples are for when a TCP connection uses
a single path, and the data and coded packets are marked high
and low priority, respectively. Although the TCP source uses
retransmission time-outs for when there is no response from
the sink for long period of time, we do not show this in our
examples.

1) Additive increase: In figure 3(a), the packets P1-
P4 are encoded together. P2-P4 are dropped due to
bad wireless channel; however, the sink has received
enough coded packets to recover them. As the sink
receives these coded packets, it sends out a pseudo
ACK for each one. This enables the source to move
the congestion window forward, keeping the “pipe”
between the source and the sink full.

2) Multiplicative decrease (bad wireless channel): In fig-
ure 3(b), too many packets are dropped due to bad
channel to recover P1-P4. When packets P5-P7 arrive
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Fig. 3. Illustrative example

at the sink, duplicate ACK’s are sent out and the source
will cut the congestion window.

3) Multiplicative decrease (congestion at wireless router):
In figure 3(c), the router is busy transmitting data
(high priority) packets, and no or very few coded (low
priority) packets will be transmitted. Hence, not enough
packets are received to recover any lost packets in P1-
P4.

IV. SIMULATION RESULTS

We simulate three types of networks: 1) single flow with
single path from the source to the destination, 2) single flow
but with multiple paths, where we exploit path diversity, and
3) multiple flows going through one wireless router, where
we exploit user diversity. In all our simulations, the random
coefficients used to encode each packet are drawn from a
field of size 8191; thus, for coding block size of smaller than
∼ 500, the probability of two coded packets in the same
coding block not being “independent” were negligible. We
fixed the size of all packets to 256 bytes. Each flow had
two buffers allocated at the router each of the size equal to
the transmission rate times the RTT. We have used bimodal
channel profile,Π = {(pmin, p̃min), (pmax, p̃max)}. pmax is
set to 1 in all our simulations. Each time the wireless channel
changed, it stayed constant for some random time according
to the uniform distribution with parameters 100ms to 200ms;
on average, the channels stayed constant for 150ms. For the
single flow cases (single path and multipath), we fixed the
sum of all link delays so that the total link delay is 150ms.
Time-out clock is set to expire after 3×measured RTT. RTT
was measured using IIR filtering: measured RTT = 0.9× old
measured RTT + 0.1× new measured RTT. The redundancy
factor r was such that(1 + r)/pmin ≈ 2, with r being an
integer. We assume perfect uplink channel from the mobiles
to the wireless routers for the end-to-end TCP ACK’s.

A. Single path TCP flow

In this case, we variedpmin from 0.5 to 0.9 in increments
of 0.1 and setp̃min = p̃max = 0.5. C was varied from
500Kbps to 2Mbps in the increments of 500Kbps. The aver-
age throughputs (total number of bits transferred/simulation
time) we obtained are shown in figure 4(a) as a function of
pmin.

B. Multiple path

In our simulations, all paths have the same bimodal chan-
nel profile and have the same capacity. We variedp1 from 0.1
to 0.5 in increments of 0.1 and setp̃1 = 0.1 and p̃2 = 0.9.
Thus, E [P ] varied from 0.91 to 0.95. This corresponds to
the scenario where the downlink channel can be controlled
to provide good capacity most of the time (90% of the time),
but bad channel conditions can occur frequently enough to
destroy TCP throughput (10% of the time). Note that using
fixed coding rate adjusted for the average channel quality
would not work for this scenario; coding is not needed most
of the time, and is useless when needed. We varied the
number of paths from 1 to 8. We set the total capacity to
1Mbps; so that per path capacity is 1Mbps/M , whereM is
the number of paths in our simulation.

The average throughputs we obtained are shown in figure
4(b) as a function of the number of paths. As the number
of paths increases, the average throughput increases towards
E [P ] CM (CM is fixed) in a concave manner, indicating
that going from one path to two paths gives much gain in
throughput, especially whenpmin is small. The throughput
should reach 700Kbps (forE [P ] = 0.91) to 730Kbps (for
E [P ] = 0.95).

C. Multiple TCP flows

This scenario corresponds to the case where multiple TCP
flows are sharing one bottleneck wireless router, with the
bottleneck router being just one hop before the destinations.
In this simulations, we have 30 flows, and we assume
that the channel quality information (the packet delivery
probability) is available to the router. The router then uses
that information to control how many coded packets are sent
for each flow. For this simulations, we usedp1 varying from
0.5 to 0.9 in increments of 0.1 and setp̃1 = 0.25 and
p̃2 = 0.75. Flows had different total link delays; the link
delays were picked randomly from a uniform distribution
with parameters 100ms to 200ms and fixed for the duration
of the simulation. The average throughputs we obtained are
shown in figure 4(c). The simulated throughput is between
70–80% of the expected throughput.
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Fig. 4. Simulation results

V. CONCLUSION

We proposed modifications to the TCP controller to adapt
it to the hybrid downlink networks. The throughputs obtained
via our modifications were shown to be proportional to
E [1/P ]−1 and E [P ] in multi-flow and multi-path scenar-
ios, respectively, without the source tracking the channel
quality information. Further, our analysis shows a statistical
multiplexing gain between (coding+ multi-path TCP) and
(multiple-single-path TCP) of the order ofΘ (E [P ] /pmin) ,
where there are many path available with roughly comparable
statistics.
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