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Abstract— Flooding based strategies are conventionally em-
ployed to perform querying and broadcasting in sensor networks.
These schemes have low hop-delays ofΘ( 1

M(n)
) to reach any node

that is a unit distance away, whereM(n) is the transmission
range of any sensor node. However, in sensor networks with
large radio ranges, flooding based broadcasting schemes cause
many redundant transmissions leading to a broadcast storm
problem. Many approaches have been proposed to mitigate
the broadcast storm problem, where broadcast schemes employ
some knowledge of the previous transmissions to reduce the
extraneous transmissions. In this paper, we study the role of
geographic information and state information (i.e. memory of
previous messages or transmissions) in reducing the redundant
transmissions in the network.

We consider three broadcasting schemes with varying levels
of local information: (i) where nodes have no geographic or
state information, (ii) nodes have coarse geographic information
about the origin of the broadcast, and (iii) where nodes have
no geographic information, but remember previously received
messages. We also consider the related problem of broadcasting
to a set of “spatially uniform” points in the network (lattic e
points) in the regime where all nodes have only a local sense of
direction. For each of these networks, we compute the number
of transmissions required to achieve broadcast delays thatare
order-wise equivalent to simple flooding algorithms, i.e.Θ( 1

M(n)
).

We first show that networks with no geographic or state
information require exponentially large number of transmissions
whereas networks with very little geographic or state information
can utilize the knowledge to significantly reduce the transmission
overheads. Next, we show that networks with local information,
can reduce the congestion by spreading the messages more
uniformly through the network. Finally, we show that networks
with only state information can also employ the information to
provide a radial drift to the transmitted packets. In the context
of lattice broadcasting, we again show that local information
results in significant reduction of transmission overheads. We
quantitatively compare the transmission overheads of broadcast-
ing strategies and validate our results using simulations.

I. I NTRODUCTION

Advances in Micro-embedded computing systems, coupled
with developments in wireless technology have enabled the
mass production of small sensing devices equipped with
wireless communication capabilities. It is envisaged in near
future that sensors networks formed by large-scale deployment
of such devices would perform distributed sensing/control
operations. Applications for sensor networks include com-
mercial applications involving macro-scale measurementsand
control, intrusion detection and robust communication. These
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Fig. 1. Forwarding packets along straight lines - We requireonly one
transmission per tile for broadcasting.

networks are characterized by the absence of any established
architecture and by constrained energy and computational
resources at each node. Communication between any two
nodes in these networks is mainly through packet forwarding
by intermediary relay nodes, where messages are relayed to
neighbor nodes within the radio range.

In many sensor network applications, broadcasting is a
common communication primitive required for various control
operations. Applications regularly require broadcast operations
to update global information and also to perform network
maintenance such as updating topology, route discovery and
propagating alarm signals. Similarly, many sensing applica-
tions periodically inform the sensors to collect information.
Thus, an important communication task of a sensor network
is to disseminate messages/instructions information to most
nodes. A related broadcasting problem arises when a node
(say, a controller or a fusion center) needs to query/send a
control message to a subset of nodes which are approximately
spatially uniform. Such a scenario can arise for instance when
the controller needs a spatially uniform sample of a physical
underlying process.

In the presence of energy and computation constrained
nodes, we require that the communication operations for both
these scenarios be energy efficient, computationally simple
and delay sensitive. Since the channel utilized by the sensor
nodes is a wireless channel, the messages are broadcast to all
nodes within the radio range of the transmitting node. Efficient
broadcast strategies utilize the inherent broadcast nature of
the communication channel to minimize the total number of
transmissions, while guaranteeing the reception of the message
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Fig. 2. Local Quadrants in Sensor nodes

at all nodes.
Broadcasting in wired networks, is conventionally per-

formed by a simple flooding algorithm, in which each node
forwards the message/query once to all its neighbors, when it
first hears the message, and ignores all further receptions of the
same message. Thus the nodes remember ‘state’ information,
i.e, if a nodes has previously heard a message or not. An
advantage with such a flooding based broadcast strategy is
that it achieves low broadcast delays, without any geographic
information at sensor nodes. However, in densely connected
networks, such as sensor networks with relatively large ra-
dio ranges, such simple flooding based querying/broadcast
schemes create many redundant transmissions causing energy
inefficiency. Such algorithms lead to a broadcast storm [13]
problem, where the same message is received at a node,
multiple number of times.

If all nodes in the network had perfect geographic infor-
mation, it possible to considerably reduce the total numberof
transmissions. Ideally one could use only( 1

M(n) )
2 transmis-

sions in the network, whereM(n) is the radio range (in other
words, one transmission per tile, see Figure 1). Whereas with
simple flooding, the number of transmissions would at least
scale asn (the number of nodes), which could be much larger
in dense sensor networks.

A simple scheme to achieve aΘ( 1
M(n) )

2 number of trans-
missions1 is by dispatching packets along “rays” as shown in
Figure 1. This scheme requires “perfect” geographic informa-
tion at the nodes in order to make sure that the rays do not
“bend” or loop back.

Similarly, if the nodes had perfect state information, where
all nodes had knowledge of past transmissions and routing
tables, it is possible to reduce the broadcast redundancy by
constructing a minimum spanning tree or creating an overlay
network. However, in many sensor networks, it is impractical
to acquire perfect geographic information, as it requires so-
phisticated location devices and/or computational capabilities.
In networks with simultaneous broadcasts by many sources,
nodes are required to maintain routing information for mes-
sages from each source. Thus it is infeasible to store all routing
state information, in networks with meager storage resources.

In this paper, we study the role of information (geographic
and state information) on reducing the broadcast redundancy,
while preserving the delay efficiency of flooding based ap-
proaches for the cases of(i) broadcasting over the entire space,
and (ii) broadcasting over a lattice. In particular, we consider
efficient broadcast strategies in networks with varying levels
of information at the nodes:

1By g(n) = O(f(n)), we note that there exists a positive constantc1
such that forn > N , g(n) ≤ c1f(n). We sayg(n) = Ω(f(n)), if f(n) =
O(g(n)). g(n) = Θ(f(n)) if g(n) = O(f(n)) andf(n) = O(g(n)).
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Fig. 3. Spatial sampling in Sensor nodes

1) Zero information: Nodes have no geographic infor-
mation or memory, and broadcasting is only through
random packet forwarding.

2) Source Quadrant Information:Nodes have a local notion
of four directions, not common to all nodes, and know
the local quadrant in which the source is located (See
Figure 2).

3) Transmission state Information:Nodes have no geo-
graphic information, but all nodes remember messages
received previously. (i.e. state information)

4) Local Direction Information:Finally, for the problem of
spatial sampling (see Figure 3), we consider that nodes
have an approximate sense of ‘East’, ‘West’, ‘North’
and ‘South’, but have no other geographic information,
source or receiver location information or memory.

A. Main Contributions

We consider dense sensor networks on a plane, where each
node has a large number of neighbor nodes, within its radio
rangeM(n) 2. We model this by a continuum of sensor
nodes, where we associate a sensor node to every point in the
plane. We measure broadcast delay in terms of the number
of hops required to reach any given point on the network,
ignoring the queuing delay at the nodes (for a similar model,
see [20],[10]). Under this network model, we quantitatively
analyze the efficiency of broadcast strategies with varying
levels of information at the sensor nodes.

We first observe that flooding-based strategies lead to broad-
cast delays that are of the same order as optimal straight-
line broadcasting (although with many more transmissions),
i.e., the broadcast delayD(n) = Θ( 1

M(n) ). Thus, in order
to compare broadcasting in networks with varying levels of
information, we restrict the strategies to possess a broadcast
delayD(n) = Θ( 1

M(n) ), i.e., order-wise equivalent to flooding
based strategies. For a broadcast to reach a node, it is necessary
for a transmission to occur within the radio rangeM(n) of the
sensor node. However, if all the neighbor nodes within a radius
A(n) contain routing information to direct the transmission to
the intended node, the transmissions are only required to reach
a ball of radiusA(n) about the node. Thus, it is possible for
nodes to advertise the location to a radiusA(n), at the cost of
increased local routing information about the receiving node.

We measure delay in terms of hop-count, and energy effi-
ciency in terms of total transmissions per search/broadcast and
quantitatively analyze the information vs. efficiency trade-off
in networks. The trade-offs are provided in Table I. We show
the following results on broadcast efficiency for networks with
varying levels of information.

2The parametern roughly corresponds to the density of the network.
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Information type TransmissionsT (n) Congestion

Zero Information c
1

M(n) , c > 1 Heavy congestion about the source
Source Quadrant Information ( 1

M(n)
)5/2 Moderate congestion about the source

Transmission State Information ( 1
M(n)

)2 log 1
M(n)

Low congestion throughout the network

TABLE I

TRADE-OFFS INBROADCASTING - NETWORKS WITH LIMITED INFORMATION

(i) In networks with zero information, we present broadcast
strategies based on random packet relaying. We show
that exponentially large number of transmissions (of the
order ofc

1
M(n) , for somec > 1) are required to ensure a

transmission within a radiusM(n) of any given node at a
unit distance from the source of the broadcast, to achieve
a broadcast delay ofΘ( 1

M(n) ). Moreover, we show that
there are a large number of simultaneous transmissions
in the region surrounding the source node, thus causing
congestion in that area.

(ii) We consider networks with source quadrant information,
and present a (sub)-broadcasting strategy based on packet
forwarding that provides radial drift to the transmissions.
We show that the outward spread of the transmissions
reduce the broadcast redundancy. We show that only
( 1
M(n) )

5/2 transmissions are required to achieve a delay
D(n) = Θ( 1

M(n) ) (however, with a possible advertise-
ment radius that scales asA(n) = (M(n))γ , γ < 0.5).
Equivalently, this scheme can be interpreted as a sub-
broadcasting strategy where at least one node in any
region of radiusA(n) receives a broadcast message.

(iii) In networks with state information, we show that broad-
cast strategies can learn to inherently provide a radial
drift to the transmissions. The broadcast strategies can
use the state information to suppress transmissions by
redundant nodes and advance the packets away from the
source of the broadcast. By considering a strategy of
suppression based on [9], we show that this implied radial
drift suffices to achieve optimal broadcast delays with
T (n) = ( 1

M(n) )
2 log 1/M(n), and negligible congestion

throughout the network.
(iv) For the problem of spatial sampling in networks with

local direction information, we present a randomized-tree
based broadcast strategy that provides a lower transmis-
sion overhead. We show that we can sample on a “grid”
of a given sizes(n) ∼ Ω( 1

log 1
M(n)

) (see Figure 3), as

long as the “bin” size (the local advertisement radius)
scales as(M(n))γ , γ < .49. Such a sampling requires
the number of transmissions to scale asT (n) = ( 1

M(n) )
α,

for a finiteα that depends ons(n).

Finally, we provide continuum model based simulations
which support the analytical results obtained in the paper.
From the above results we infer that broadcasting with very
little geographic or state information is significantly more
efficient than networks without any such “local” knowledge.
While strategies with local state information can provide
low transmission overheads and low congestion, the memory
requirement scales linearly with the number of simultaneous
broadcast messages. Further, such strategies also requirenodes
to compare the messages in their memory with every received

broadcast. On the other hand, we note that strategies with
geographic location information also provide substantialre-
ductions in the number of transmissions, and the information
requirements do not increase with simultaneous broadcasts.
However, obtaining geographic information at the sensor nodes
might require significant computation and/or hardware, such
as GPS. In practice, these considerations can be used to trade-
off between memory, hardware and energy efficiency (number
of transmissions).

B. Related Work

There has been considerable work on broadcasting and
querying in sensor networks [22], [18], [2], [19], [13], [15],
[4], [1], [12], [11], [16]. It was demonstrated in [13] that flood-
ing based broadcasting/querying schemes such as [11], [12]
cause many redundant transmissions leading to the broadcast
storm problem. As discussed in [23], many of the broadcast
schemes introduced to mitigate the “Broadcast storm” problem
can be classified into the following categories:

(i) Probabilistic schemes such as [9], [14] in which nodes
that receive the message rebroadcast with a fixed prob-
ability. In these schemes the nodes are assumed to
have state information to remember previously received
messages and utilize them to suppress secondary trans-
missions.

(ii) Location based schemes proposed in [13] where node
transmission decisions are based on the expected area
covered.

(iii) Neighbor knowledge based methods such as [2], [15],
[19] where the location of the neighbors or the two-
hop neighbors are known. In [22], perfect information
about the position of all nodes in the network is utilized
to construct minimum energy broadcast trees, whereas
in [2], the authors provide a construction for a similar
tree based on local topology information. In [19], the
two-hop neighbor information is utilized for building
connected dominating sets that efficiently broadcast in-
formation.

Also, querying in sensor networks has been studied in papers
such as [16], [5], authors in [1] propose random walks initiated
by the source node and the destination node. They have shown
that querying delay, transmission overheads can be reduced
by spreading routing information through the network. This
phenomenon has been quantitatively studied in [17].

Although many of the broadcast strategies previously dis-
cussed utilize some kind of local knowledge or state infor-
mation, we note that a systematic analysis of the role of
information in broadcasting, and the related trade-offs inthe
number of transmissions, delay and congestion, has not been
explored previously. In this paper, we study a sequence of net-
works with varying levels of geographic and state information,
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and compare broadcast trade-offs through analytical methods.
Further, we provide simulation results to validate the analytical
studies.

II. SYSTEM DESCRIPTION

A. Network Model

We consider a sensor network in which the sensor nodes
are deployed over a two-dimensional planar region. Each of
these sensor nodes are assumed to have a common circular
transmission region and are connected to all other sensor nodes
that lie within its transmission radius. The transmission radius
is set to scale asM(n), wheren is the scaling parameter.3 In
this paper, we study broadcast strategies in dense networksin
the large-n regime, (wheren → ∞). The results of [8] show
that for

M(n) = Ω
(
√

logn

n

)

, (1)

the network formed by the collection of sensor nodes in a given
region of finite area is asymptotically connected, and more
importantly the number of nodes in the transmission radius of
each node in that given regiontends to infinityasymptotically.
In this paper, we consider anyM(n) that scales asO( 1

np ), p ∈
(0, 1

2 ), to model the growth of the network size relative to the
radio range.

Motivated by the above results, in this paper we assume a
continuum modelof the sensor network, where any point in
the radio range of a transmitting nodeS can receive the packet
transmitted by the node, and can act as a retransmission node.
The neighbor set (nodes within the radio range) of any node
S in the sensor network is defined as

NS,M(n) = {X ∈ R2 : d(X,S) < M(n)}, (2)

where the distance metricd is the Euclidean distance. Thus,
there is a one-to-one correspondence between nodes and their
locations and the discretization effects due to node locations
are ignored in the continuum model. However, as mentioned
above, in densely connected sensor networks, the number of
nodes within the radio range of any particular node increases
to infinity [8]. Thus, the continuum model appears reasonable
in this regime. We refer to [20] for a comparison of analytical
results using a continuum model and simulation results witha
discrete model with a dense network of nodes, which indicate
that the discretization effects are not significant.

B. Broadcast Model

Querying and Information spreading, are both studied as
a series of packet forwards in a sensor network. Since the
transmissions in a wireless sensor network are inherently
broadcast transmissions, we assume that whenever a node
transmits a query, all nodes in its neighbor set can potentially
receive it without error.

To broadcast a query “m”, the originating nodeS0 sends
out a packet, to all its neighbors (in a single transmission)
and requests a subsetS1 of its neighbors to retransmit it.
The repeated application of this process disseminates the
information/query into the network. LetS0 = 0 be the position
of the source node, i.e., the position of the node initiatingthe

3The quantityn roughly corresponds to the density of nodes in the network.

query. The setSi is the set of all points (nodes associated with
the points) in the network that transmit the packet at theith

iteration of the process, or are theith generation transmitters.
In this setup, we define the normalized broadcast delay,

D(n) as follows. LetX be any given point (or the node at
positionX), a unit distance away from the origin. We define

D(n) = inf{i : d(Si, X) < M(n)} (3)

whered is the Euclidean distance metric. That is, the normal-
ized delayD(n) is defined as the iteration by which there is a
transmission within the radio range of the given point/nodeX .
Note that the ‘unit’ distance between the node and the origin
is arbitrary. For any other distancer, the hop-delay can be
scaled accordingly. Thus, we defineD(n) as the hop count of
the minimum hop path from the source to reach any arbitrarily
chosen nodeX that is a unit distance away.

We note that in this definition, the medium access delay has
been ignored, and delay is measured only in terms of the hop
count. We note that the actual packet delay can be decomposed
into the hop count delay and the MAC delay. By suitably scal-
ing the packet size (see [6] for this approach), we can achieve a
MAC delay that is order-wise smaller than the hop-count delay.
Thus, in this regime, the hop-count will be representative of the
packet delay. Even if such a packet-scaling was not employed,
the delay with two broadcasting schemes can be compared
using a pair of metrics:(i) hop-count delay, and(ii) the
“local” congestion about a transmitting node (i.e., the number
of transmissions that occur in a spatial region) which clearly
plays an important part in determining MAC delay. Thus, in
addition to small hop-count, a good broadcasting scheme will
mitigate local congestion. This observation motivates us to
later consider “branching” based schemes where the number
of transmissions progressively increases with radial distance
from the source, and has an (order-wise) same hop-count an
more “concentrated” broadcasting schemes.

In the case of querying, the normalized delay corresponds
to the number of iterations required to reach any given point
that is located a unit distance away from the source node.
In the context of information spreading, the normalized delay
corresponds to the iterations required to spread the information
to a randomly chosen point which is a unit distance away from
the source. Thus, the above definition of delay allows us to
study the symmetric problems of information spreading and
querying within the same framework.

We also define the transmission overheadT (n) as the total
number of transmissions by the iterationD(n), i.e.

T (n) =

D(n)
∑

k=1

|Sk|, (4)

where|.| denotes the cardinality of the set. Conventional flood-
ing based strategies achieve a broadcast delay ofΘ( 1

M(n) )
hops in densely connected networks, as the minimum distance
of orderM(n) is covered in each iteration along all directions.
In order to compare the various broadcast strategies, we
constrain the broadcast strategies in all network models to
achieve order-wise optimal hop-delays. Further, if the delay is
K

M(n) , K <∞, for any arbitrarily picked node, the broadcast
can be efficiently terminated by setting TTL values in the
broadcast packets appropriately. Thus, in the rest of the paper,
we only consider strategies that have a delay ofΘ( 1

M(n) ).
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III. B ROADCASTING IN NETWORKS WITH ZERO

INFORMATION.

In this section, we study the energy-delay trade-offs of
broadcasting, in networks with zero information. We assume
that the nodes in the network do not have any geographic or
state information. That is, the nodes have no knowledge of the
locations of their neighbors or of the broadcast source, andare
incapable of remembering previous messages or transmission
routes. Since nodes have no state information, decisions to
retransmit a received message are made at the time of arrival
of the message. Thus, it is possible for the same message to
be received and transmitted multiple times by a node.

To broadcast information in such networks very limited
capability, we employ a simple broadcast strategy based on
random packet forwarding, that requires no state or geographic
information. In this scheme, each transmitting node selects
only one retransmitting node randomly from its neighbor set
(the nodes within the radio rangeM(n)), and requests the
node to retransmit it. We study these “random walk” based
schemes, as they are a sequence of simple communication
operations and representative of broadcast strategies possible
in networks with no information.

As discussed earlier in Section II, to compare the different
broadcast schemes, we require the normalized broadcast delay,
D(n) = Θ( 1

M(n) ). By randomly forwarding a single message,
it may not be possible to achieve the required normalized delay
and hence we initiate multiple broadcasts of the same message,
corresponding to independent parallel random walks. That is,
we originateR(n) independent copies of the same broadcast
message at the source node, and propagate each message by
random packet forwarding.

To analyze the energy efficiency of the broadcast strategy,
we choose a random node that is a unit distance away from the
source node, and compute the total number of transmissions
T (n) that are required to ensure that the message is received
by the chosen node, withinΘ( 1

M(n) ) iterations. The energy
efficiencies are studied in terms of the number of broadcasts.

A. Random Packet Forwarding

The packet forwarding based broadcast, with multiple
copies of the broadcast message, has a simple communication
structure. The source node transmitsR(n) independent copies
of the broadcast message, i.e., for every copy of the message,
the source node picks another sensor node randomly from
its neighbor set for retransmission. Every transmitting node
has only one offspring node, and only one transmission per
query/message occurs at every iteration. That is, at theith

iteration, the position of the transmitting node for thekth copy
of the message is

Ski = Ski−1 +Xk
i , (5)

where denotesSkl the position of thekth random walk after
l iterations andXk

i is the random displacement from the
node transmitting copyk at iterationi − 1. We assume that
Xk
i are i.i.d random variables, with a common distribution

µ. Since no geographic location information is available, we
assume that the next hop nodes are chosen uniformly randomly
from the neighbor set of each transmitter and assume that the
distribution µ is uniformly distributed over the compact set
BM(n)(0), whereBr(x) denotes a ball of radiusr aroundx.

Assumption 3.1:We assume thatµ has varianceσ2
µ(n) > 0,

a compact supportBM(n)(0) ⊂ R2.
We use the following notation for n-fold convolutions of
µ,(i.e., the distribution ofn random variables with distribution
µ)

µ(n+1)(A) :=

∫

µ(n)(A− x)µ(dx) , n ∈ N, (6)

whereµ(1) := µ.
Under the above model for a network with Zero Informa-

tion, we show that the number of transmissions increasing
exponentially with 1

M(n) (the network diameter in hops), are
necessary and sufficient to ensure an optimum broadcast delay.
The following theorem shows that exponentially large number
of transmissions are necessary to achieve a delayD(n) =
Θ( 1

M(n) ), using the broadcasting strategy discussed earlier in
this section. We show that, even if the number of paths are
exponentially large, the probability that none of the pathsreach
the radio range of the node withinΘ( 1

M(n) ) steps is high.
Theorem 3.1:For any givenK <∞, there is ac > 1 such

that forR(n) = c
1

M(n) ,

P

(
⋂

l=1,...,R(n) k=1,..., K
M(n)

Slk /∈ Bε(x)

)

−→ 1.

for someε > 0.
Proof:

P

(
⋂

l=1,...,R(n) k=1,..., K
M(n)

Slk /∈ Bε(x)

)

(7)

= P

( ⋂

k=1,..., K
M(n)

Sk1 /∈ Bε(x)
)R(n)

, (8)

≥
(

1 −
K

M(n)
∑

k=1

P(Slk ∈ (Bε(x))
))R(n)

,

=
(

1 −
K

M(n)
∑

k= 1
M(n)

P(Slk ∈ (Bε(x))
))R(n)

, (9)

=
(

1 − K

M(n)
P(Sl K

M(n)
∈ (Bε(x))

))R(n)

.

(10)

Equation (9) follows since the maximum distance covered in
a hop is onlyM(n).

Note that

P

(

S1
K

M(n)
∈ Bε(x)

)

≤ P

(

S1
K

M(n)
∈ Bc1−ε(0)

)

(11)

By Chernoff’s bound,P(S1
n ∈ Bc1−ε(0)) ≤ e−nI(δ), for

small δ > 0, whereI is the rate function associated with the
random variables. Hence,

P

( ⋂

l=1,...,R(n), k=1,..., K
M(n)

Slk /∈ Bε(x)
)

≥
(

1 − K

M(n)

(

e−
1

M(n) I(δ)
))R(n)

. (12)
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Fig. 4. Random packet forwarding with knowledge of source location, and
local quadrants

Let R(n) = c
1

M(n) for any c < e−I(δ)/2 then, the R.H.S term
tends to1 asn→ ∞ .

Thus, the total number of required transmissions,T (n) =

c
1

M(n) × 2
M(n) , grows exponentially with the network diameter

1
M(n) .

We now show in following theorem that it is alsosuffi-
cient to have exponentially large number of transmissions, to
achieve a delay ofΘ( 1

M(n) ), using the broadcasting strategy
discussed earlier in this section.

Theorem 3.2:ConsiderR(n) random walks starting from
S0 = 0 and any given pointx = (x1, x2) on the boundary of
the compact ballB1(0). Then, there exists ac <∞ such that
for R(n) ≥ c

1
M(n) ,

min
k∈1,...,R(n)

||Sk 2
M(n)

− x|| ≤M(n). (prob.)

That is, there exists a random walk that is arbitrarily close
to x, after 2

M(n) iterations.
Proof: The proof is omitted here for brevity, and is

available in [21].
Remark 3.1:Thus, the results in this section indicate that

exponentially large number of transmissions are necessaryand
sufficient to successfully broadcast in sensor networks with no
geographic or state information. We also note that, by employ-
ing multiple queries/messages, the number of transmissions
by nodes close to the source node increases linearly with the
R(n). In networks with Zero Information, this translates to an
exponentially large number of transmissions in a small area
(areas of the size of the radio range) close to the source node,
causing network congestion.

IV. B ROADCASTING IN NETWORKS WITH SOURCE

QUADRANT INFORMATION

In this section, we study the efficiency of broadcasting in
networks with source quadrant information and compute the
number of transmissions required to obtain a normalized delay
of Θ( 1

M(n) ). We assume that the nodes have only a local
notion of four directions which are not necessarily common
to all nodes. That is, the nodes are capable of grouping their
neighbors into four different quadrants, where the orientations
of the quadrants are chosen independently by different nodes.
To model this, we assume that the orientations of the quadrants
are uniformly distributed between angles0 and 2π, and are
chosen independently of the local quadrants at other nodes.
We also assume that there is some data embedded in a
packet’s header that enables an intermediate node to infer

coarse geographic source location w.r.t its local quadrants.
This could be implemented, for instance, if the packet has the
source location embdded in its header and nodes have possibly
faulty GPS (see [20]). Thus, the nodes are assumed to have
Source Quadrant Information. However, we assume that the
nodes have no state information i.e., they are incapable of
remembering any previous transmissions or messages.

To broadcast in networks with limited geographic informa-
tion, we study broadcasting strategies similar to the schemes
presented in Section III. The broadcast strategy follows the
random packet forwarding model, but utilizes the location
information to direct the packets radially away from the source
node, reducing the broadcast redundancy. We again use the
multiple independent query model to achieve a normalized
delay ofΘ( 1

M(n) ). The broadcast strategy is as follows:

1) The source node picksR(n) neighbors uniformly ran-
domly (i.e.,R(n) points independently chosen from its
neighbor set), and sends the broadcast message to them.

2) Each of the nodes, on receiving a request to transmit,
retransmit the message and choose exactly one neighbor
from the “local” quadrant opposite to the source’s quad-
rant, and request that neighbor to retransmit the message.

We show that this scheme provides a sub-broadcasting strategy
where at least one node in any region of radiusA(n) =
(M(n))γ , γ < 0.5 receives a broadcast message.

A. Broadcast Model with Source Information

Let the source node be at0, and consider any given copy
(indexed by k) of the broadcast message. We denote the
transmitting node at thei− 1th iteration to beSki−1. Since
the Source Quadrant Information is available to all nodes, the
transmitting node for theith iteration (i ≥ 2), Ski , is chosen
uniformly from the opposing quadrant. Let us denote the offset
angle (from the line joining the source and the node) byθki ,
as shown in Figure 4(i).

The radial progress in theith jump is defined as the random
variableY ki , whereY ki = ||Ski || − ||Ski−1||. Moreover, as the
initial direction of transmission is uniformly distributed over
[0, 2π], Ski are also angularly uniformly distributed (see [21]
for additional details). In [20], it has been shown thatY ki
are ‘well-approximated’4 by ||Xk

i || cos θki , a sequence of i.i.d
random variables, having compact support in[0,M(n)] ⊂
R. Motivated by the above approximation, in this section,
we model the radial progress at each step by i.i.d. random
variables.

ConsiderR(n) independent messages originating atSk0 =
0. The position of thekth walk is given by(Zki , φ

k
i ) (in polar

coordinates), whereZki be the radial distance traveled ini
iterations of thekth random walk. The angleφki is uniformly
distributed in[0, 2π] and independent ofZki and also ofφnm
if n 6= k. This follows, because the initial angleθk1 is chosen
uniformly over[0, 2π], independent of any other quantity (see
[21]). The radial displacement is given by

Zki = Zki−1 + Y ki , i ≥ 2

whereY ki are i.i.d random variables, with support[0,M(n)] ⊂
R and E(Y1) = dM(n), d > 0. Also, Zk1 = Y k1 ,

4The approximation is in the sense that the error in the source-to-destination
path length is vanishingly small, see Lemma 3.2 and Theorem 3.1 in [20] for
additional details.
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whereY k1 = Xk
1 cos θ̃k1 and θ̃k1 is chosen as a independent,

identically distrbuted random variable asθk2 . Note that the
actual radial displacement in the first hop is actuallyXk

1 ;
however, the above approximation in the first hop leads to
a vanishingly small source-to-destination path length error,
which can handled by a receiver advertisement radius, see
Remark 4.1. We define the distribution ofY ki on [0,M(n)],
by ν.

Under these conditions, the following theorem provides an
upper bound on the number of transmissions required to ensure
a delay ofΘ( 1

M(n) ). We require the following corollary of
the result in [7]Thm.1, pg. 533, on the concentration of the
distribution about its mean.

Lemma 4.1:We assume thatψ is a probability measure
with meant, varianceσ2

ψ > 0, and a compact supportB ⊂ R.
Then, for someK <∞, there exists anN0 such that

ψ(n)

([
nt− ε

2 , nt+
ε
2

])
≥ K√

n
, ∀n > N0 ∈ N.

Theorem 4.1:ConsiderR(n) random walks starting from
S0 = 0 and any given pointx = (1, θ∗) on the boundary of
the compact ballB1(0). Let c1 = 1

d Then, forR(n) ≥ 1
M(n)

α
,

α > 3/2,

min
k∈1,...,R(n)

||Sk c1
M(n)

− x|| ≤M(n). (prob.)

Proof: Consider the probability

P

( ⋂

k∈{1,··· ,R(n)}

Sk c1
M(n)

/∈ BM(n)(x)
)

.

Note that, as the paths are independent and identically dis-
tributed,

P

( ⋂

1≤k≤R(n)

Sk c1
M(n)

/∈ BM(n)(x)
)

= P

(

S1
c1

M(n)
/∈ BM(n)(x)

)R(n)

By definition, S1
c1

M(n)

= (Z1
c1

M(n)

, θ1 c1
M(n)

) , and hence the

probability

P

(

S1
c1

M(n)
/∈ BM(n)(x)

)

≤

P

(

{Z1
c1

M(n)
/∈ [1 −M(n)/4, 1 +M(n)/4]}

∪{θ1 c1
M(n)

/∈ [θ∗ − M(n)

4
, θ∗ +

M(n)

4
]}
)

(13)

= 1 −
[

P

(

{Z1
c1

M(n)
∈ [1 −M(n)/4, 1 +M(n)/4]}

)

×P

(

{θ1 c1
M(n)

∈ [θ∗ − M(n)

4
, θ∗ +

M(n)

4
]}
)]

, (14)

by the independence ofZ1
c1

M(n)

andθ1 c1
M(n)

.

By applying Lemma 4.1 to the random variablesZ1
i , there

exists ak1 > 0, such that

P

(

{Z1
c1

M(n)
∈ [1 −M(n)/4, 1 +M(n)/4]}

)

≥ k1

√

M(n), (15)

asE(Z1
c1

M(n)

) = 1. By the uniform distribution ofθ1 c1
M(n)

, it

follows that

P

(

{θ1 c1
M(n)

∈ [θ∗ − M(n)

4
, θ∗ +

M(n)

4
]}
)

=
M(n)

4π
. (16)

By Equations 15,16, and for somek2 > 0

P

(

S1
c1

M(n)
/∈ BM(n)(x)

)

≤ 1 − k2M(n)
3
2 . (17)

For R(n) = 1
M(n)

α
, ∀α > 3

2 ,

P

( ⋂

k∈{1,··· ,R(n)}

Sk c1
M(n)

/∈ BM(n)(x)
)

≤ {1 − k2M(n)
3
2 }R(n) → 0. (18)

Theorem 4.1 thus follows.
Remark 4.1:Thus, the total number of transmissions

T (n) = (R(n) ∗ c1
M(n) ) is less than( 1

M(n) )
α for anyα > 5

2 .

The results demonstrate that it is sufficient for( 1
M(n) )

5/2

transmissions to broadcast to any randomly chosen point that
is a unit distance away from the source, with local geographic
knowledge, even without any suppression of transmissions.
However, we note that the broadcast strategy causes a poly-
nomially large (of order 1

M(n)

3/2
) number of transmissions

around the source node, causing significant congestion, al-
though the congestion is substantially lower, compared to
broadcasting with Zero Information, where the number is
exponentially large. Also, we note that this approach could
possibly require nodes to locally advertise with a radius that
scales asA(n) = (M(n))γ , γ < 0.5 (see Section VI for
additional discussion). This is to compensate for the error
in the approximation where we have assumed that the radial
displacements are i.i.d. (see [20], [21] for additional details).
Equivalently, this scheme provides a sub-broadcasting strategy
where at least one node in any region of radiusA(n) receives
a broadcast message.

V. BROADCASTING WITH L IMITED STATE INFORMATION

In this section, we analyze broadcasting in networks with
limited state information. We assume that the nodes in the
network are capable of remembering previously received mes-
sages and their decision to transmit or to not transmit the
received message. However, we assume that the nodes have
no knowledge of the position of the neighbors or the source
node. In such networks with very little state information, and
no location information, we study broadcast strategies that
possess broadcast delays ofD(n) = Θ( 1

M(n) ) and compute
the number of transmissions required to achieve the order-wise
optimal delays. The broadcast scheme we study is a variation
of the gossip algorithm presented in [9] where a node decides
to retransmit the broadcast message with a probabilityp, upon
the first arrival of the message. The broadcast algorithm we
employ is described below.

1) In the first iteration, the source nodeS0 transmits
the message ‘m’, to all its neighbors, and chooses
C log 1

M(n) nodes randomly from its neighbor set, and
requests them to retransmit the message.

2) In the next iteration, the chosen nodes transmit their
message and chooseC log 1

M(n) nodes randomly from
their neighbor sets, but nodes that have received the
previous broadcast of the message ignore all subsequent
broadcasts of the same message. Thus, nodes chosen
from regions that had previously heard the message do
not transmit.
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Fig. 5. Branching in Sensor nodes.

3) The process is repeatedly iterated to spread the query
over the network.

Thus, the algorithm employs the state information to suppress
redundant transmissions in regions that have previously re-
ceived the broadcast message. For this “location-less” broad-
cast scheme, we show that the delayD(n) = Θ( 1

M(n) ), while

the total number of transmissions areO( 1
M(n)

α
), whereα > 2.

In the following theorem, we first prove that the broadcast
algorithm discussed previously achieves a delay ofΘ( 1

M(n) ).
We show this , by choosing any nodeX , that is a unit distance
away from the Source nodeS0 and demonstrating that there
is a transmission within the radio range of that given node
within Θ( 1

M(n) ) iterations.
By our notations in Section II, we defineSi to be the set of

transmitters in iterationi andPi to be the set of all transmitters
till iteration i.

Theorem 5.1:Let S0 = 0, X be any given point such that
||X−S0|| = 1. Then, for someε > 0, there exists a0 < Cε <
∞, such that forC = Cε,

min
Y ∈P 1

εM(n)

||X − Y || ≤M(n) (prob.) (19)

Proof:
Consider tiles of sizeεM(n) × εM(n) about the line

connecting the source node andX , as in Figure 5. We choose
ε > 0 such that a transmission (of rangeM(n)) in any
tile covers the adjacent tiles as well (it can be seen that for
any ε < 1

3 , this condition is satisfied). A tile is defined to
be ‘covered’ if all nodes within the tile have received the
broadcast message; else it is defined to be ‘uncovered’. LetAt
be the event{Tile Tt covered by timet} and let the eventEt be
the event{Some node in TileTt was picked as a transmitter}.
We require the following lemma.

Lemma 5.1:The probability

P(Ect /At) = P

(

No transmissions in tileTk|At
)

≤M(n)
Cε2

π .

(20)
Proof: Let W be any partitioning of the tileTt. Let the

partitionW be the union of disjoint setsFi, i = 1, · · · , f(n),
where the disjoint setsFi correspond to the incrementally
covered regions of the tileTt, over different transmissions (see
Figure 5 for an illustration). Letl(Fi) denote the fraction of
the area ofFi in the tile, with

∑f(n)
i=1 l(Fi) = 1. Then,

P

(

Ect |At
)

=

∫

P

(

Ect |At,W
)

dµAt
(W), (21)

where µAt
(W) is the probability that the partitionW was

created by the transmission process. We now derive an uniform

upper bound onP
(

Ect |At,W
)

(which does not depend onW),
and hence, provide an upper bound on L.H.S of (21).

Since we chooseC logM(n) nodes uniformly from an area
of π(M(n))2, the probability

P

(

Ect |At,W
)

=

f(n)
∏

i=1

(

1 − l(Fi)ε
2

π

)C log 1
M(n)

,

=

f(n)
∏

i=1

M(n)

(

C log ( 1

1−
l(Fi)ε

2

π

)

)

,

= M(n)
−C

(
Pf(n)

i=1 log (1−
l(Fi)ε

2

π
)

)

(22)

As M(n) < 1, we now have from (22)

P

(

Ect |At,W
)

≤ M(n)[Cβ
∗],

where

β∗ = − max
xi:1≤i≤f(n)

f(n)
∑

i=1

g(xi),

s.t.
f(n)
∑

i=1

xi = 1, xi ∈ [0, 1], (23)

g(x) = log (1 − (ε2/π)x), x ∈ [0, 1].

It can be directly computed to show thatg(x) is a negative
concave function withg(0) = 0, g(1) = log (1 − (ε2/π)). By
using Lagrange Multipliers, it can be shown that for each fixed
f(n), the maximum is achieved whenxi = 1

f(n) , for all i.
Thus,

β∗ = −max
f(n)

f(n)g(
1

f(n)
). (24)

Further, we havelog (1 − (ε2/π)) ≤ −(ε2/π), and hence,
β∗ ≤ (ε2/π). The result now immediately follows.

Now, the probability that the tileTt+1 was covered by time
t+ 1

P(At+1) ≥ P(At ∩ Et), (25)

= P(At)P(Et/At), (26)

= P(At)
[

1 − P(Ect /At)
]

. (27)

Note that the inequality in (25) is due to the fact that the event
At ∩ Et impliesAt+1, by construction. Utilizing Lemma 5.1
in (27),

P(At+1) ≥ P(At)
(

1 − (M(n))Cε
2/π
)

≥
(

1 − (M(n))Cε
2/π
)t

(28)

Hence, it follows that

P(A 1
M(n)

) ≥
(

1 − (M(n))Cε
2/π
) 2

M(n) → 1, (29)

for Cε2

π > 1. Thus it is seen that by iterationKM(n) , the tile
T K

M(n)
is covered with high probability.

By our construction, we see that in any tile T, the number of
transmissions is no greater thanC log 1/M(n). Since the total
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Fig. 6. Branching in Sensor networks with Local Direction Information

number of tiles is no greater thanK( 1
M(n) )

2, the total number
of transmissionsT (n) ≤ K1(

1
M(n) )

2 log 1/M(n).
Remark 5.1:The results in this section demonstrate that

“state information” in the networks can be utilized to simulta-
neously reduce the number of transmissions, and to distribute
the transmissions more uniformly over the network. The proof
in this sections show that the state information inherently
provides a linear drift, emphasizing the role of suppression
in efficient broadcasting. Further, the results can be extended
to show that the branching algorithm can spread information
uniformly in a two dimensional region. Moreover, uniformly
spaced transmissions considerably reduce the congestion in the
network.

VI. B ROADCASTING OVER ALATTICE WITH LOCAL

DIRECTION INFORMATION

In this section, we study the problem of broadcasting to
a set of spatially uniform nodes (lattice points) in networks
where nodes have no “state” or geographic information, but
only a rudimentary sense of local direction. That is, each
sensor node in the network has an approximate sense of
‘East’, ‘West’, ‘North’ and ‘South’, formally defined in VI.A.
Necessity for such a broadcasting scheme could arise when a
spatially uniform sample of an underlying physical processis
required by an application at the source node (see figure 3). For
example, a sensor network deployed for measuring air quality
might require measurements from the sensor network sampled
uniformly over the deployed region; and thus, will need to
send a query/message to the appropriate subset of nodes. We
examine if such queries/messages can be broadcast efficiently
with the availability of “local direction” information, and
propose a random tree based broadcast protocol that utilizes
the local information to spread messages over the network.

Under this broadcast scheme, we compute the number of
transmissions required to reach a circular advertisement region
of radius A(n) about the destination node (a lattice point
that is a unit distance away) within a delay ofΘ( 1

M(n) ). We
assume a lattice grid with a lattice spacing of 1

log log 1/M(n) .
We show that under the strategy described below, that only
( 1
M(n) )

γ , ∀γ > 1 transmissions are required to reach an
circular advertisement region of radius(M(n))α, α < 1

2 . We
note that the choice of a lattice spacing of 1

log log 1/M(n) in our
proof is for notational ease. Our results can be immediately
extended for any lattice spacing that isΩ( 1

log 1/M(n) ); however,
the number of transmissions will then scale as( 1

M(n) )
γ̄ , for

some finiteγ̄ > 1 (i.e., there will be a polynomial increase in
the number of transmissions).

A. Broadcast and Network Model

We assume that sensor nodes in the network have
an approximate knowledge about four antipodal direc-
tions d(1), d(j), d(−1), d(−j), In particular, the transmitting
nodes have a local estimate of four antipodal directions
d̄(1), d̄(j), d̄(−1), d̄(−j), such that for alll ∈ {1, j,−1,−j}

E(d(l).d̄(l)) = c, c > 0 andE(d̄(l)) = d(l). (30)

In other words, we assume that the direction estimates are
unbiased and with a positive projection. We note that the ex-
pected projection could be differ between directions, however
we choose a uniform projection in all directions for notational
simplicity.

We also assume that the packet contains information on
the direction of travel, and a counter, to keep track of the
number of hops traveled by a packet (Figure 6). Without loss
of generality, we formally define the four directions to be
d(1) = (1, 0), d(j) = (0, 1), d(−1) = (−1, 0) and d(−j) =
(0,−1)(See Figure 6). Thus, in a transmission by a nodex

along the directiondi, the distance traveled in that transmission
is a random variableX , with support[0,M(n)]di ⊂ R2, and
E(X) = cM(n)di, c > 0.

For networks with local direction information, the ran-
domized tree (branching walk) based broadcast strategy is
performed as follows (see Figure 7).

1) The source nodeS0 = 0 transmits a query to a
randomly chosen retransmission node in each direction.
The packets contain the data, the direction in which they
were sent, and the Time to Branch(TTB) counter is set
to p(n) (See Figure 6).

2) The retransmission nodes check the packet’sTTB
counter. If TTB = 0, then the retransmission node
transmits one query each to the two orthogonal direc-
tions to the previous step, and setsTTB = p(n), in the
newly created query packets. IfTTB > 0, thenTTB
value alone is changed toTTB − 1, and the packet is
retransmitted along the same direction.

Since the nodes create two queries at every branching, the
spatial distribution of the query can be studied as a process
indexed by a binary tree. Consider a query sent by the source
node along the directiondi. Let Γ denote an infinite binary
tree, where the vertices correspond to the queries generated
by repeated branching of the initial query. LetΓ(l,k) denote
the query at thekth vertex at depthl, with l ∈ N, andk ∈
Jl := {0, 1, . . . , 2l−1−1}. LetZ lk be the position of the query
Γ(l,k), just before thei+ 1th branching. Then,

Z lk = Z l−1
[ k
2 ]

+ Y lk , (31)

whereY lk is the random distance traveled by the query after
its lth branching. Hence, the random variable has a support
[0, p(n)M(n)]di andE(Y lk ) = cp(n)M(n)di, wheredi is the
direction of travel of the query. As defined in Section II, we
denote bySi, the set of transmitters in theith iteration.

Under the model discussed above, we show that the number
of transmissions to reach a circular advertisement region
of radius A(n) = M(n)

α
, α < 1

2 about any given point
x = (1, θ∗) (in polar coordinates), with a normalized delay
of Θ( 1

M(n) ) is 1
M(n)

γ
, ∀γ > 1. That is, we show that the

number of transmissionsT (n) is only marginally greater than
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Fig. 7. Illustrates the query branching in sensor networks.Note that the
branches do not follow straight lines due to approximate direction knowledge.

an optimal number of transmissions, if an advertising radius
of A(n) = M(n)α, α < 1

2 is allowed. We show this in the
following theorem for rational angles.

Theorem 6.1:Consider any pointX = (1, θ∗) on the
boundary of a unit ball around the origin. Consider a branching
query process as described above. Then, there exists a0 < b <
∞ such that∀ < 1/2.

min
Y ∈S b

M(n)

||Y −X ||L2 ≤M(n)α (prob.) (32)

Moreover,by iteration b
M(n) , the total number of transmissions

T (n) = O(
1

M(n)

γ

), ∀γ > 1. (33)

Proof: We first show Theorem 6.1 forθ∗ ∈ [0, π4 ] such
that tan θ∗ is rational. The result follows for anyθ∗ ∈ [0, π4 ]
by the density of rationalsQ in R and by the continuity of
tan θ∗ on [0, π4 ]. For any otherθ∗ /∈ [0, π4 ], the result follows,
by symmetry.

The main steps of the proof are as follows.
1) We employ ap(n) = 1

M(n) log log 1
M(n)

to create slowly

branching trees,
2) We show the existence of a path in the binary tree with

a mean angular drift alongθ∗.
3) We then show that the path lies within a radius

M(n)α, α < 1
2 about the destinationX .

Firstly, we describe the construction of the path in the
binary tree. Lettan θ∗ = r

q . Recall that the branching occurs
exactly once everyp(n) = 1

M(n) log log 1
M(n)

hops in each

query. Further, note that at each branching, exactly two queries
are sent along the two perpendicular directions to the original
direction along which the query was traveling. That is, if a
query traveling along directiond(1) branched, the two new
queries would be directed alongd(j) andd(−j). Consider the
initial queries sent along the directiond(j) andd(−j) by the
source nodeS0.

1) We denote byD1 := (d(j); d(1); d(j); d(−1)), a se-
quence of the directions of branchings followed by
the query, as depicted in Figure 7(in dotted lines). In
particular (d(j); d(1); d(j); d(−1)) defines the path of a
query through four successive branchings; the direction
followed at each branching provided by the sequence of
directions. Similarly, we also define another sequence

of branchingsD2 := (d(−j); d(1); d(j); d(1)). From the
construction of the tree, the expected position of the
query, after the branchings(d(j); d(1); d(j); d(−1)) is
cp(n)M(n)(2d(j)). The expected position of the query
after the sequence of branchings(d(−j); d(1); d(j); d(1))
is given bycp(n)M(n)(2d(1)).

2) Consider the sequence of branchings obtained by fol-
lowing r branchings of typeD1, followed by q
branchings of typeD2, i.e., the sequenceDrq =
(D1; . . . ; D1
︸ ︷︷ ︸

r terms

; D2; . . . ; D2
︸ ︷︷ ︸

q terms

). The expected position of

the query after the sequence of branchingsDrq is
cp(n)M(n)(2rd(1) + 2qd(j)).

3) We construct the sequence of branchings formed by
following l∗ branchings of type branchingsDrq, where
l∗ = 1√

r2+q2cp(n)M(n)
. That is,Dθ∗ = (Drq; . . . ; Drq

︸ ︷︷ ︸

l∗ terms

).

Note that the expected position of the query after the
sequence of branchingsDθ∗ is

l∗ × cp(n)M(n)(2rd(1) + 2qd(j)) = (d(1) cos θ∗ + d(j) sin θ∗)
= (1, θ∗)(in polar coordinates.)

In effect, we construct a path with mean drift alongθ∗, by
appending a series of branchings. Note that the number of
iterations to reach the end of the sequenceDθ∗ is l∗ × (r +
q) × 4 × p(n) = b

M(n) . Thus, by construction, we show the
existence of a path such that the mean position afterb iterations
is the destination nodeX . We now show that the position of
the path after the sequence of branchingsDθ∗ is within a
distanceM(n)

α of its meanX = (1, θ∗), for all α < .5, with
high probability.

Now, let Γ correspond to a binary tree created by a query
along the directiond(j) from the source node. Notice that the
position of the pathDθ∗ is an element of this tree, at depth
b. We denote position of the query after the sequenceDθ∗ by
the random variableZbt , wheret ∈ {1, · · · , 2b−1 − 1}. Thus,
the position of the query is given by (depthb, leaf t)

Zbt =

b−1∑

i=0

Y b−i
[ t

2i ]
. (34)

Let L1 = {i : E(Y b−i
[ t

2i ]
) = d(1)}, that is, the set of indices

such that the query is along directiond(1). Similarly, we define
L2 = {i : E(Y b−i

[ t

2i ]
) = d(j)}, L3 = {i : E(Y b−i

[ t

2i ]
) = d(−1)}

andL4 = {i : E(Y b−i
[ t

2i ]
) = d(−j)}.

Since these sets are constructed deterministically, we rewrite
sum in (34) as follows.

Zbt =
∑

i∈L1

Y b−i
[ t

2i ]
+
∑

i∈L2

Y b−i
[ t

2i ]
+
∑

i∈L3

Y b−i
[ t

2i ]
+
∑

i∈L4

Y b−i
[ t

2i ]
(35)

Notice thatY b−i
[ t

2i ]
for i ∈ {Lr, r = 1 to 4} are i.i.d. random

variables. Fox example,Y b−i
[ t

2i ]
, i ∈ L1 is a random variable

corresponding to a query along the directiond(1). Thus, each
random variable in this set is a sum ofp(n) hops along
directiond(1). Thus,

Y b−i
[ t

2i ]
= d(1)

( p(n)
∑

m=1

Rm

)

, (36)
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whereRm are i.i.d. random variables with support[0,M(n)]
and meancM(n). (See discussion in VI.A for the above
construction). Since each random variableY b−i

[ t

2i ]
is a sum of

p(n) random variables of kindRm, we have the following
claim.

Claim 1: Let .5 < β < 1. Then,

P

(

||Y b−i
[ t

2i ]
− c(M(n)p(n))d(1)|| > M(n)(p(n))β

)

≤ e−p(n)2β−1ε, (37)

for someε > 0.
Proof: By construction,

P

(

||Y b−i
[ t

2i ]
− (M(n)p(n)c)d(1)|| > M(n)(p(n))β

)

≤ P

( p(n)
∑

m=1

(Rm −M(n)c) > M(n)(p(n))β
)

. (38)

Let R̃m = 1
M(n)Rm. Then, note that

P

( p(n)
∑

m=1

(Rm −M(n)c) > M(n)(p(n))
β
)

= P

( p(n)
∑

m=1

(R̃m − c) > (p(n))
β
)

= P

( 1

(p(n))
β

p(n)
∑

m=1

(R̃m − c) > 1
)

≤ e−p(n)2β−1ε, ε > 0. (39)

A similar inequality can be derived for the negative side as
well. We skip the details for brevity. The inequality in (39)
follows from the result ([3]) in moderate deviations about the
mean, for sums of random variables.

Consider the pathDθ∗. It is easily seen that there are(2q+
r) ∗ l∗ queries in the path along directiond(1), (2r+ q) ∗ l∗ in
the path along directiond(j), (r)∗l∗ in the path along direction
d(−1) and(q) ∗ l∗ in the path along directiond(−j). Note that
this implies that for the first term on the R.H.S of (35)

P

(

(||
∑

i∈L1

Y b−i
[ t

2i ]
− 2q + r
√

r2 + q2
d(1)|| > K(p(n))

β−1
)

≤ e−p(n)2β−1ε1 , (40)

for someε1 > 0, andK < ∞. Using a similar bound for all
the terms on the R.H.S of (35), and noting that

X =
2q + r
√

r2 + q2
d(1) +

2r + q
√

r2 + q2
d(j) +

r
√

r2 + q2
d(−1) +

q
√

r2 + q2
d(−j), (41)

we find that

P

(

||Zbt −X || > K1(p(n))β−1
)

≤ e−p(n)2β−1ε2 (42)

for some ε2 > 0, and K1 < ∞. Since p(n) =
1

M(n) log log 1
M(n)

, the quantityK(p(n))β−1 = O(M(n)α) for

all α < 1 − β, and thus, (32) follows.
The total number of transmissions in any binary tree by

iteration b
M(n) is given by p(n) × 2K log log 1

M(n) , where
K log log 1

M(n) is the depth of the binary tree. Notice that

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.11 c = 1.4 0.12 c = 2.0 0.99
0.09 c = 1.4 0.09 c = 1.9 0.93
0.07 c = 1.4 0.02 c = 2.0 0.99

TABLE II

ZERO INFORMATION - SUCCESSPROBABILITY WITH 15/M(n)

ITERATIONS

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.11 γ = 1.5 0.25 γ = 3.0 1.00
0.09 γ = 1.5 0.2 γ = 2.7 0.97
0.07 γ = 1.5 0.07 γ = 2.7 0.97

TABLE III

SOURCEQUADRANT INFORMATION - SUCCESSPROBABILITY WITH

2/M(n) ITERATIONS

we create four binary trees, and hence the total number of
transmissionsT (n) = 4p(n)∗ log 1

M(n)

K
, which is order-wise

smaller than 1
M(n)

γ
for all γ > 1.

Remark 6.1:Thus, the results in this section show that even
with approximate local direction information, the number of
transmissions to reach an advertisement region of

√

M(n)
is only Θ( 1

M(n)

γ
). That is, a polynomial number of transmis-

sions are sufficient to spread queries efficiently to latticepoints
in networks with approximate local direction.

VII. S IMULATION RESULTS

In this section, we provide simulation results for the strate-
gies considered in this paper. In all the simulations, we
set the source location to be at(0, 0). For the first three
broadcast strategies, the destination is chosen to be at(1, 0).
For spatial sampling (broadcasting on a lattice), we choose
the destination to be at(.7, .7) (for better representation). For
each of the strategies, we provide simulation results to show
the probability of “success” (appropriately defined for each

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.11 C = 1 0.26 C = 2.0 0.99
0.09 C = 1 0.25 C = 2.0 1.00
0.07 C = 1 0.12 C = 2.0 1.00

TABLE IV

STATE INFORMATION - SUCCESSPROBABILITY WITH 5/M(n)

ITERATIONS

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.06 α = 0.8 0.18 α c = 0.4 0.94
0.04 α = 0.8 0.16 α c = 0.4 0.90
0.02 α = 0.8 0.20 α c = 0.4 0.98

TABLE V

SPATIAL SAMPLING BY BRANCHING - SUCCESSPROBABILITY WITH

15/M(n) ITERATIONS
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Fig. 8. Sample Paths of Broadcasts in Networks with Local Information

strategy) for varying parameters and averaged over 50 runs.
The transmission radius is chosen such that the number of
hops between the source and destination is about 10 – 15.

In Table II, we have provided the probability that a query
reaches within anM(n) distance of the destination (success)
within Θ(1/M(n)) for the case where there is no information.
We have earlier shown that an exponential number of queries
are necessary and sufficient for broadcasting without infor-
mation. To illustrate this by simulation, we have chosen two
constantsci, i = 1, 2 and the number of parallel queries sent
by the source isc1/M(n)

i . The table shows that ifc1 is chosen
small enough (but still resulting in an exponential number of
queries), the probability of success is small, while a larger
value ofc2 results in a success probability that is close to ’1’,
as predicted in Section III. A sample path of the parallel query
strategy is illustrated in Figure 8.

In Table III, nodes have source-quadrant information, thus
requiring only a polynomial number of parallel queries (with
the exponent being2.5). In the table we have chosen two
growth exponentsγ1 < 2.5 < γ2 (i.e, the number of parallel
queries is(1/M(n)γ)), and the results demonstrate a “sub-
critical” rate and a “super-critical” rate (i.e., the probabilities
are close to ’0’ or ’1’ respectively). In Table IV, a similar
result has been plotted for the suppression based strategy (local
state-information), with up toC log(1/M(n)) new transmitters
chosen (prior to suppression). Again, we can see the sub-
critical and super-critical behavior. Finally, in Table V,we
have shown a sub-critical and super-critical behavior for lattice
flooding, with an advertisement radiusA(n) = M(n)α. We
have chosenα1 < 0.5 < α2 to show that the advertisement
region needs to be large enough for success. Sample paths of
all the strategies described above are illustrated in Figure 8.
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