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Broadcasting in Sensor Networks: The Role of
Local Information

Sundar Subramanian, Sanjay Shakkottai and Ari Arapostathis

Abstract— Flooding based strategies are conventionally em-
ployed to perform querying and broadcasting in sensor networks.
These schemes have low hop-delays of Θ( 1

M(n)
) to reach any

node that is a unit distance away, where M(n) is the transmission
range of any sensor node. However, in sensor networks with large
radio ranges, flooding based broadcasting schemes cause many
redundant transmissions leading to a broadcast storm problem.
Many approaches have been proposed to mitigate this problem by
utilizing broadcast schemes that employ some knowledge of the
previous transmissions to reduce the extraneous transmissions. In
this paper, we study the role of geographic information and state
information (i.e. memory of previous messages or transmissions)
in reducing the redundant transmissions in the network.

We consider three broadcasting schemes with varying levels
of local information where nodes have: (i) no geographic or
state information, (ii) coarse geographic information about the
origin of the broadcast, and (iii) no geographic information, but
remember previously received messages. We also consider the
related problem of broadcasting to a set of “spatially uniform”
points in the network (lattice points) in the regime where all
nodes have only a local sense of direction. For each of these
networks, we compute the number of transmissions required to
achieve broadcast delays that are order-wise equivalent to simple
flooding algorithms, i.e. Θ( 1

M(n)
).

We first show that networks with no geographic or state
information require exponentially large number of transmissions
whereas networks with very little geographic or state information
can utilize the knowledge to significantly reduce the transmission
overheads. Next, we show that networks with local information,
can reduce the congestion by spreading the messages more
uniformly through the network. Finally, we show that networks
with only state information can also employ the information to
provide a radial drift to the transmitted packets. In the context
of lattice broadcasting, we again show that local information
results in significant reduction of transmission overheads. We
quantitatively compare the transmission overheads of broadcast-
ing strategies and validate our results using simulations.

I. INTRODUCTION

Advances in Micro-embedded computing systems, coupled
with developments in wireless technology have enabled the
mass production of small sensing devices equipped with wire-
less communication capabilities. It is envisaged that in the near
future sensors networks formed by large-scale deployment
of such devices would perform distributed sensing/control
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Fig. 1. Forwarding packets along straight lines - We require only one
transmission per tile for broadcasting.

operations. Applications for sensor networks include com-
mercial applications involving macro-scale measurements and
control, intrusion detection, and robust communication. These
networks are characterized by the absence of any established
architecture and by constrained energy and computational re-
sources at each node. Communication between any two nodes
in these networks is mainly accomplished through packet
forwarding by intermediary relay nodes, where messages are
relayed to neighbor nodes within the radio range.

In many sensor network applications, broadcasting is a
common communication primitive required for various control
operations. Applications regularly require broadcast operations
to update global information and also to perform network
maintenance such as updating topology, route discovery and
propagating alarm signals. Similarly, many sensing applica-
tions need to periodically inform the sensors to collect infor-
mation. Thus, an important communication task of a sensor
network is to disseminate messages/instructions information
to most nodes. A related broadcasting problem arises when a
node (say, a controller or a fusion center) needs to query/send a
control message to a subset of nodes which are approximately
spatially uniform. Such a scenario can arise for instance when
the controller needs a spatially uniform sample of a physical
underlying process.

In the presence of energy and computation constrained
nodes, we require that the communication operations for both
these scenarios be energy efficient, computationally simple
and delay sensitive. Since the channel utilized by the sensor
nodes is a wireless channel, the messages are broadcast to all
nodes within the radio range of the transmitting node. Efficient
broadcast strategies utilize the inherent broadcast nature of
the communication channel to minimize the total number of
transmissions, while guaranteeing the reception of the message
at all nodes.
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Fig. 2. Local Quadrants in Sensor nodes

Broadcasting in wired networks, is conventionally per-
formed by a simple flooding algorithm, in which each node
forwards the message/query once to all its neighbors, when it
first hears the message, and ignores all further receptions of the
same message. Thus the nodes remember ‘state’ information,
i.e, if a nodes has previously heard a message or not. An
advantage with such a flooding based broadcast strategy is
that it achieves low broadcast delays, without any geographic
information at sensor nodes. However, in densely connected
networks, such as sensor networks with relatively large ra-
dio ranges, such simple flooding based querying/broadcast
schemes create many redundant transmissions causing energy
inefficiency. Such algorithms lead to a broadcast storm [14]
problem, where the same message is received at a node,
multiple number of times.

If all nodes in the network had perfect geographic infor-
mation, it would be possible to considerably reduce the total
number of transmissions. Ideally one could use only ( 1

M(n) )
2

transmissions in the network, where M(n) is the radio range
(in other words, one transmission per tile, see Figure 1).
Whereas with simple flooding, the number of transmissions
would scale as n (the number of nodes), which could be much
larger in dense sensor networks.

A simple scheme to achieve a Θ( 1
M(n) )

2 number of trans-
missions1 is by dispatching packets along “rays” as shown in
Figure 1. This scheme requires “perfect” geographic informa-
tion at the nodes in order to make sure that the rays do not
“bend” or loop back.

Similarly, under perfect state information, where all nodes
had knowledge of past transmissions and routing tables, it is
possible to reduce the broadcast redundancy by constructing
a minimum spanning tree or creating an overlay network.
However, in many sensor networks, it is impractical to acquire
perfect geographic information, as it requires sophisticated
location devices and/or computational capabilities. In networks
with simultaneous broadcasts by many sources, nodes are
required to maintain routing information for messages from
each source. Thus it is infeasible to store all routing state
information, in networks with meager storage resources.

In this paper, we study the role of information (geographic
and state information) on reducing the broadcast redundancy,
while preserving the delay efficiency of flooding based ap-
proaches for the cases of (i) broadcasting over the entire space,
and (ii) broadcasting over a lattice. In particular, we consider
efficient broadcast strategies in networks with varying levels

1By g(n) = O(f(n)), we note that there exists a positive constant c1

such that for n > N , g(n) ≤ c1f(n). We say g(n) = Ω(f(n)), if f(n) =
O(g(n)). g(n) = Θ(f(n)) if g(n) = O(f(n)) and f(n) = O(g(n)).
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Fig. 3. Spatial sampling in Sensor nodes

of information at the nodes:
1) Zero information: Nodes have no geographic infor-

mation or memory, and broadcasting is only through
random packet forwarding.

2) Source Quadrant Information: Nodes have a local notion
of four directions, not common to all nodes, and know
the local quadrant in which the source is located (See
Figure 2).

3) Transmission state Information: Nodes have no geo-
graphic information, but all nodes remember messages
received previously. (i.e. state information)

4) Local Direction Information: Finally, for the problem of
spatial sampling (see Figure 3), we consider nodes that
have an approximate sense of ‘East’, ‘West’, ‘North’
and ‘South’, but have no other geographic information,
source or receiver location information or memory.

A. Main Contributions

We consider dense sensor networks on a plane, where each
node has a large number of neighbor nodes, within its radio
range M(n) 2. We model this by a continuum of sensor
nodes, where we associate a sensor node to every point in the
plane. We measure broadcast delay in terms of the number
of hops required to reach any given point on the network,
ignoring the queuing delay at the nodes (for a similar model,
see [21],[11]). Under this network model, we quantitatively
analyze the efficiency of broadcast strategies with varying
levels of information at the sensor nodes.

We first observe that flooding-based strategies lead to broad-
cast delays that are of the same order as optimal straight-
line broadcasting (although with many more transmissions),
i.e., the broadcast delay D(n) = Θ( 1

M(n) ). Thus, in order
to compare broadcasting in networks with varying levels of
information, we restrict the strategies to possess a broadcast
delay D(n) = Θ( 1

M(n) ), i.e., are order-wise equivalent to
flooding based strategies. For a broadcast to reach a node, it
is necessary for a transmission to occur within the radio range
M(n) of the sensor node. However, if all the neighbor nodes
within a radius A(n) contain routing information to direct the
transmission to the intended node, the transmissions are only
required to reach a ball of radius (advertisement) A(n) about
the node.

We measure delay in terms of hop-count, and energy effi-
ciency in terms of total transmissions per search/broadcast and
quantitatively analyze the information vs. efficiency trade-off

2The parameter n roughly corresponds to the density of the network.
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Information type Transmissions T (n) Congestion

Zero Information c
1

M(n) , c > 1 Heavy congestion about the source
Source Quadrant Information ( 1

M(n)
)2 Moderate congestion about the source

Transmission State Information ( 1
M(n)

)2 log 1
M(n)

Low congestion throughout the network

TABLE I
TRADE-OFFS IN BROADCASTING - NETWORKS WITH LIMITED INFORMATION

in networks. The trade-offs are provided in Table I. We show
the following results on broadcast efficiency for networks with
varying levels of information.
(i) In networks with zero information, we present broadcast

strategies based on random packet relaying. We show that
an exponentially large number of transmissions (of the
order of c

1
M(n) , for some c > 1) is necessary to ensure a

transmission within a radius M(n) of any given node at a
unit distance from the source of the broadcast, to achieve
a broadcast delay of Θ( 1

M(n) ). Futher, we show that
exponentially large number of transmissions are sufficient
for achieving this broadcast delay. To demonstrate this,
we employ an inequality result on the concentration
of the probability measures for sums of i.i.d random
variables. We also show that there are a large number
of simultaneous transmissions in the region surrounding
the source node, thus causing congestion in that area.

(ii) We consider networks with source quadrant information,
and present a broadcast strategy based on packet for-
warding that provides radial drift to the transmissions.
We show that the outward spread of the transmissions
reduce the broadcast redundancy. We show that only
( 1
M(n) )

2 transmissions are required to achieve a delay
D(n) = Θ( 1

M(n) ).
(iii) In networks with state information, we show that broad-

cast strategies can learn to inherently provide a radial
drift to the transmissions. The broadcast strategies can
use the state information to suppress transmissions by
redundant nodes and advance the packets away from the
source of the broadcast. By considering a strategy of
suppression based on [9], we show that this implied radial
drift suffices to achieve optimal broadcast delays with
T (n) = ( 1

M(n) )
2 log 1/M(n), and negligible congestion

throughout the network.
(iv) For the problem of spatial sampling in networks with

local direction information, we present a randomized-tree
based broadcast strategy that provides a lower transmis-
sion overhead. We show that we can sample on a “grid”
of a given size s(n) ∼ Ω( 1

log 1
M(n)

) (see Figure 3), as
long as the “bin” size (the local advertisement radius)
scales as (M(n))γ , γ < .49. Such a sampling requires
the number of transmissions to scale as T (n) = ( 1

M(n) )
α,

for a finite α that depends on s(n).
Finally, we provide continuum model based simulations

which support the analytical results obtained in the paper.
From the above results we infer that broadcasting with very
little geographic or state information is significantly more
efficient than networks without any such “local” knowledge.

While strategies with local state information can provide
low transmission overheads and low congestion, the memory
requirement scales linearly with the number of simultaneous
broadcast messages. Further, such strategies also require nodes
to compare the messages in their memory with every received
broadcast. On the other hand, we note that strategies with
geographic location information also provide substantial re-
ductions in the number of transmissions, and the information
requirements do not increase with simultaneous broadcasts.
However, obtaining geographic information at the sensor nodes
might require significant computation and/or hardware, such
as GPS. In practice, these considerations can be used to trade-
off between memory, hardware and energy efficiency (number
of transmissions).

B. Related Work

There has been considerable work on broadcasting and
querying in sensor networks [23], [19], [2], [20], [14], [16],
[4], [1], [13], [12], [17]. It was demonstrated in [14] that flood-
ing based broadcasting/querying schemes such as [12], [13]
cause many redundant transmissions leading to the broadcast
storm problem. As discussed in [24], many of the broadcast
schemes introduced to mitigate the “Broadcast storm” problem
can be classified into the following categories:

(i) Probabilistic schemes such as [9], [15] in which nodes
that receive the message rebroadcast with a fixed prob-
ability. In these schemes the nodes are assumed to
have state information to remember previously received
messages and utilize them to suppress secondary trans-
missions.

(ii) Location based schemes proposed in [14] where node
transmission decisions are based on the expected area
covered.

(iii) Neighbor knowledge based methods such as [2], [16],
[20] where the location of the neighbors or the two-
hop neighbors are known. In [23], perfect information
about the position of all nodes in the network is utilized
to construct minimum energy broadcast trees, whereas
in [2], the authors provide a construction for a similar
tree based on local topology information. In [20], the
two-hop neighbor information is utilized for building
connected dominating sets that efficiently broadcast in-
formation.

Also, querying in sensor networks has been studied in papers
such as [17], [5]. The authors in [1] propose random walks
initiated by the source node and the destination node. They
have shown that querying delay, transmission overheads can be



4

reduced by spreading routing information through the network.
This phenomenon has been quantitatively studied in [18].

Although many of the broadcast strategies previously dis-
cussed utilize some kind of local knowledge or state infor-
mation, we note that a systematic analysis of the role of
information in broadcasting, and the related trade-offs in the
number of transmissions, delay and congestion, has not been
explored previously. In this paper, we study a sequence of net-
works with varying levels of geographic and state information,
and compare broadcast trade-offs through analytical methods.
Furthermore, we provide simulation results to validate the
analytical studies.

II. SYSTEM DESCRIPTION

A. Network Model

We consider a sensor network in which the sensor nodes
are deployed over a planar region. Each of these sensor nodes
are assumed to have a common circular transmission region
and are connected to all other sensor nodes that lie within
its transmission radius. The transmission radius is set to scale
as M(n), where n is the scaling parameter. 3 In this paper,
we study broadcast strategies in dense networks in the large-
n regime, (where n → ∞). The results of [8] show that for
M(n) = Ω

(√
logn
n

)

, the network formed by the collection of
sensor nodes in a given region of finite area is asymptotically
connected, and more importantly the number of nodes in the
transmission radius of each node in that given region tends to
infinity asymptotically. In this paper, we consider any M(n)
that scales as O( 1

np ), p ∈ (0, 1
2 ), to model the growth of the

network size relative to the radio range.
Motivated by the above results, in this paper we assume a

continuum model of the sensor network, where any point in
the radio range of a transmitting node S can receive the packet
transmitted by the node, and can act as a retransmission node.
The neighbor set (nodes within the radio range) of any node
S in the sensor network is defined as

NS,M(n) = {X ∈ R2 : d(X,S) < M(n)}, (1)

where d is the Euclidean distance. Thus, there is a one-to-
one correspondence between nodes and their locations and the
discretization effects due to node locations are ignored in the
continuum model. However, as mentioned above, in densely
connected sensor networks, the number of nodes within the
radio range of any particular node increases to infinity [8].
Thus, the continuum model appears reasonable in this regime.
We refer to [21] for a comparison of analytical results using
a continuum model and simulation results with a discrete
model with a dense network of nodes, which indicate that
the discretization effects are not significant.

B. Broadcast Model

Querying and Information spreading, are both studied as
a series of packet forwards in a sensor network. Since the
transmissions in a wireless sensor network are inherently

3The quantity n roughly corresponds to the density of nodes in the network.

broadcast transmissions, we assume that whenever a node
transmits a query, all nodes in its neighbor set can potentially
receive it without error.

To broadcast a query “m”, the originating node S0 sends
out a packet, to all its neighbors (in a single transmission)
and requests a subset S1 of its neighbors to retransmit it.
The repeated application of this process disseminates the
information/query into the network. Let S0 = 0 be the position
of the source node, i.e., the position of the node initiating the
query. The set Si consists of all points (nodes associated with
the points) in the network that transmit the packet at the ith

iteration of the process, or are the ith generation transmitters.
In this setup, we define the normalized broadcast delay,

D(n) as follows. Let X be any given point (or the node at
position X), a unit distance away from the origin. We define

D(n) = inf{i : d(Si, X) < M(n)} (2)

where d is the Euclidean distance metric. That is, the normal-
ized delay D(n) is defined as the smallest iteration by which
there is a transmission within the radio range of the given
point/node X . Note that the ‘unit’ distance between the node
and the origin is arbitrary. For any other distance r, the hop-
delay can be scaled accordingly. Thus, we define D(n) as the
hop count of the minimum hop path from the source to reach
any arbitrarily chosen node X that is a unit distance away.

We note that in this definition, the medium access delay
has been ignored, and delay is measured only in terms of
the hop count. We note that the actual packet delay can be
decomposed into the hop count delay and the MAC delay. By
suitably scaling the packet size (see [6] for this approach),
we can achieve a MAC delay that is order-wise smaller than
the hop-count delay. Thus, in this regime, the hop-count will
be representative of the packet delay. Even if such a packet-
scaling was not employed, the delay with two broadcasting
schemes can be compared using a pair of metrics: (i) hop-
count delay, and (ii) the “local” congestion about a transmitting
node (i.e., the number of transmissions that occur in a spatial
region) which clearly plays an important part in determining
the MAC delay. Thus, in addition to small hop-count, a
good broadcasting scheme will mitigate local congestion. This
observation motivates us to later consider “branching” based
schemes where the number of transmissions progressively
increases with radial distance from the source, and have (order-
wise) the same hop-count as more “concentrated” broadcasting
schemes.

In the case of querying, the normalized delay corresponds
to the number of iterations required to reach any given point
that is located a unit distance away from the source node.
In the context of information spreading, the normalized delay
corresponds to the iterations required to spread the information
to a randomly chosen point which is a unit distance away from
the source. Thus, the above definition of delay allows us to
study the symmetric problems of information spreading and
querying within the same framework.

We also define the transmission overhead T (n) as the
total number of transmissions by the iteration D(n), i.e.
T (n) =

∑D(n)
k=1 |Sk|, where |.| denotes the cardinality of the

set. Conventional flooding based strategies achieve a broadcast
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delay of Θ( 1
M(n) ) hops in densely connected networks, as the

minimum distance of order M(n) is covered in each iteration
along all directions. In order to compare the various broadcast
strategies, we constrain the broadcast strategies in all network
models to achieve order-wise optimal hop-delays. Further, if
the delay is K

M(n) , K <∞, for any arbitrarily picked node, the
broadcast can be efficiently terminated by setting TTL values
in the broadcast packets appropriately. Thus, in the rest of
the paper, we only consider strategies that have a delay of
Θ( 1

M(n) ).

III. BROADCASTING IN NETWORKS WITH ZERO
INFORMATION.

In this section, we study the energy-delay trade-offs of
broadcasting, in networks with zero information. We assume
that the nodes in the network do not have any geographic or
state information. That is, the nodes have no knowledge of the
locations of their neighbors or of the broadcast source, and are
incapable of remembering previous messages or transmission
routes. Since nodes have no state information, decisions to
retransmit a received message are made at the time of arrival
of the message. Thus, it is possible for the same message to
be received and transmitted multiple times by a node.

To broadcast information in such networks with very limited
capability, we employ a simple broadcast strategy based on
random packet forwarding, that requires no state or geographic
information. In this scheme, each transmitting node selects
only one retransmitting node randomly from its neighbor set
(the nodes within the radio range M(n)), and requests the
node to retransmit it. We study these “random walk” based
schemes, as they are a sequence of simple communication
operations and representative of broadcast strategies possible
in networks with no information.

As discussed earlier in Section II, to compare the different
broadcast schemes, we require the normalized broadcast delay,
D(n) = Θ( 1

M(n) ). By randomly forwarding a single message,
it may not be possible to achieve the required normalized delay
and hence we initiate multiple broadcasts of the same message,
corresponding to independent parallel random walks. That is,
we originate R(n) independent copies of the same broadcast
message at the source node, and propagate each message by
random packet forwarding.

To analyze the energy efficiency of the broadcast strategy,
we choose a random node that is a unit distance away from the
source node, and compute the total number of transmissions
T (n) that are required to ensure that the message is received
by the chosen node, within Θ( 1

M(n) ) iterations. The energy
efficiencies are studied in terms of the number of broadcasts.

A. Random Packet Forwarding

The packet forwarding based broadcast, with multiple
copies of the broadcast message, has a simple communication
structure. The source node transmits R(n) independent copies
of the broadcast message, i.e., for every copy of the message,
the source node picks another sensor node randomly from
its neighbor set for retransmission. Every transmitting node
has only one offspring node, and only one transmission per

query/message occurs at every iteration. That is, at the ith

iteration, the position of the transmitting node for the kth copy
of the message is

Ski = Ski−1 +Xk
i , (3)

where denotes Skl the position of the kth random walk after
l iterations and Xk

i is the random displacement from the
node transmitting copy k at iteration i − 1. We assume that
Xk
i are i.i.d random variables, with a common distribution

µ. Since no geographic location information is available, we
assume that the next hop nodes are chosen uniformly randomly
from the neighbor set of each transmitter and assume that the
distribution µ is uniformly distributed over the compact set
BM(n)(0), where Br(x) denotes a ball of radius r around
x. We use the following notation for n-fold convolutions of
µ,(i.e., the distribution of n random variables with distribution
µ)

µ(n+1)(A) :=

∫

µ(n)(A− x)µ(dx) , n ∈ N, (4)

where µ(1) := µ.
For the above model of a network with Zero Informa-

tion, we show that the number of transmissions increasing
exponentially with 1

M(n) (the network diameter in hops), are
necessary and sufficient to ensure an optimum broadcast delay.
The following theorem shows that exponentially large number
of transmissions are necessary to achieve a delay D(n) =
Θ( 1

M(n) ), using the broadcasting strategy discussed earlier in
this section. We show that, even if the number of paths are
exponentially large, the probability that none of the paths reach
the radio range of the node within Θ( 1

M(n) ) steps is high.
Theorem 3.1: For any given K <∞, there is a c > 1 such

that for R(n) = c
K

M(n) ,

P

(
⋂

l=1,...,R(n)

k=1,..., K
M(n)

Slk /∈ Bε(x)

)

−→ 1.

for some ε > 0.

Proof:

P

(
⋂

l=1,...,R(n),

k=1,..., K
M(n)

Slk /∈ Bε(x)

)

= P

( ⋂

k=1,..., K
M(n)

S1
k /∈ Bε(x)

)R(n)

≥
(

1 −
K

M(n)
∑

k=1

P(S1
k ∈ (Bε(x))

))R(n)

≥
(

1 − K

M(n)
max
k

P(S1
k ∈ (Bε(x))

))R(n)

.

Note that P

(

S1
k ∈ Bε(x)

)

≤ P

(

S1
k ∈ Bc1−ε(0)

)

. By

Chernoff’s bound, P(S1
n ∈ Bc1−ε(0)) ≤ e−nI(δ), for small

δ > 0, where I is the rate function associated with the random
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variables. Hence,

P

( ⋂

l=1,...,R(n),

k=1,..., K
M(n)

Slk /∈ Bε(x)
)

≥
(

1 − K

M(n)

(

e−
K

M(n) I(δ)
))R(n)

. (5)

Let R(n) = c
K

M(n) for any c < e−I(δ)/2 then, the R.H.S term
tends to 1 as n→ ∞ .

Thus, the total number of required transmissions, T (n) =

c
K

M(n) × 2
M(n) , grows exponentially with the network diameter

1
M(n) .

We now show in following theorem that it is also suffi-
cient to have exponentially large number of transmissions, to
achieve a delay of Θ( 1

M(n) ), using the broadcasting strategy
discussed earlier in this section.

Theorem 3.2: Consider R(n) independent random walks
starting from S0 = 0 and any given point x = (x1, x2) on
the boundary of the compact ball B1(0). Then, there exists a
c <∞ such that for R(n) ≥ c

1
M(n) ,

lim
n→∞

min
k∈1,...,R(n)

||Sk 2
M(n)

− x|| −M(n) ≤ 0. (a.s)

That is, there exists a random walk that is arbitrarily close
to x, after 2

M(n) iterations.
Proof: We prove the above claim by using Borel-

Cantelli’s lemma and showing that, the probability that none
of the random walks are ‘close’ to the point x is ‘exceedingly’
small. That is, to prove that mink∈1,...,R(n) ||Sk 2

M(n)

− x|| ≤
M(n), we show that

∑

n

P(
⋂

k∈1,...,R(n)

Sk 2
M(n)

/∈ BM(n)(x)) <∞.

P(
⋂

k∈1,...,R(n)

Sk 2
M(n)

/∈ BM(n)(x))

= {P(S1
2

M(n)
/∈ BM(n)(x))}R(n) (6)

= {1− µ( 2
M(n)

)(BM(n)(x))}R(n), (7)

Equation 6 is due to the independence of the random
walks, and Equation 7 follows, as S1

2
M(n)

is the sum of i.i.d
random variables, with distribution µ. To provide an upper
bound for P(S1

2
M(n)

/∈ BM(n)(x)) (i.e. a lower bound on
µ( 2

M(n)
)(BM(n)(x))), we need the following claim.

Claim 1: There exists sub-probability measures ν1, ν2 and
constants δ1, δ2 > 1 such that

1) δ1ν1,δ2ν2 are probability distributions, symmetric about
M(n)

2 x1 and M(n)
2 x2,

2) σ2
δ1
, σ2
δ2

> 0, with compact supports B1, B2 ⊂ R

respectively,
3) µn(Bε(x)) ≥ (δ1δ2)

−nφ(n)(Bε(x)), where φ = δ1ν1 ×
δ2ν2, i.e., the product distribution.

We construct a sub-probability measure ν such that ν = µ
on the set A ⊂ BM(n)(0) ⊂ R2 and zero elsewhere, where

A = {y : ||y − M(n)

2
x||L∞

<
M(n)

10
}.

Thus, if (x1, x2) are the components of the vector x, the
measure ν is defined on the product space

A = [
M(n)

2
(x1 −

1

5
),
M(n)

2
(x1 +

1

5
)]

×[
M(n)

2
(x2 −

1

5
),
M(n)

2
(x2 +

1

5
)].

Hence, the measure ν over the set A can be expressed in
product form as follows:

ν = ν1 × ν2,

where ν1 is a measure on B1 = [M(n)
2 (x1− 1

5 ), M(n)
2 (x1+ 1

5 )]

and ν1 is a measure on B2 = [M(n)
2 (x2 − 1

5 ), M(n)
2 (x2 + 1

5 )].
Now, let δ1, δ2 > 1 such that δ1ν1,δ2ν2 are probability

distributions over their respective supports. Then, φ = δ1ν1 ×
δ2ν2 is a probability measure on A.

To prove Claim 1 (iii), we establish the following lemma.
Lemma 3.1: Let µ, ν and φ be as defined above. Then

µ(l)(x) ≥ ν(l)(x) =
1

(δ1δ2)l
φ(l)(x)

Proof: We prove this by induction. Clearly, for l = 1, we
have µ(x) ≥ ν(x). Let us assume that for l − 1, µ(l−1)(x) ≥
ν(l−1)(x). Since µ(l) = µ(l−1) ∗ µ, we have

µ(l)(x) =
∫∞

−∞ µ(l−1)(y)µ(x− y)dy

≥
∫∞

−∞
ν(l−1)(y)ν(x − y)dy

= ν(l)(x) (8)

⇒ µ(l)(x) ≥ ν(l)(x) =
1

(δ1δ2)
l
φ(l)(x) (9)

We require the following corollary of the result in [7] Thm.1,
pg. 533, on the concentration of the distribution about its mean.

Lemma 3.2: We assume that ψ is a probability measure
with mean t, variance σ2

ψ > 0, and a compact support B ⊂ R.
Then, for some K <∞,

ψ(n)

([
nt− ε

2 , nt+
ε
2

])
≥ K√

n
, ∀n > N0 ∈ N.

In our scenario, where the support for the distribution φ is
not unit length but within a c1M(n) length interval, the result
can be modified to show that

φ 2
M(n)

(
[x1 − ε′M(n), x1 + ε′M(n)]

×[x2 − ε′M(n), x2 + ε′M(n)]
)
≥ KM(n)

2
. (10)

To show Theorem 3.2, we apply Lemma 3.1 to Equation 7,
to see that

P(S1
2

M(n)
/∈ BM(n)(x)) = 1 − µ( 2

M(n)
)(BM(n)(x))

≤ 1 − (δ1δ2)
− 2

M(n) φ( 2
M(n)

)(BM(n)(x)). (11)

Notice that

φ(l)(BM(n)(x))

≥ δ1ν1(l)[l
M(n)

2
x1 − ε′M(n), l

M(n)

2
x1 + ε′M(n)]

× δ2ν2(l)[l
M(n)

2
x2 − ε′M(n), l

M(n)

2
x2 + ε′M(n)]. (12)
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Fig. 4. Random packet forwarding with knowledge of source location, and
local quadrants

Applying Lemma 3.2 to the distributions δ1ν1 and δ2ν2, we
see that for a large enough K,

φ(l)(BM(n)(x)) ≥
K

l
∀l ∈ N. (13)

It follows by Equation 11 that

{P(S1
2

M(n)
/∈ BM(n)(x))}R(n)

= {1− µ( 2
M(n)

)(BM(n)(x))}R(n), (14)

≤ {1 − (δ1δ2)
− 2

M(n)
KM(n)

2
}R(n), (15)

Let c > (δ1δ2)
2. Then, it is seen that

∑

{1 − (δ1δ2)
− 2

M(n)
KM(n)

2
}c

1
M(n)

<∞ (16)

Thus, forR(n) = c
1

M(n) , we show, by using Borel-Cantelli’s
lemma that

lim
n→∞

min
k∈1,...,R(n)

||Sk 2
M(n)

− x|| −M(n) ≤ 0. (a.s).

Remark 3.1: Thus, the results in this section indicate that
exponentially large number of transmissions are necessary and
sufficient to successfully broadcast in sensor networks with no
geographic or state information. We also note that, by employ-
ing multiple queries/messages, the number of transmissions
by nodes close to the source node increases linearly with the
R(n). In networks with Zero Information, this translates to an
exponentially large number of transmissions in a small area
(areas of the size of the radio range) close to the source node,
causing network congestion.

IV. BROADCASTING IN NETWORKS WITH SOURCE
QUADRANT INFORMATION

In this section, we study the efficiency of broadcasting in
networks with source quadrant information and compute the
number of transmissions required to obtain a normalized delay
of Θ( 1

M(n) ). We assume that the nodes have only a local
notion of four directions which are not necessarily common
to all nodes. That is, the nodes are capable of grouping their
neighbors into four different quadrants, where the orientations
of the quadrants are chosen independently by different nodes.
To model this, we assume that the orientations of the quadrants
are uniformly distributed between angles 0 and 2π, and are

chosen independently of the local quadrants at other nodes.
We also assume that there is some data embedded in a
packet’s header that enables an intermediate node to infer
coarse geographic source location w.r.t its local quadrants.
This could be implemented, for instance, if the packet has
the source location embedded in its header and nodes have
possibly faulty GPS (see [21]). Thus, the nodes are assumed
to have Source Quadrant Information. However, we do not
assume that the nodes have any state information i.e., they
are incapable of remembering any previous transmissions or
messages.

To broadcast in networks with limited geographic informa-
tion, we study broadcasting strategies similar to the schemes
presented in Section III. The broadcast strategy follows the
random packet forwarding model, but utilizes the location
information to direct the packets radially away from the source
node, reducing the broadcast redundancy. We again use the
multiple independent query model to achieve a normalized
delay of Θ( 1

M(n) ). The broadcast strategy is as follows:
1) The source node picks R(n) neighbors uniformly ran-

domly (i.e., R(n) points independently chosen from its
neighbor set), and sends the broadcast message to them.

2) Each of the nodes, on receiving a request to transmit,
retransmit the message and choose exactly one neighbor
from the “local” quadrant opposite to the source’s quad-
rant, and request that neighbor to retransmit the message.

A. Broadcast Model with Source Information

Let the source node be at 0, and consider any given copy
(indexed by k = 1toR(n)) of the broadcast message. We
denote the transmitting node at the i− 1th iteration to be
Ski−1. Since the Source Quadrant Information is available to
all nodes, the transmitting node for the ith iteration (i ≥ 2),
Ski = (Zki , φ

k
i ) (in polar coordinates) is chosen uniformly from

the quadrant opposite to the source. Let us denote the offset
angle (from the line joining the source and the node) by θki
and the offset length by Xk

i , as shown in Figure 4(i). Notice
that the source quadrant information at the nodes restricts the
offset angle to be within [−π/2, π/2].

The radial progress in the ith jump is defined as the random
variable Y ki = ||Ski ||− ||Ski−1||, with support in [0,M(n)]. As
the initial direction of transmission is uniformly distributed
over [0, 2π],(the source node picks its transmitting nodes
uniformly from within its circular radio range), Ski are also
angularly uniformly distributed (see Theorem 7.1 in Appendix
for a formal proof of this claim).

From the geometry of the paths, and due to the availability
source quadrant information, we see that the radial progress
is always positive in every step. Further, in all steps, we have

Y ki ≥ Xk
i cos θki . (17)

See Figure 4(ii) for an illustration of this property. The random
variables Xk

i cos θki are i.i.d random variables, with support
[0,M(n)] ⊂ R and E(Xk

i cos θki ) = dM(n), d > 0.
Under these conditions, the following theorem provides an

upper bound on the number of transmissions required to ensure
a delay of Θ( 1

M(n) ).
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Theorem 4.1: Consider R(n) random walks starting from
S0 = 0 and any given point x = (1, θ∗) on the boundary of
the compact ball B1(0). Let c = 2

d . Then, for R(n) ≥ 1
M(n)

α,
α > 1,

min
k∈1,...,R(n), i∈1,..., c

M(n)

||Ski − x|| ≤M(n). (prob.)

Proof: We define the hitting time τk as the first time-step
the path k hits a ball of radius 1 −M(n), i.e. the boundary
of the set B1−M(n)(0). Notice that the event {τk = i} is
equivalent to the event that {Zki > 1 − M(n) & Zki−1 <
1−M(n)}. By a∧ b, we denote the minimum of the integers
a and b.

The probability that no path reaches the point x,

P

( ⋂

1≤k≤R(n) ,1≤i≤
c1

M(n)

Ski /∈ BM(n)(x)
)

= P

( ⋂

k∈{1,··· ,R(n)}

Skτk∧ c
M(n)

/∈ BM(n)(x)
)

=
{

P

(

S1
τ1∧ c

M(n)
/∈ BM(n)(x)

)}R(n)

(18)

as the paths 1 ≤ k ≤ R(n) are independent and identically
distributed.

Consider the probability that the 1st path did not reach the
node x in c

M(n) steps.

P

(

S1
τ1∧ c

M(n)
/∈ BM(n)(x)

)

=

∞∑

k=1

P

(

S1
τ1∧ c

M(n)
/∈ BM(n)(x)|{τ1=k}

)

P

(

τ1 = k
)

≤
c

M(n)
∑

k=1

P

(

S1
k /∈ BM(n)(x)|{τ1=k}

)

P

(

{τ1 = k}
)

+P(τ1 ≥ c

M(n)
). (19)

To show that the second term of Equation 19, P(τ 1 ≥ c
M(n) )

is exponentially decaying (with respect to 1
M(n) ), we first note

that (see Equation 17) the radial progress of the first message
in c

M(n) steps is lower bounded by
∑ c

M(n)

1 X1
i cos θ1i . Thus the

probability that the radial progress was within the unit circle
after c

M(n) steps,

P(τ1 ≥ c

M(n)
) ≤ P(

c
(M(n)
∑

i=1

X1
i cos θ1i ≤ 1) ≤ exp−γ 1

M(n) ,

(20)
for some γ > 0. Equation 20 is by Chernoff’s Inequality for
sums of random variables X1

i cos θ1i , whose mean is dM(n).
Now, given the equivalence of the events {τ 1 = k} and

{Z1
k > 1 −M(n), Z1

i−1 < 1 −M(n)}, we demonstrate an
upper bound for the first term of Equation 19. We have, for
1 ≤ k ≤ c

M(n) ,

P

(

S1
τ1∧ c

M(n)
/∈ BM(n)(x)|{τ1=k}

)

= P

(

S1
τ1∧ c

M(n)
/∈ BM(n)(x)|{Z1

k
>1−M(n), Z1

i−1<1−M(n)}

)

.(21)

Since τ1 is a hitting time, the path must be within an M(n)
distance from the boundary. Hence,

P

(

S1
k /∈ BM(n)(x)|{Z1

k
>1−M(n), Z1

i−1<1−M(n)}

)

≤

P

(

{φ1
k ∈ [φ∗ − M(n)

4 , φ∗ + M(n)
4 ]}|{Z1

k
>1−M(n), Z1

i−1<1−M(n)}

)

.(22)

By the uniform distribution of φ1
τ1 (see Theorem 7.1 in

Appendix for a proof of this assertion, and for independence
of φ1

τ1 and τ1), it follows that

P

(

{φ1
k ∈ [φ∗ − M(n)

4 , φ∗ + M(n)
4 ]}|{Z1

k
>1−M(n), Z1

i−1<1−M(n)}

)

=
M(n)

4π
. (23)

By Equations 19,22,23 and for some k2 > 0

P

(

S1
τ1∧ c

M(n)
/∈ BM(n)(x)

)

≤ 1 − k2M(n). (24)

For R(n) = 1
M(n)

α
, ∀α > 1,

P

( ⋂

k∈{1,··· ,R(n)}

Skτ1∧ c
M(n)

/∈ BM(n)(x)
)

≤ {1− k2M(n)}R(n) → 0. (25)

Theorem 4.1 thus follows.
Remark 4.1: Thus, the total number of transmissions

T (n) = (R(n) ∗ c1
M(n) ) is less than ( 1

M(n) )
α for any α >

2. The results demonstrate that it is sufficient for ( 1
M(n) )

2

transmissions to broadcast to any randomly chosen point that
is a unit distance away from the source, with local geographic
knowledge, even without any suppression of transmissions.
However, we note that the broadcast strategy causes a polyno-
mially large (of order 1

M(n) ) number of transmissions around
the source node, causing significant congestion, although the
congestion is substantially lower, compared to broadcasting
with Zero Information, where the number is exponentially
large.

V. BROADCASTING WITH LIMITED STATE INFORMATION

In this section, we analyze broadcasting in networks with
limited state information. We assume that the nodes in the
network are capable of remembering previously received mes-
sages and their decision to transmit or to not transmit the
received message. However, we assume that the nodes have
no knowledge of the position of the neighbors or the source
node. In such networks with very little state information, and
no location information, we study broadcast strategies that
possess broadcast delays of D(n) = Θ( 1

M(n) ) and compute
the number of transmissions required to achieve the order-wise
optimal delays. The broadcast scheme we study is a variation
of the gossip algorithm presented in [9] where a node decides
to retransmit the broadcast message with a probability p, upon
the first arrival of the message. The broadcast algorithm we
employ is described below.

1) In the first iteration, the source node S0 transmits
the message ‘m’, to all its neighbors, and chooses
C log 1

M(n) nodes randomly from its neighbor set, and
requests them to retransmit the message.
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Fig. 5. Branching in Sensor nodes.

2) In the next iteration, the chosen nodes transmit their
message and choose C log 1

M(n) nodes randomly from
their neighbor sets, but nodes that have received the
previous broadcast of the message ignore all subsequent
broadcasts of the same message. Thus, nodes chosen
from regions that had previously heard the message do
not transmit.

3) The process is repeatedly iterated to spread the query
over the network.

Thus, the algorithm employs the state information to suppress
redundant transmissions in regions that have previously re-
ceived the broadcast message. For this “location-less” broad-
cast scheme, we show that the delay D(n) = Θ( 1

M(n) ), while
the total number of transmissions areO( 1

M(n)

α
), where α > 2.

In the following theorem, we first prove that the broadcast
algorithm discussed previously achieves a delay of Θ( 1

M(n) ).
We show this , by choosing any node X , that is a unit distance
away from the Source node S0 and demonstrating that there
is a transmission within the radio range of that given node
within Θ( 1

M(n) ) iterations.
By our notations in Section II, we define Si to be the set of

transmitters in iteration i and Pi to be the set of all transmitters
till iteration i.

Theorem 5.1: Let S0 = 0, X be any given point such that
||X−S0|| = 1. Then, for some ε > 0, there exists a 0 < Cε <
∞, such that for C = Cε,

min
Y ∈P 1

εM(n)

||X − Y || ≤M(n) (prob.) (26)

Proof:
Consider tiles of size εM(n) × εM(n) about the line

connecting the source node and X , as in Figure 5. We choose
ε > 0 such that a transmission (of range M(n)) in any
tile covers the adjacent tiles as well (it can be seen that for
any ε < 1

3 , this condition is satisfied). A tile is defined to
be ‘covered’ if all nodes within the tile have received the
broadcast message; else it is defined to be ‘uncovered’. Let At
be the event {Tile Tt covered by time t} and let the eventEt be
the event {Some node in Tile Tt was picked as a transmitter}.
We require the following lemma.

Lemma 5.1: The probability

P(Ect /At) = P

(

No transmissions in tile Tk|At
)

≤M(n)
Cε2

π .

(27)
Proof: Let W be any partitioning of the tile Tt. Let the

partition W be the union of disjoint sets Fi, i = 1, · · · , f(n),

where the disjoint sets Fi correspond to the incrementally
covered regions of the tile Tt, over different transmissions (see
Figure 5 for an illustration). Let l(Fi) denote the fraction of
the area of Fi in the tile, with

∑f(n)
i=1 l(Fi) = 1. Then,

P

(

Ect |At
)

=

∫

P

(

Ect |At,W
)

dµAt
(W), (28)

where µAt
(W) is the probability that the partition W was

created by the transmission process. We now derive an uniform
upper bound on P

(

Ect |At,W
)

(which does not depend on W),
and hence, provide an upper bound on L.H.S of (28).

Since we choose C logM(n) nodes uniformly from an area
of π(M(n))2, the probability

P

(

Ect |At,W
)

=

f(n)
∏

i=1

(

1 − l(Fi)ε
2

π

)C log 1
M(n)

=

f(n)
∏

i=1

M(n)

(

C log ( 1

1−
l(Fi)ε

2

π

)

)

,

= M(n)
−C

(
Pf(n)

i=1 log (1−
l(Fi)ε

2

π
)

)

.(29)

As M(n) < 1, we now have from (29) P

(

Ect |At,W
)

≤
M(n)[Cβ

∗], where

β∗ = − max
xi:1≤i≤f(n)

f(n)
∑

i=1

g(xi), s.t.
f(n)
∑

i=1

xi = 1,

g(x) = log (1 − (ε2/π)x)xi, x ∈ [0, 1], (30)

It can be directly computed to show that g(x) is a negative
concave function with g(0) = 0, g(1) = log (1 − (ε2/π)). By
using Lagrange Multipliers, it can be shown that for each fixed
f(n), the maximum is achieved when xi = 1

f(n) , for all i.
Thus,

β∗ = −max
f(n)

f(n)g(
1

f(n)
). (31)

Further, we have log (1 − (ε2/π)) ≤ −(ε2/π), and hence,
β∗ ≤ (ε2/π). The result now immediately follows.

Now, the probability that the tile Tt+1 was covered by time
t+ 1

P(At+1) ≥ P(At ∩ Et), (32)
= P(At)P(Et/At), (33)

= P(At)
[

1 − P(Ect /At)
]

. (34)

Note that the inequality in (32) is due to the fact that the event
At ∩ Et implies At+1, by construction. Utilizing Lemma 5.1
in (34),

P(At+1) ≥ P(At)
(

1 − (M(n))Cε
2/π
)

≥
(

1 − (M(n))Cε
2/π
)t

(35)

Hence, it follows that

P(A 1
M(n)

) ≥
(

1 − (M(n))Cε
2/π
) 2

M(n) → 1, (36)
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for Cε2

π > 1. Thus it is seen that by iteration K
M(n) , the tile

T K
M(n)

is covered with high probability.

By our construction, we see that in any tile T, the number of
transmissions is no greater than C log 1/M(n). Since the total
number of tiles is no greater than K( 1

M(n) )
2, the total number

of transmissions T (n) ≤ K1(
1

M(n) )
2 log 1/M(n).

Remark 5.1: The results in this section demonstrate that
“state information” in the networks can be utilized to simulta-
neously reduce the number of transmissions, and to distribute
the transmissions more uniformly over the network. The proof
in this sections show that the state information inherently
provides a linear drift, emphasizing the role of suppression
in efficient broadcasting. Further, the results can be extended
to show that the branching algorithm can spread information
uniformly in a two dimensional region. Moreover, uniformly
spaced transmissions considerably reduce the congestion in the
network.

VI. BROADCASTING OVER A LATTICE WITH LOCAL
DIRECTION INFORMATION

In this section, we study the problem of broadcasting to
a set of spatially uniform nodes (lattice points) in networks
where nodes have no “state” or geographic information, but
only a rudimentary sense of local direction. That is, each
sensor node in the network has an approximate sense of
‘East’, ‘West’, ‘North’ and ‘South’, formally defined in VI.A.
Necessity for such a broadcasting scheme could arise when a
spatially uniform sample of an underlying physical process is
required by an application at the source node (see figure 3). For
example, a sensor network deployed for measuring air quality
might require measurements from the sensor network sampled
uniformly over the deployed region; and thus, will need to
send a query/message to the appropriate subset of nodes. We
examine if such queries/messages can be broadcast efficiently
with the availability of “local direction” information, and
propose a random tree based broadcast protocol that utilizes
the local information to spread messages over the network.
Under this broadcast scheme, we compute the number of
transmissions required to reach a circular advertisement region
of radius A(n) about the destination node (a lattice point that
is a unit distance away) within a delay of Θ( 1

M(n) ).

A. Broadcast and Network Model

We assume that sensor nodes in the network have
an approximate knowledge about four antipodal direc-
tions d(1), d(j), d(−1), d(−j), In particular, the transmitting

nodes have a local estimate of four antipodal directions
d̄(1), d̄(j), d̄(−1), d̄(−j), such that for all l ∈ {1, j,−1,−j}

E(d(l).d̄(l)) = c, c > 0 and E(d̄(l)) = d(l). (37)

In other words, we assume that the direction estimates are
unbiased and with a positive projection. We note that the ex-
pected projection could be differ between directions, however
we choose a uniform projection in all directions for notational
simplicity.

We also assume that the packet contains information on
the direction of travel, and a counter, to keep track of the
number of hops traveled by a packet (Figure 6). Without loss
of generality, we formally define the four directions to be
d(1) = (1, 0), d(j) = (0, 1), d(−1) = (−1, 0) and d(−j) =
(0,−1)(See Figure 6). Thus, in a transmission by a node x

along the direction di, the distance traveled in that transmission
is a random variable X , with support [0,M(n)]di ⊂ R2, and
E(X) = cM(n)di, c > 0.

For networks with local direction information, the ran-
domized tree (branching walk) based broadcast strategy is
performed as follows (see Figure 7).

1) The source node S0 = 0 transmits a query to a
randomly chosen retransmission node in each direction.
The packets contain the data, the direction in which they
were sent, and the Time to Branch(TTB) counter is set
to p(n) (See Figure 6).

2) The retransmission nodes check the packet’s TTB
counter. If TTB = 0, then the retransmission node
transmits one query each to the two orthogonal direc-
tions to the previous step, and sets TTB = p(n), in the
newly created query packets. If TTB > 0, then TTB
value alone is changed to TTB − 1, and the packet is
retransmitted along the same direction.

Since the nodes create two queries at every branching, the
spatial distribution of the query can be studied as a process
indexed by a binary tree. Consider a query sent by the source
node along the direction di. Let Γ denote an infinite binary
tree, where the vertices correspond to the queries generated
by repeated branching of the initial query. Let Γ(l,k) denote
the query at the kth vertex at depth l, with l ∈ N, and k ∈
Jl := {0, 1, . . . , 2l−1−1}. Let Z lk be the position of the query
Γ(l,k), just before the i+ 1th branching. Then,

Zlk = Zl−1
[ k
2 ]

+ Y lk , (38)

where Y lk is the random distance traveled by the query after
its lth branching. Hence, the random variable has a support
[0, p(n)M(n)]di and E(Y lk ) = cp(n)M(n)di, where di is the
direction of travel of the query. As defined in Section II, we
denote by Si, the set of transmitters in the ith iteration.

Under the model discussed above, we show that the number
of transmissions to reach a circular advertisement region
of radius A(n) = M(n)

α
, α < 1

2 about any given point
x = (1, θ∗) (in polar coordinates), with a normalized delay
of Θ( 1

M(n) ) is 1
M(n)

γ
, ∀γ > 1. That is, we show that the

number of transmissions T (n) is only marginally greater than
an optimal number of transmissions, if an advertising radius
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Fig. 7. Illustrates the query branching in sensor networks. Note that the
branches do not follow straight lines due to approximate direction knowledge.

of A(n) = M(n)
α
, α < 1

2 is allowed. We show this in the
following theorem for rational angles.

Theorem 6.1: Consider any point X = (1, θ∗) on the
boundary of a unit ball around the origin. Consider a branching
query process as described above. Then, there exists a 0 < b <
∞ such that ∀ < 1/2.

min
Y ∈S b

M(n)

||Y −X ||L2 ≤M(n)
α

(prob.) (39)

Moreover,by iteration b
M(n) , the total number of transmissions

T (n) = O(
1

M(n)

γ

), ∀γ > 1. (40)

Proof: We first show Theorem 6.1 for θ∗ ∈ [0, π4 ] such
that tan θ∗ is rational. The result follows for any θ∗ ∈ [0, π4 ]
by the density of rationals Q in R and by the continuity of
tan θ∗ on [0, π4 ]. For any other θ∗ /∈ [0, π4 ], the result follows,
by symmetry.

The main steps of the proof are as follows.
1) We employ a p(n) = 1

M(n) log log 1
M(n)

to create slowly
branching trees,

2) We show the existence of a path in the binary tree with
a mean angular drift along θ∗.

3) We then show that the path lies within a radius
M(n)

α
, α < 1

2 about the destination X .
Firstly, we describe the construction of the path in the

binary tree. Let tan θ∗ = r
q . Recall that the branching occurs

exactly once every p(n) = 1
M(n) log log 1

M(n)

hops in each
query. Further, note that at each branching, exactly two queries
are sent along the two perpendicular directions to the original
direction along which the query was traveling. That is, if a
query traveling along direction d(1) branched, the two new
queries would be directed along d(j) and d(−j). Consider the
initial queries sent along the direction d(j) and d(−j) by the
source node S0.

1) We denote by D1 := (d(j); d(1); d(j); d(−1)), a se-
quence of the directions of branchings followed by
the query, as depicted in Figure 7(in dotted lines). In
particular (d(j); d(1); d(j); d(−1)) defines the path of a
query through four successive branchings; the direction
followed at each branching provided by the sequence of
directions. Similarly, we also define another sequence

of branchings D2 := (d(−j); d(1); d(j); d(1)). From the
construction of the tree, the expected position of the
query, after the branchings (d(j); d(1); d(j); d(−1)) is
cp(n)M(n)(2d(j)). The expected position of the query
after the sequence of branchings (d(−j); d(1); d(j); d(1))
is given by cp(n)M(n)(2d(1)).

2) Consider the sequence of branchings obtained by fol-
lowing r branchings of type D1, followed by q
branchings of type D2, i.e., the sequence Drq =
(D1; . . . ; D1
︸ ︷︷ ︸

r terms

; D2; . . . ; D2
︸ ︷︷ ︸

q terms

). The expected position of

the query after the sequence of branchings Drq is
cp(n)M(n)(2rd(1) + 2qd(j)).

3) We construct the sequence of branchings formed by
following l∗ branchings of type branchings Drq, where
l∗ = 1√

r2+q2cp(n)M(n)
. That is,Dθ∗ = (Drq ; . . . ; Drq

︸ ︷︷ ︸

l∗ terms

).

Note that the expected position of the query after the
sequence of branchings Dθ∗ is

l∗ × cp(n)M(n)(2rd(1) + 2qd(j)) = (d(1) cos θ∗ + d(j) sin θ∗)
= (1, θ∗)(in polar coordinates.)

In effect, we construct a path with mean drift along θ∗, by
appending a series of branchings. Note that the number of
iterations to reach the end of the sequence Dθ∗ is l∗ × (r +
q) × 4 × p(n) = b

M(n) . Thus, by construction, we show the
existence of a path such that the mean position after b iterations
is the destination node X . We now show that the position of
the path after the sequence of branchings Dθ∗ is within a
distance M(n)α of its mean X = (1, θ∗), for all α < .5, with
high probability.

Now, let Γ correspond to a binary tree created by a query
along the direction d(j) from the source node. Notice that the
position of the path Dθ∗ is an element of this tree, at depth
b. We denote position of the query after the sequence Dθ∗

by the random variable Zbt , where t ∈ {1, · · · , 2b−1 − 1}.
Thus, the position of the query is given by (depth b, leaf t)
Zbt =

∑b−1
i=0 Y

b−i
[ t

2i ]
.

Let L1 = {i : E(Y b−i
[ t

2i ]
) = d(1)}, that is, the set of indices

such that the query is along direction d(1). Similarly, we define
L2 = {i : E(Y b−i

[ t

2i ]
) = d(j)}, L3 = {i : E(Y b−i

[ t

2i ]
) = d(−1)}

and L4 = {i : E(Y b−i
[ t

2i ]
) = d(−j)}.

Since these sets are constructed deterministically, we rewrite
sum in (??) as follows.

Zbt =
∑

i∈L1

Y b−i
[ t

2i ]
+
∑

i∈L2

Y b−i
[ t

2i ]
+
∑

i∈L3

Y b−i
[ t

2i ]
+
∑

i∈L4

Y b−i
[ t

2i ]
(41)

Notice that Y b−i
[ t

2i ]
for i ∈ {Lr, r = 1 to 4} are i.i.d. random

variables. Fox example, Y b−i
[ t

2i ]
, i ∈ L1 is a random variable

corresponding to a query along the direction d(1). Thus, each
random variable in this set is a sum of p(n) hops along
direction d(1). Thus,

Y b−i
[ t

2i ]
= d(1)

( p(n)
∑

m=1

Rm

)

, (42)
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where Rm are i.i.d. random variables with support [0,M(n)]
and mean cM(n). (See discussion in VI.A for the above
construction). Since each random variable Y b−i

[ t

2i ]
is a sum of

p(n) random variables of kind Rm, we have the following
claim.

Claim 2: Let .5 < β < 1. Then,

P

(

||Y b−i
[ t

2i ]
− c(M(n)p(n))d(1)|| > M(n)(p(n))

β
)

≤ e−p(n)2β−1ε, (43)

for some ε > 0.
Proof: By construction,

P

(

||Y b−i
[ t

2i ]
− (M(n)p(n)c)d(1)|| > M(n)(p(n))

β
)

≤ P

( p(n)
∑

m=1

(Rm −M(n)c) > M(n)(p(n))
β
)

. (44)

Let R̃m = 1
M(n)Rm. Then, note that

P

( p(n)
∑

m=1

(Rm −M(n)c) > M(n)(p(n))β
)

= P

( p(n)
∑

m=1

(R̃m − c) > (p(n))β
)

= P

( 1

(p(n))
β

p(n)
∑

m=1

(R̃m − c) > 1
)

≤ e−p(n)2β−1ε, ε > 0. (45)

A similar inequality can be derived for the negative side as
well. We skip the details for brevity. The inequality in (45)
follows from the result ([3]) in moderate deviations about the
mean, for sums of random variables.

Consider the path Dθ∗. It is easily seen that there are (2q+
r) ∗ l∗ queries in the path along direction d(1), (2r+ q) ∗ l∗ in
the path along direction d(j), (r)∗l∗ in the path along direction
d(−1) and (q) ∗ l∗ in the path along direction d(−j). Note that
this implies that for the first term on the R.H.S of (41)

P

(

(||
∑

i∈L1

Y b−i
[ t

2i ]
− 2q + r
√

r2 + q2
d(1)|| > K(p(n))

β−1
)

≤ e−p(n)2β−1ε1 , (46)

for some ε1 > 0, and K < ∞. Using a similar bound for all
the terms on the R.H.S of (41), and noting that

X =
2q + r
√

r2 + q2
d(1) +

2r + q
√

r2 + q2
d(j)

+
r

√

r2 + q2
d(−1) +

q
√

r2 + q2
d(−j), (47)

we find that

P

(

||Zbt −X || > K1(p(n))
β−1
)

≤ e−p(n)2β−1ε2 (48)

for some ε2 > 0, and K1 < ∞. Since p(n) =
1

M(n) log log 1
M(n)

, the quantity K(p(n))
β−1

= O(M(n)α) for
all α < 1 − β, and thus, (39) follows.

The total number of transmissions in any binary tree by
iteration b

M(n) is given by p(n) × 2K log log 1
M(n) , where

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.11 c = 1.4 0.12 c = 2.0 0.99
0.09 c = 1.4 0.09 c = 1.9 0.93
0.07 c = 1.4 0.02 c = 2.0 0.99

TABLE II
ZERO INFORMATION - SUCCESS PROBABILITY WITH 15/M(n)

ITERATIONS

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.11 γ = 1.5 0.25 γ = 3.0 1.00
0.09 γ = 1.5 0.2 γ = 2.7 0.97
0.07 γ = 1.5 0.07 γ = 2.7 0.97

TABLE III
SOURCE QUADRANT INFORMATION - SUCCESS PROBABILITY WITH

2/M(n) ITERATIONS

K log log 1
M(n) is the depth of the binary tree. Notice that

we create four binary trees, and hence the total number of
transmissions T (n) = 4p(n)∗ log 1

M(n)

K , which is order-wise
smaller than 1

M(n)

γ for all γ > 1.

Remark 6.1: Thus, the results in this section show that even
with approximate local direction information, the number of
transmissions to reach an advertisement region of

√

M(n)
is only Θ( 1

M(n)

γ
). That is, a polynomial number of transmis-

sions are sufficient to spread queries efficiently to lattice points
in networks with approximate local direction.

VII. SIMULATION RESULTS

In this section, we provide simulation results for the strate-
gies considered in this paper. In all the simulations, we
set the source location to be at (0, 0). For the first three
broadcast strategies, the destination is chosen to be at (1, 0).
For spatial sampling (broadcasting on a lattice), we choose

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.11 C = 1 0.26 C = 2.0 0.99
0.09 C = 1 0.25 C = 2.0 1.00
0.07 C = 1 0.12 C = 2.0 1.00

TABLE IV
STATE INFORMATION - SUCCESS PROBABILITY WITH 5/M(n)

ITERATIONS

M(n) Sub-Critical Super-Critical
Parameter Prob. Parameter Prob.

0.06 α = 0.8 0.18 α c = 0.4 0.94
0.04 α = 0.8 0.16 α c = 0.4 0.90
0.02 α = 0.8 0.20 α c = 0.4 0.98

TABLE V
SPATIAL SAMPLING BY BRANCHING - SUCCESS PROBABILITY WITH

15/M(n) ITERATIONS
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Fig. 8. Sample Paths of Broadcasts in Networks with Local Information

the destination to be at (.7, .7) (for better representation). For
each of the strategies, we provide simulation results to show
the probability of “success” (appropriately defined for each
strategy) for varying parameters and averaged over 50 runs.
The transmission radius is chosen such that the number of
hops between the source and destination is about 10 – 15.

In Table II, we have provided the probability that a query
reaches within an M(n) distance of the destination (success)
within Θ(1/M(n)) for the case where there is no information.
We have earlier shown that an exponential number of queries
are necessary and sufficient for broadcasting without infor-
mation. To illustrate this by simulation, we have chosen two
constants ci, i = 1, 2 and the number of parallel queries sent
by the source is c1/M(n)

i . The table shows that if c1 is chosen
small enough (but still resulting in an exponential number of
queries), the probability of success is small, while a larger
value of c2 results in a success probability that is close to ’1’,
as predicted in Section III. A sample path of the parallel query
strategy is illustrated in Figure 8.

In Table III, nodes have source-quadrant information, thus
requiring only a polynomial number of parallel queries (with
the exponent being 2). In the table we have chosen two
growth exponents γ1 < 2 < γ2 (i.e, the number of parallel
queries is (1/M(n)γ)), and the results demonstrate a “sub-
critical” rate and a “super-critical” rate (i.e., the probabilities
are close to ’0’ or ’1’ respectively). In Table IV, a similar
result has been plotted for the suppression based strategy (local
state-information), with up to C log(1/M(n)) new transmitters
chosen (prior to suppression). Again, we can see the sub-
critical and super-critical behavior. Finally, in Table V, we
have shown a sub-critical and super-critical behavior for lattice
flooding, with an advertisement radius A(n) = M(n)α. We
have chosen α1 < 0.5 < α2 to show that the advertisement
region needs to be large enough for success. Sample paths of
all the strategies described above are illustrated in Figure 8.

APPENDIX

Consider the spatial position (in polar coordinates) Ski =
(Zki , φ

k
i ) of the kth packet after i steps, as described in

Section IV. Under the model described in that section, we
show here that the radial progress of a packet is independent
of its angular position, and the angular position at the moment
it reaches the unit ball is uniform in [0, 2π].

Theorem 7.1: Let (Zi, φi) be the polar coordinates of the
kth packet after i steps, for any k. Then, Zi is independent of
φi ∀ i. Also, φτ is uniformly distributed in [0, 2π].

φ(1)

φ(2)

ζ(2)

θ(2)

|OA| = Z (1)

|OB| = Z (2)

|AB| = R (2)

O

B

A

Fig. 9. Independence of the angle and radial progress.

Proof: We first prove that Z2 is independent of φ2, and
show that φ2 is uniform. We then extend this argument to
show the result for any Zi and φi.

Consider Figure 9. Initially, the packet chooses a random
neighbor A = (Z1, φ1) to retransmit. Notice that as the
point is uniformly chosen from within the whole circle, Z1

is independent of φ1, and φ1 is uniform in [0, 2π]. In the next
hop, it chooses a neighbor B, from a local quadrant of A, the
quadrant opposite to the source O. Since the orientations of
the local quadrants are uniformly distributed in [0, 2π], and the
point B is chosen uniformly from the quadrant opposite to the
source, we have the angle θ(2) to distributed (not uniformly)
between [−π/2, π/2]. More importantly, we notice that θ(2) is
independent of both Z1 and φ1, i.e., it is independent of the
position of A. Now,

ζ(2) = tan−1 R(2) sin θ(2)

Z1+R(2) cos θ(2)
, (49)

Z2 =
√

(Z1 +R(2) cos θ(2))2 + (R(2) sin θ(2))2. (50)

Notice that as ζ(2) is a function of variables that are indepen-
dent of φ1, ζ(2) is independent of φ1. This implies that

φ2 =
[
φ1 + ζ(2)

]
mod 2π (51)

is uniform in [0, 2π] irrespective of the distribution of ζ (2).
In order to show that Z2 is independent of φ2, we show that

the distribution of the random variable fφ2|Z2
is also uniform

in [0, 2π]. Now, since φ1 is independent of both Z2 and ζ(2),
we see that

fφ2|Z2
= f[φ1+ζ(2) ] mod 2π|Z2

= fφ1|Z2
∗ fζ(2)|Z2,φ1

= fφ1 ∗ fζ(2)|Z2
(52)

where “ ∗ ” implies a wrap-around convolution over the
domain [0, 2π]. We define this formally as follows.

(f ∗ g) (t) =

∫ 2π

0

f(τ)g({t− τ}mod2π)dτ. (53)
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Again, as φ1 is uniformly distributed in [0, 2π], and in-
dependent of other random variables, it follows that fφ2|Z2

is uniformly distributed, thus implying that φ2 is indeed
independent of Z2.

For any step i, the proof is similar. We construct a ζ(i) such
that φi = φ1 + ζ(i). By means of a similar argument, we
show that as fφi|Zi

is uniformly distributed and equal to fφi
,

utilizing the fact that fφ1 is independent of other quantities,
and is also uniformly distributed.

To show that φτ is uniform in [0, 2π], notice that the event
τ = k is equivalent to the event Zk−1 ≤ 1 − M(n), Zk ≥
1−M(n). Also, as φ1 is independent of ζ(k) and (Zk, Zk−1),

fφk|Zk ,Zk−1
= f[φ1+ζ(k)] mod 2π|Zk,Zk−1

= fφ1|Zk,Zk−1
∗ fζ(k)|Zk ,Zk−1φ1

= fφ1 ∗ fζ(k) |Zk,Zk−1
. (54)

By Equation 51, this implies that the distribution of φ1
k given

that τ = k is uniform in [0, 2π] for all k, and hence it follows
that φτ is uniform in [0, 2π].

REFERENCES

[1] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor
networks. In First Workshop on Sensor Networks and Applications
(WSNA), September 2002.

[2] J. Cartigny, D. Simplot, and I. Stojmenovic. Localized minimum-energy
broadcasting in ad-hoc networks. In IEEE Trans. Parallel Distrib. Syst.
13(1), pages 14–25, 2002.

[3] C. Chang, D. Yao, and T. Zajic. Large deviations, moderate deviations,
and queues with long-range dependent inputs. Adv. Appl. Prob., 31:254–
277, 999.

[4] M. Chang, N.and Liu. Optimal controlled flooding search in a large
wireless network. In Proc. 3rd International Symposium on Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, 2005.

[5] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven
sensor querying and routing for ad hoc heterogeneous sensor networks.
Technical Report P2001-10113, Xerox PARC, 2001.

[6] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah. Throughput delay
trade-off in wireless networks. In Proceedings of IEEE Infocom, Hong
Kong, March 2004.

[7] W. Feller. An Introduction to Probability Theory and Its Applications,
Volume II. Wiley, 1966.

[8] P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity
in wireless networks. In Stochastic Analysis, Control, Optimization
and Applications: A Volume in Honor of W.H. Fleming. Edited by
W.M. McEneany, G. Yin, and Q. Zhang, pages 547–566, Boston, 1998.
Birkhauser.

[9] Z.J. Haas, J.Y. Halpern, and L Li. Gossip-based ad hoc routing. In
Proceedings ofIEEE INFOCOM, 2002.

[10] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[11] B. Hajek. Minimum mean hitting times of Brownian motion with
constrained drift. In Proceedings of the 27th Conference on Stochastic
Processes and Their Applications, July 2000.

[12] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath. Flooding for reliable
multicast in multi-hop ad hoc networks. In Proceedings of DIALM, pages
64–71, 1999.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
Proceedings of ACM Mobicom, Boston, MA, August 2000.

[14] S.Y. Ni, Y.C. Tseng, Y.S. Chen, and Sheu J.P. The broadcast storm
problem in a mobile ad hoc network. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking (MO-
BICOM), pages 151–162, 1999.

[15] L. Orecchia, A. Panconesi, A. Petrioli, and A. Vitaletti. Localized
techniques for broadcasting in wireless sensor networks. In Proceedings
of the 2004 joint workshop on Foundations of mobile computing, pages
41–51, 2004.

[16] Wei Peng and Xi-Cheng Lu. On the reduction of broadcast redundancy
in mobile ad hoc networks. In Proc. First Ann.Workshop Mobile and
Ad Hoc Networking and Computing, pages 129–130, Apr. 2000.

[17] N. Sadagopan, B. Krishnamachari, and A. Helmy. The ACQUIRE mech-
anism for efficient querying in sensor networks. In IEEE International
Workshop on Sensor Network Protocols and Applications (SNPA’03),
May 2003.

[18] S. Shakkottai. Asymptotics of query strategies over a sensor network.
IEEE Transactions on Automatic Control, 50(5):594 – 606, May 2005.

[19] I. Stojmenovic and M. Seddigh. Broadcasting algorithms in wireless
networks. In Proceedings of the International Conference on Advances
in Infrastructure for Electronic Business, Science, and Education on the
Internet SSGRR, 2000.

[20] I. Stojmenovic, M. Seddigh, and J.D. Zunic. Dominating sets and neigh-
bor elimination-based broadcasting algorithms in wireless networks. In
IEEE Trans. Parallel Distrib. Syst. 13(1), pages 14–25, 2002.

[21] S. Subramanian and S. Shakkottai. Geographic Routing with Limited
Information in Sensor Networks. In Proceedings of Information Pro-
cessing in Sensor Networks, pages 269–276, April 2005.

[22] S. Subramanian, S. Shakkottai, and A. Arapostathis. Broadcasting in
Sensor Networks: The Role of Local Information. WNCG Technical
Report, University of Texas at Austin, January 2006.

[23] J.E Wieselthier, G.D. Nguyen, and A. Ephremides. On the construction
of energy-efficient broadcast and multicast trees in wireless networks.
In Proceedings of IEEE INFOCOM, pages 589–594, Apr. 2000.

[24] B. Willams and T. Camp. Comparison of broadcasting techniques for
mobile ad hoc networks. In Proceedings of the 3rd ACM international
symposium on Mobile ad hoc networking and computing, 2002.

Sundar Subramanian Sundar Subramanian (M’04)
received his Master’s degree in Electrical and
Computer Engineering from The University of
Texas at Austin, where he is currently pursuing
his doctoral studies. His email address is ssub-
rama@ece.utexas.edu.

Sanjay Shakkottai Sanjay Shakkottai (M’02) re-
ceived his Ph.D. from the University of Illinois at
Urbana-Champaign in 2002. He is currently with
The University of Texas at Austin, where he is an
Assistant Professor in the Department of Electrical
and Computer Engineering. He was the finance
chair of the 2002 IEEE Computer Communications
Workshop in Santa Fe, NM. He received the NSF
CAREER award in 2004. His research interests
include wireless and sensor networks, stochastic
processes and queueing theory. His email address

is shakkott@ece.utexas.edu.

Ari Arapostathis Ari Arapostathis (M’82) received
his Ph.D. from the University of California, Berke-
ley, in 2002. He is currently with The University
of Texas at Austin, where he is a professor in
the Department of Electrical and Computer Engi-
neering. His research interests include analysis and
estimation techniques for stochastic control systems,
interconnected power systems and adaptive control
theory. A member of IEEE, AMS and SIAM, he was
a past Associate Editor of the IEEE Transactions on
Automatic Control and the Journal of Mathematical

Systems and Control. His email address is ari@ece.utexas.edu.


