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Abstract— Traditionally, network buffer resources have been
used at routers to queue transient packets to prevent packet
drops. In contrast, we propose a scheme for large multi-hop
networks where intermediate routers have no buffers for queueing
transient packets. In the proposed scheme, network storage
resources (memory) are used only at source and destination nodes
to encode/decode packets using random linear coding over time.

Our scheme utilizes the observation that for large networks
with many flows through each router, if packet loss occurs in
a flow path, it will very likely occur only at only one link in
the path. Unfortunately, the location of this congested link varies
with time, hence, preventing static buffer allocation strategies
from exploiting this observation. We propose network coding as
a means of “sharing” memory across links along a flow path. We
call this spatial buffer multiplexing – where buffering and coding
implemented at the source compensates for packet loss at any
downstream bufferless link.

In this paper, we consider large spatial multi-hop networks
with N nodes and Θ(N) flows, where the number of flows
through each link scales as Ω(Nα) for some α ∈ (0, 1).
Using many-sources large deviations analysis, we show that to
obtain comparable packet drop probabilities (QoS), spatial buffer
multiplexing provides an order-wise buffer gain of Ω(Nα) per
node over traditional queueing.

I. INTRODUCTION

Network coding at intermediate routers in a network (as
opposed to switching/routing) was originally proposed with a
view of increasing end-to-end throughput in networks [1] and
[2]. Network codes have been shown to be throughput optimal
(network-wide capacity achieving) for a multicast network by
Cai et. al. Furthermore, network coding via Random Linear
Coding (RLC) improves network reliability and simplifies
network management [3], as well as allows exploiting cor-
relation in sensor data to improve network efficiency [4].
Recent formulations of convex optimization problems [5], [6]
to characterize the sum-cost of flows through a network using
RLC pose significant reduction of network-wide sum-cost for
coding as opposed to routing.

Random Linear Codes applied at intermediate routers ef-
fectively spread the information from one flow across multiple
flows and hence work well as an error/erasure control scheme.
This spreading of information makes RLCs attractive in cases
where packet drops or losses are likely to occur, such as
in data dissemination over large peer-to-peer networks [7],
[8], [9]. Recently, Avalanche [8] has been proposed as an
alternative to BitTorrent [10] by using network codes for P2P
data dissemination. Further, network codes have been proposed
as a means of distributed information dispersal and recovery
in large ad-hoc networks via a rumour-spreading(epidemic)
model [7], [9].
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Fig. 1. Buffering at the source versus buffering at nodes: By using network
coding, a form of spatial multiplexing gain can be achieved whereby the small
buffers at the nodes can be shared across multiple nodes.

The common underlying theme in much of the above work
has been that network codes, and specifically RLC’s, allow
spatial (across the network) stochastic multiplexing across
different flows and this feature can be utilized in improving
reliability in large networks. Recently however, Lun, Medard
and Effros [11], [12] exploit network codes for a capacity-
approaching scheme for unicasts or multicasts over large
networks. In their scheme, routers perform RLC over packets
from different flows as well as over packets transmitted in
previous time-slots. Further, for the case of Poisson traffic
with i.i.d. losses at intermediate router queues (modeled as
M/M/1 queues), they derive the error exponent in the large-
delay regime. This is analogous to the use of block codes
or convolutional codes for error control in the PHY that
spread the information across multiple bits in a block or
neighbourhood around each bit. On a related note, error
exponents of codes over networks have also been studied by
Luby et. al. [13].

The insight from [11]that packets dropped in a particular
time-slots can be recovered from RLCs containing the dropped
packets in future time-slots motivates us to consider the
following questions:

• Can we eliminate buffering at intermediate nodes in
favour of coding only at the ends? We consider the
scenario where intermediate routers perform no RLCs or
buffering, but merely drop packets if the link capacity is
exceeded.

• Further, in the event of finite delays, how does network
coding at the ends compare with queueing in intermediate
routers? Here, we wish to compare QoS parameters
such as delay and end-to-end packet loss probability
(reliability) with coding as opposed to queueing.

The main idea stems from the fact that in a very large



network with N nodes and N/2 unicasts from each source
matched to its (randomly chosen) destination, each link in the
network carries a large number of flows, say n = Ω(Nα)
for some α ∈ (0, 1) [14], [15], [16], [17]. Naturally, to
ensure that the per-flow capacity on each link/edge is an
Θ(1) quantity1, the aggregate link capacity must scale with
n. Stability requirements also enforce the condition that the
link capacity should be greater than the mean packet arrival
rate at each link. Under these conditions, we have from
Chernoff’s bound that the probability a link overflows is
roughly of the order of exp(−Nαε0) for some ε0 > 0.
Assuming good mixing, the probability of a link overflowing
anywhere along a path of length Ω(Nβ) for some β ∈ (0, 1) is
approximately O(Nβ exp(Nα)) which is asymptotically close
to O(exp(Nα)) for large N . This can be interpreted as follows
– the probability that there is an overflow in a single link is of
the same order as the probability that there is an overflow in
a path containing a polynomial number of such links. In other
words, ”if an overflow occurs in a path, it will very likely occur
only at only one link in the path”. Hence, instead of buffering
at each link in the path, it should suffice to buffer only at one
link – translating to huge savings in buffer required per-flow
for large networks and better scalability in the design of large
multi-hop networks. However, the link where the overflow
occurs is a function of the sample path of the arrival processes
and varies with time. This variation makes it impossible to
effectively multiplex buffers across links on a path for a single
flow using traditional static buffer allocation at each link. Note
that this is very different from traditional buffer multiplexing
where many flows incident at a single link share buffers across
flows [18], [19], [20].

It is in this scenario that we propose network coding as a
means of “sharing” memory across links along a flow path.
We call this spatial buffer multiplexing – where buffering
and coding implemented via a sliding window of packets at
the source compensates for packet loss at any downstream
bufferless link. In addition to the data packets, suppose that the
source transmits an additional stream of low-priority packets
each of which are independent, random linear combinations
of the data packets transmitted over the past d units of time.
In other words, each low-priority packet is simply a random
weighted sum of all the data packets that were transmitted
over the past d units of time. At each of the intermediate
nodes in the network, during congestion (i.e., the number of
data packets plus the number of coded packets exceeds the
link capacity), some of these coded packets are preferentially
dropped. In other words, nodes in the network employ a two-
level priority scheduling, where data packets are transmitted
with higher priority than coded packets. Note that if the total
number of data packets arriving in a time-slot exceeds the
link capacity, some data packets will be dropped as well. The
decoder at the receiver can then recover the lost data packets if
it receives a suitable number of random linear coded packets
within an interval of time of d units.

We illustrate this in the context of a path in a network

1We use Knuth’s notation O(n), Θ(n), Ω(n) to denote functions that
scale slower than (upper bounded by), as fast as (upper and lower bounded
by positive constants) and faster than (lower bounded by) n respectively.

(see Figure 1), where a data flow passes through a sequence
of nodes in the presence of cross traffic. In a conventional
buffered network, each intermediate node needs packet buffers
to temporarily store packets when bursts of data packets arrive.
On the other hand, in the network coded case (with zero
buffers at intermediate nodes), a coding buffer at the source
needs to maintain a window of packets (over a time-interval
of d units).

Spatial buffer multiplexing can result in significant gains in
buffer requirements. Consider, for example, for a rectangular
grid network with N nodes which are randomly partitioned
into N/2 sources matched to N/2 destinations. The typical
path contains Θ(

√
N) links and each link carries on an average

Θ(
√

N) flows through it. With a buffer of size b for each flow
at each intermediate router, the total number of buffers per-
flow is Θ(

√
Nb). Now, since there are N/2 flows, the total

number of buffers required across the network is Θ(N
√

Nb).
In contrast, we will show that using network coding with
RLCs of d = Θ(b) time-steps, each source-destination pair
requires a (coding) buffer of size Θ(b) only and no buffers are
required at the intermediate nodes. Hence, the total number of
buffers required across the network is Θ(Nb). This comes as
an average Θ(

√
N) buffer-size gain over traditional queueing.

In this paper, we consider a large network with many
nodes and many flows through each link(edge) in the network
to compare alternate strategies. We employ large deviations
based analysis [21], [22] to quantitatively demonstrate that
the packet loss probabilities with these two strategies are
orderwise similar in the exponent. Large deviations have been
used to analyze packet-loss, delay and other QoS parameters
in networks with large number of sources (many sources large
deviations) [22], [19], [18] or with large buffers (large buffer
large deviations) [23]. In the context of many sources large
deviations, a rate function indicates that the probability that a
QoS parameter is not met decreases uniformly in the exponent
with the number of sources. Botvich and Duffield [18] show
that the queue length Qn at the head of a link exceeds the
buffer size nb is given by the rate

lim
n→∞

1
n

log P (Qn > nb) = −I(b). (1)

Further, the authors show that for uncorrelated arrivals at the
queue, I(b) ≈ δb + ν for some δ > 0, i.e. the rate function
I(b) is linear in b in the large b regime.

A. Main Contributions
In this paper we consider the comparison of buffering at

each intermediate link along a path versus network coding at
the source and decoding at the destination. We first consider
the case of a single bufferless link with capacity nC packets
per time-slot where n is the number of flows, with mean arrival
rate E[Am] for the m-th flow, through this link, and C >
E[Am], for all m = 1, 2, . . . n, is the capacity per-flow for
this edge. We assume that RLCs of packets in d previous
time-slots are transmitted as a lower-priority auxiliary coded
packet stream. In this context, we obtain the many sources
large deviations rate function for packet loss across this edge
as an increasing function of d. Subsequently, we generalize this
result to the case of a path where the number of edges(links)
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is a polynomial in ne, the number of flows through each edge
e in the path.

A preliminary overview of large deviations is presented in
Section II. Section III presents a detailed system model for
the encoder and decoder, a quick overview of Random Linear
Coding and describes the proportional dropping rule where,
in the event of overflow, packets are dropped from flows in
proportion to the size of each flow. We also state the conditions
under which packets dropped in previous time-slots can be
recovered with the aid of coded packets in subsequent time-
slots.

Our main contributions are as follows:
(i) Since RLC couples the packet drop in one time-slot with

the arrival rates in the past and future time-slots, deriving
the exact expression for the probability of packet loss is
difficult. In Section IV we upper bound the probability
of packet loss over a link with n flows through it
by exp(−nIY (0, d, B̄)) where IY (0, d, B̄) > 0 is a
increasing function in d. We further derive a lower bound
to show that the above bound is orderwise tight in the
exponent. Further, in Section VI we show that for i.i.d.
Bernoulli arrivals, IY (0, d, B̄) = dK1 for some constant
K1 > 0. This implies that the probability of a packet loss
decreases exponentially with n and d which compares
with the many sources queueing result of Botvich and
Duffield [18], Equation (1). We plot the packet loss
probabilities with network coding in comparison with
buffering and show that if the buffer required for coding
is orderwise the same as the buffer for queueing, the
same QoS (packet loss probability) can be obtained.

(ii) In Section V, we generalize the rate function to the case
of a path with multiple links and for coding buffer of
d = Θ(1). We derive an upper bound on the probability
of packet drop that decays exponentially in nΓ, the
minimum number of flows through any edge along path
Γ. We numerically show in Section VI that the rate
function is asymptotically linear in d.
In large networks with N nodes where nΓ = Ω(Nα),
α ∈ (0, 1),(see Section V for networks with
this property) we argue that for achieving
comparable QoS, (buffer per node with
traditional queueing)/(buffer per node
with network coding) = Ω(Nα). This order-
wise buffer savings makes a case for the use of network
coding for spatial buffer multiplexing in favour of
queueing at intermediate routers for such networks.

Finally as a technical aside, we note that network-wide
many-sources large deviations analysis with traditional buffer-
ing at intermediate nodes is very difficult due to the correlation
of processes in links along a path. However, network coding
allows sufficient decoupling that enables our analysis in the
network-wide context.

II. PRELIMINARIES

For a large network with many source-destination pairs,
under fairly general topology assumptions, each link carries
the load of multiple source-destination pairs. Assuming that
the link capacities scale orderwise linearly with the number

of flows through a link, so as to allow Θ(1) per-flow capacity
at each link, we can quantify various QoS properties of the
flows, such as packet drop probability and maximum delay,
in terms of large deviations rate functions of the arrival and
service processes at the link queues [18], [23], [22], [19].

For a sequence of i.i.d. random variables X1, X2, . . . where
E[Xi] = X̂ , the Strong Law of Large Numbers states that the
empirical mean X(n) = 1

n

∑n
i=1 Xi → X̂ almost surely in

the limit as n →∞. In the pre-limit, for finite n, Chernoff’s
bound characterizes the rate of convergence of X(n) to the
mean X̂ as follows,

P (|X(n) − X̂| > δ) ≤ 2 exp
[
−n sup

θ
(δθ − log MX(θ))

]
where MX(θ) = E[exp(θ(X1 − X̂))] is the log moment
generating function of the zero mean process Xi− X̂ . Further
[22] [21], it can also be shown that the above bound is tight.
Thus, for any ε > 0, there exists an nε such that for all n > nε,

P (|X(n) − X̂| > δ) ≥ 2 exp
[
−n sup

θ
(δθ − log MX(θ) + ε)

]
.

We can therefore state that the sequence of random variables
X(1), X(2), . . ., converges to X̂ with a large deviation property
with rate function

I(x) = sup
θ
{θx− log MX(θ)}.

The rate function I(x) ≥ 0 since setting θ = 0, 0.x −
log Mx(0)− 0.

Thus the large deviations rate function gives an understand-
ing of how fast a sequence of random variables converges to
the typical value of the sequence as we consider increasingly
large numbers of these variables. This analysis can be extended
to the case a general sequence of random variables as follows.
A sequence of random variables Z1, Z2, . . . is said to satisfy a
large deviations principle with rate function IZ(·) if for every
Borel set A,

− inf
z∈A0

IZ(z) ≤ lim
n→∞

inf
1
n

log P (Zn ∈ A) (2)

≤ lim
n→∞

sup
1
n

log P (Zn ∈ A) ≤ − inf
z∈Ā

IZ(z)

where A0 and Ā are the interior and closure of set A [22],
[21].

In the following sections, we will study the sequence of
random variables f(X(1)), f(X(2)), . . ., where each X(n) .=
1
n

∑n
m=1 Am is the empirical average of n independent identi-

cally distributed (i.i.d.) random variables Am, m = 1, 2, . . . , n
and f() is a continuous function. Note that in general, Am can
be either a scalar or a vector random variable.

III. SYSTEM MODEL

A. Single source stream
Consider the simplest case of a single user stream over a

single zero buffer link of constant capacity C without delays.
We assume slotted time. Also, define the window Wi

.= {t :
i−d+1 ≤ t ≤ i} of size d corresponding to the i-th time-slot.
In time-slot i, the source (head of the link) generates a random
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Past time−slots

Fig. 2. Illustration of RLC across d time-slots for a particular source for
d = 4: each small blank rectangular tile represents a data packet. RLC is
performed over all the data packets in the previous d = 4 time-slots to
generate B̄ = 3 auxiliary coded packets (shaded tiles) each time-slot. Data
packets have higher priority in the link with capacity C = 5. The auxiliary
coded packets have lower priority and are sent when there is spare capacity in
the link. The dark tile represents the dropped packet at time-slot t− 3 when
6 packets were generated since the link capacity is only 5.

number of data packets {Pi,j}, j = 1, 2, . . . , Ai and transmits
them across the link. Here we assume that the data packet
arrival process {Ai}, i = (−∞,∞) is a stationary ergodic
random process taking values chosen from a set A ⊆ N, with
mean strictly less than C.

Each packet Pi,j can be assumed to be a vector of size s
containing elements Pi,j(m), m = 1, 2, . . . , s chosen from a
finite field Fq. In general therefore, each Pi,j ∈ Fs

q. The source
also generates a low-priority auxiliary data stream of B coded
packets {P ′

i,j} by an RLC over all packets in the window Wi

according to the rule:

P ′
i,j(m) .=

∑
t∈Wi

At∑
k=1

αt,kPt,k(m) (3)

for all j = 1, 2, . . . , Bi and all m = 1, 2, . . . , s where each
αt,k is a random element in Fq and all arithmetic is over Fq.
If Ai + Bi > C, priority is given to the data packets Pi,j

over the coded packets. The purpose of the coded packets is
to help recover packets that were lost in any of the past d
time-slots. In this sense, the auxiliary data may be thought
of being generated by a random linear convolutional encoder
with memory d at the source, see Figure 2. Note that the link
constraint implies that the number of auxiliary data packets
received by the destination (tail of the link) at time t is
min(B̄, (C −At)+).

Denote the number of lost packets in time-slot i by Li where
x+

.= max{x, 0}. For the single source case, Li
.= (Ai−C)+.

When a packet is dropped at, without loss of generality, time-
slot 0, the receiver attempts to recover the dropped packets

by decoding the coded packets received in future time-slots
by solving for the unknown values of Pi,j from the set of
equations in 3.

The destination receives the the coefficients of the linear
equations, αt,k, corresponding to each coded packet as header
bits within the packet. Alternately, since in most practical
considerations, the coefficients αt,k will be generated via a
pseudo-random generator, it may be sufficient to initialize the
pseudo-random generators at the source and destination to the
same state at the beginning of the communication process via
some form of handshaking. However, this would require the
decoder at the receiver to know the exact number of packets
generated in each time-slot so as to maintain both random-
number generators at the same state. This information could
be encapsulated as part of one or more of the data packets.

Each coded packet, and the corresponding coefficients αt,k

represent a linear equation over Pi,j . The information at the
decoder may be represented as a set of linear equations in
known and unknown variables. The known variables corre-
spond to the data packets are directly received by the decoder.
The unknown variables are the dropped packets. Hence, the
decoder requires as many independent linear equations (coded
packets) as the number of unknowns to be able to solve for
this set of equations. Note that since the field Fq is finite,
in general, two coded packets have a non-zero probability
of being linearly dependent. This corresponds to the event
where the matrix of coefficients is singular. In the rest of this
work we will loosely refer to the set of linear equations as
being invertible (uninvertible) if this matrix is not invertible
(respectively, not invertible).

Since packets that are dropped can be recovered in a future
time-slot, we make a distinction between dropping a packet
and losing a packet as follows. Li packets are said to be
dropped at time-slot i if Ai > C. However, some of these
dropped packets may be recovered by future coded packets.
Hence, packets are said to be lost if they are dropped and
cannot be recovered by solving for the linear equations formed
by the coded packets. Observe that the encoding process
couples the loss of a packet in one time-slot with losses in
the past and the future. This cascading effect implies that a
packet that is transmitted at time 0, may be decoded in the
distant future (possibly after infinite delay) when the set of
linear equations is solvable.

However nearly all practical applications require that all
packets must be decoded within finite delay. This motivates
an additional QoS condition requiring a packet to be decoded
within d time-slots. Conversely, a dropped packet that is not
decoded within d time-slots is considered lost by the decoder
at the destination.

B. Many source streams
In general, a link in a large network transmits packets from

a large number of sources. For the subsequent analysis we
will assume that the link capacity scales in proportion to the
number of sources transmitting over the link. The number of
sources transmitting over a link depends, in general, on the
total number of nodes N , the topology of the network and the
number of simultaneous source-destination pairs transmitting.
For simplicity, we will first deal with the abstraction of a link
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with n source streams over a single bufferless link of capacity
nC packets/time-slot in Section IV.

Each source Sm, m = 1, 2, . . . , n generates Am
t packets

Pm
t,j , j = 1, 2, . . . , Am

t in time-slot t. A total of (
∑n

m=1 Am
t −

nC)+ packets will be dropped in each slot t. However, the
distribution of the dropped packets is a function of the drop-
ping rule at the head of the link. We define the proportional
dropping rule where

Lm
t

.=
Am

t∑n
m=1 Am

t

(
n∑

m=1

Am
t − nC

)
+

(4)

are dropped from the m-th stream at time t. We assume Lm
t

.=
0 for

∑n
m=1 Am

t = 0.
If
∑n

m=1 Am
t < C, the residual capacity is split equally

between coded packets from each source. Thus the number of
coded packets from source S1 received at the tail of the link
is

Bm
t

.= min

(
B̄,

(
C − 1

n

n∑
m=1

Am
t

)
+

)
. (5)

IV. PROBABILITY OF PACKET LOSS

Let ET be the event that the last window where no packets
were dropped from this stream was W−T . Also, let D

(n)
1 be the

random variable denoting the delay within which all packets
P 1

0,k, k = 1, 2, . . . , A1
0 are successfully received (directly, or

via decoding future coded packets). In keeping with the QoS
requirement therefore, packets dropped at time 0 (if they are
dropped) will be recovered if and only if D

(n)
1 ≤ d, i.e.

the decoding delay is less than or equal to d. Due to the
interdependence of decodability across time-slots, the exact
expression for P (D(n)

1 > d) is difficult to compute and so we
will attempt to bound this value.

For a finite field Fq, a random matrix has a finite probability
of not being invertible.

Condition 1: If the number of linear equations is greater
than or equal to the number of unknowns, the set of linear
equations is solvable for the unknowns if the coefficient matrix
of the linear equations is invertible.

We also use Sk to denote the event that the coefficient
matrix corresponding to the RLCs in window Wk is invertible.

For the rest of this paper, we use the notation {C} to denote
the event set {ω : ω ∈ Ω, ω satisfies condition C} where Ω =∏n

m=1 ΩAm ×ΩBm is the total sample space represented as a
product space of the sample path spaces of the packet arrival
processes Am

t and Bm
t . For example {D(n)

m > d} .= {ω : ω ∈
Ω, D

(n)
m (ω) > d} is the set of sample paths corresponding to

the event that the decoding delay for flow from source Sm

is greater than d. The complement of an event {C} will be
denoted by {¬C}.

Observe that by definition, the sets ET are disjoint for
different values of T , so if T 6= T ′, ET ∩ ET ′ = Ø. Also,
since E0 implies that L1

0 = 0, P (D(n)
1 > d|E0) = 0. Hence,

by total probability,

P (D(n)
1 > d) =

∞∑
T=1

P ({D(n)
1 > d} ∩ ET ). (6)

ΣBi

1ΣL i

��������
��������
��������
��������

1

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��������
��������
��������
��������

��������
��������
��������
��������

k − 1 k k + 1 k + 2 k + 3 k + 4 k + 5

Legend

recovered

data packets

Fig. 3. Progression of the Induction over each j∗ ≥ 1:

A. Upper bound
To obtain the upper bound, we first find a superset of the set

of sample paths corresponding to the event {D(n) > d|ET }
in the following lemma.

Lemma 1: {D(n)
1 > d} ∩ ET ⊆[⋃d

k=−T {{
∑

i∈Wk
L1

i >
∑

i∈Wk
B1

i } ∪ {¬Sk}}
]
∩ ET .

Proof: We proceed by framing the contrapositive2.

ET ∩
d⋂

k=−T

{{
∑

i∈Wk

L1
i ≤

∑
i∈Wk

B1
i } ∩ {Sk}} ⊆ (7)

{D(n)
1 ≤ d} ∩ ET .

In other words, when ET holds, it suffices to show that if for
each of the consecutive windows W−T to Wd, the number of
losses is less than or equal to the number of coded packets
and the RLCs in each window are linearly independent, then
packets lost at time-slot 0 can be recovered within d time-slots.
We now prove by induction over the sequence of windows
{W−T ,W−T+1, . . . ,Wd}. Since ET is true, the packets in
W−T are all directly received by the destination without
requiring any decoding.

Induction Hypothesis: Consider any time-slot T0 ≥ −T
such that all packets that were dropped between −T − d + 1
and T0 are recovered by T0. Then there exists a 1 ≤ j∗ ≤ d
such that all packets that are dropped between −T −d+1 and
T0 + j∗ are recovered by T0 + j∗, i.e. within d time-slots.

We first show that this is true for the base case, i.e. for
T0 = −T . Since ET holds, no packets are dropped between

2We use the following contrapositive argument: Given any sets A, B, C,
we have [A ∩ C] ⊆ [B ∩ C] ⇐⇒ [¬B ∩ C] ⊆ [¬A ∩ C].
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−T − d + 1 and −T and hence all packets dropped between
−T − d + 1 and −T are recovered by −T . ET also implies
that there is a packet lost at time-slot −T +1, i.e. L1

−T+1 > 0.
We now need to find a j∗ such that all packets dropped before
−T +j∗ are recovered by −T +j∗ to prove that the induction
hypothesis is true for the base case. Now consider the time-
slots in window W−T+d+1 from −T + 1 to −T + d. Also
since the LHS of (8) states that condition

∑
i∈W−T+d

L1
i ≤∑

i∈W−T+d
B1

i is true, there must be a time-slot

−T + j
.= arg min

t∈W−T+d

−T+t∑
i=−T+1

L1
i ≤

−T+t∑
i=−T+1

B1
i . (8)

In other words, −T + j indexes the first time-slot after
−T +1 when the number of auxiliary packets just overshoots
(i.e. becomes greater than or equal to) the number of lost
packets till that time-slot. Since L1

−T+1 > 0 also implies
that B−T+1 = 0, it must be that 2 ≤ j ≤ d. Now, all
the auxiliary packets from time-slot −T + 2 to −T + j are
RLCs of data packets generated in the time-slots between
−T − d + 3 to −T + j. Since the coefficient of the RLCs
are all known at the receiver, each RLC can be considered
as a linear equation over the set of known, and unknown
symbols, in Fq corresponding to packets that have not been
dropped, and those that have been dropped, respectively. By
the definition of j in (8), the number of unknown symbols
in this set of linear equations

∑−T+t
i=−T+1 L1

i is matched or
exceeded by the number of simultaneous linear equations∑−T+t

i=−T+1 B1
i . The LHS of (8) also implies that S−T+j is true,

and therefore that these equations are linearly independent, i.e.
Condition 1 holds. Consequently, the receiver can solve this
set of simultaneous equations (say, by Gaussian elimination),
to decode the unknown symbols (dropped packets). Thus, all
packets that were dropped before −T +j have been recovered
at time-slot −T + j for 1 < j ≤ d demonstrating that the base
case holds with j∗ = j.

In general, assume that the induction hypothesis holds for
any arbitrary time-slot k ≥ −T . This means that all packets
from −T −d+1 to k are known at the receiver. If there is no
loss at time-slot k + 1, then we set j∗ = 1 to observe that the
induction hypothesis still holds. If otherwise, i.e. Lk+1

i > 0
(see Figure 3), we consider the window Wk+d containing time-
slots from k + 1 to k + d. Then, analogous to the base case,
we can find a 1 < j′ ≤ d such that

k + j′
.= arg min

t∈Wk+d

k+t∑
i=k+1

L1
i ≤

k+t∑
i=k+1

B1
i .

Again, noting that Condition 1 holds, we have a set of linearly
independent simultaneous equations where the number of
unknowns is matched or exceeded by the number of equations.
Hence, once again, setting j∗ = j′, we can show that all
packets that are dropped between −T − d + 1 to k + j∗ can
be recovered at k + j∗.

Since j∗ is always greater than 1, the induction proceeds
forward along the time-steps where packets are recovered all
the way to packets lost in time-slot 0. Also, since j∗ < d,
we can easily see that packets dropped at 0 will be decoded
within the next d time-slots.

This proves the contrapositive. We are now done.

�

From (6) and Lemma 1, for any fixed T̄ > 0, we conclude
using the union bound that

P (D(n)
1 > d) ≤

T̄∑
T=1

(
d∑

k=−T

P (
∑

i∈Wk

L1
i >

∑
i∈Wk

B1
i )

+
d∑

k=−T

P (¬Sk)

)
+

∞∑
T=T̄+1

P (ET ).

(9)

We observe that the probability that the matrix of coefficients
αt,k will be of non-full rank P (¬Sk) depends on the choice
of q in Fq. In the sequel, we will first obtain bounds on each
P (
∑

i∈Wk
L1

i >
∑

i∈Wk
B1

i ) and then choose q such that∑d
k=−T P (¬Sk) is dominated by

∑d
k=−T P (

∑
i∈Wk

L1
i >∑

i∈Wk
B1

i ).
Traditional large deviations analysis applied to queueing

systems focuses on events concerning the empirical mean of
a growing set of random variables. Similarly, in the present
problem, we are interested in the strong properties of the
empirical mean

X
(n)
i

.=
1
n

n∑
m=1

Am
i (10)

across source inputs. However, the analysis of the probability
of decoding failure is complicated by the fact that the
expression for L1

i contains both the empirical mean term and
the individual value A1

i corresponding to the arrivals from
the first source. For ease of analysis, we make the practical
assumption of a finite support set for the arrival process below.

Assumption 1: A is a finite (bounded) set in N.

In other words, there is a finite M ∈ N such that for all sources
Sm and time-slots i, the number of packets from each source
is upper bounded, i.e. Am

i < M . This, together with (4) and
(5), implies that

P (
∑

i∈Wk

L1
i >

∑
i∈Wk

B1
i ) ≤ P (

∑
i∈Wk

(
X

(n)
i − C

)
+

X
(n)
i

M

−min(B̄,
(
C −X

(n)
i

)
+
) > 0).

Further, to characterize rare events, we need to establish
regularity properties for the packet arrival process Am

i . Since
the arrival processes at different sources are assumed to be
independent, the following assumption suffices.

Assumption 2: Fix any d ∈ N and some window Wk of
size d. Define the vector Ām = (Am

i )i∈Wk
. Then for all m =

1, 2, . . . , n, θ̄ ∈ Rd, the log moment generating function

ΛĀm(θ̄) .= log E
[
exp(θ̄ · Ām)

]
< ∞

exists and is finite.
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In addition, we require an assumption on the mixing
properties, of the arrival process to bound the value of P (ET ).

Assumption 3: For each source m, the arrival process
{Am

i } is a i.i.d. process.

Remark 1: The assumption of i.i.d. in time made above
is not required for the upper bound proof that we present.
A sufficient condition is the α mixing condition defined in
[24]pp. 363 which is satisfied by Markov chains over finite
state spaces. Alternately, if we assume that the arrival process
is Θ(d) − dependent [24]pp. 364, we can bound the value
of P (ET ). However, for notational and computational ease, in
this paper we make the i.i.d. assumption throughout.

For n ∈ N, define

ΛĀn
(θ̄) .=

1
n

log E

[
exp(

n∑
m=1

θ̄ · Ām)

]
where Ān

.=
∑n

m=1 Ām. Since the arrival processes across
different streams are i.i.d. and ergodic, Assumption 2 implies
that

ΛĀ(θ̄) .= lim
n→∞

ΛĀn
(θ̄) = ΛĀ1(θ̄)

exists for all windows Wk.
Hence, from the Gartner-Ellis Theorem, for any x̄ ∈ Rd,

X̄(n) .= 1
n Ān satisfies a large deviation property (LDP) with

good rate function [21], [22], [23] that is a convex dual3 of
ΛĀ

IX̄(x̄) = sup
θ̄

(
x̄ · θ̄ − ΛĀ(θ̄)

)
. (11)

Observe that the function f : Rd → R defined as

f(x̄) .=
d∑

i=1

[
(xi − C)+

xi
M −min(B̄, (C − xi)+)

]
(12)

is a continuous function defined on Rd. Figure 5, plots f for
the case of d = 1. Now, using the contraction principle [21],
[22], the sequence of random variables,

Y
(n)
k

.=
∑

i∈Wk

[
(X(n)

i − C)+
X

(n)
i

M −min(B̄, (C −X
(n)
i )+)

]
satisfies an LDP with rate function,

IYk
(y, d, B̄) = inf{IX̄(x̄) : f(x̄) = y}. (13)

where the inf of an empty set is defined in the usual manner
as ∞. We include d as an argument to the rate function since
the rate function varies with d. Subsequently, in Section VI
we will show that IYk

(y, d, B̄) increases linearly in d for
arrival processes satisfying Assumption 6.

Lemma 2: If E(Am
0 ) < C for all m = 1, 2, . . . , n, there

exists a fixed ε > 0 such that for all T > 0 and n > Nε

P (ET ) ≤ e−nεbT/dc (14)

3The convex dual is otherwise known as the Legendre-Frenchel transform.

Proof: Define Rk to be the event that window Wk has no
packet drops for packets from source 1 with probability

P (Rk) = P ({
⋂

i∈Wk

(L1
i = 0)}).

Therefore,

P (¬Rk) = P ({
⋃

i∈Wk

(L1
i > 0)}) (15)

≤ dP (L1
i > 0) (16)

= dP (
n∑

m=1

Am
0 > nC) (17)

where (16) follows from the union bound and (17) fol-
lows from the ergodicity of the arrival process. Also, since
E(Am

0 ) < C, for some ε1 > 0, the Chernoff bound on
P (
∑n

m=1 Am
0 > nC), together with (17) yields the following

inequality,

P (¬Rk) ≤ de−nε1 . (18)

From the definition of ET , we have that

ET =

[ −T⋂
k=−1

{¬Rk}

]
∩R−T ⊆

−T⋂
k=−1

{¬Rk} (19)

⊆
bT/dc⋂
j=0

{¬R−1−dj} (20)

Further, from Assumption 3, the events ¬R−1−dj , d =
1, 2, . . . , bT

d c are independent since they are functions of non-
overlapping windows of length d between −T and −1. Now,
using (18),

P (ET ) ≤ exp(−n[ε1 −
log d

n
]bT/dc). (21)

Since d is finite, we can choose Nε appropriately such that
ε1 − log d

n < ε for all n > Nε to obtain (14).

�

Note that P (Sk) is a function of the size of Fq. Most recent
work on network coding [11], [6], [5] assumes that the field
size is large enough to consider that the coefficient matrix
at the receiver is completely invertible. For a k × k matrix
with elements taken from Fq, the probability that the matrix
will not be invertible is 1 −

∏k
l=1(1 − q−l). The size of the

matrix to be inverted depends on the congestion at the link.
For instance, if there is no congestion in the link – an event
with high probability, since E[A] < C and n is large – none
of the auxiliary coded packets need to be decoded since there
are no packet drops. Hence, the size of the matrix that needs
to be inverted is equal to the number of drops in d consecutive
time-slots. Trivially, the number of auxiliary packets in d slots
is bounded by B̄d. Hence, for the purposes of our analysis,
it is sufficient to bound the field size from below as follows
such that Condition 1 always holds.

Assumption 4: We consider that the field Fq is large enough
so that

1−
B̄d∏
l=1

(1− q−l) ≤ P (
∑

i∈W0

(
L1

i −B1
i

)
> 0).
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Remark 2: Assumption 4 is easily satisfied in most
practical cases. We note that with B̄, d = 10, and
P (
∑

i∈W0

(
L1

i −B1
i

)
> 0) of the order of 10−6 (or 10−8,

respectively), this implies that q must be approximately 20
(30, respectively) bits long.

We are now ready to state our first result.

Theorem 1: If the average arrival rate for each of m =
1, 2, . . . , n sources E(Am

0 ) < C, and D(n) be the delay within
which all dropped packets must be recovered, then under the
condition that Assumption 4 is satisfied for field size Fq, for
any finite d > 0,

lim
n→∞

1
n

log P (D(n)
1 > d) ≤ −IY (0, d, B̄)

where

IY (y, d, B̄) = inf{IX̄(x̄) : f(x̄) = y}. (22)

for the mapping f(·) defined in (12).

Proof: Since the processes Am
i , m = 1, 2, . . . , n are ergodic

and identically distributed, from (13) and the definition of the
rate function in (2),

P (
∑

i∈Wk

{L1
i −B1

i } > 0) ≤ exp
(
−nIYk

(0, d, B̄)
)

for all k = −1,−2, . . .−∞. So, defining IY
.= IYk

and using
the upper bound in (9), we have for n large enough and for
some finite K > 0,

P (D(n)
1 > d)

≤
T̄∑

T=1

2(T + d) exp
(
−nIYk

(0, d, B̄)
)

+
∞∑

T=T̄+1

P (ET ) (23)

≤ T̄ (T̄ + 2d + 1) exp
(
−nIYk

(0, d, B̄)
)

+
∞∑

T=T̄+1

e−nεbT/dc (24)

≤ T̄ (T̄ + 2d + 1) exp
(
−nIYk

(0, d, B̄)
)

+
∞∑

T=T̄+1

e−nε(T/d−1) (25)

≤ T̄ (T̄ + 2d + 1) exp
(
−nIYk

(0, d, B̄)
)

+2e−n(ε/d)(T̄−d) (26)
≤ K exp

(
−nIYk

(0, d, B̄)
)

(27)

where (26) follows from Lemma 2 and from standard results
on the convergence of series. (27) follows by choosing a fixed
T̄ to satisfy (ε/d)(T̄ − d) > IYk

(0, d, B̄). We are now done.
The 2 in (23) stems from Assumption 4 and the consequent
bound P (¬Sk) ≤ P (

∑
i∈W0

(
L1

i −B1
i

)
> 0).

�

B. Lower Bound

In this section, we lower bound P (D(n)
1 < d) to study

the tightness of the upper bound in the previous subsection.
We define E ′i as the event where data packet drops occur in
all time-slots in window Wi. Therefore, if {L0 > 0 ∩ E ′d}
occurs, then no auxiliary coded packets containing information
about the packets lost at time-slot 0 arrive at the destination.
Hence, none of the dropped packets can be recovered. Since
E ′d =

⋂d
i=1 {

∑n
m=1 Am

i > nC},

P

(
d⋂

i=1

{
n∑

m=1

Am
i > nC

})
≤ P (D(n) > d). (28)

In particular, if the arrival process {Am
i } is i.i.d. across

time, the lower bound in the above expression can be evaluated
exactly in terms of the rate function of A1

m as follows,

P

(
d⋂

i=1

{
n∑

m=1

Am
i > nC

})
=

[
P

(
n∑

m=1

Am
i > nC

)]d

.(29)

Let

ΛA(θ) .= log E[exp(θAi
m)] (30)

be the log moment generating function of the random variable
{Ai

m}, i = −∞, . . . ,−1, 0, 1, . . . ,∞, m = 1, 2, . . . , n. Note
that since the sources have i.i.d. arrival processes, we do not
index the expression for log MGF by time-slot i or source m,
and will use the same expression for the arrival process from
any source at any time.

Since E[Am
i ] < C, we have from [21],

P

(
n∑

m=1

Am
i > nC

)
≥ exp(−nΛ∗

A(C) + o(n))

where

Λ∗
A(x) .= sup

θ
(θx− ΛA(θ)) (31)

and a function f(n) = o(n) if limn→∞ f(n)/n = 0.
Then, from (28), (29) and (31), we arrive at the following

result.
Lemma 3: If each of the sources m = 1, 2, . . . , n has i.i.d.

arrival process {Am
i }, with E(Am

0 ) < C, and D(n) be the
delay within which all dropped packets must be recovered,
then for any finite d > 0,

lim
n→∞

1
n

log P (D(n) > d) ≥ −dΛ∗
A(C)

�

We note that the determining lower bound on the limit of
1
nP (D(n) > d) as n → ∞ for Markov arrival process at
each source in general remains an open problem. Further, we
conjecture that the upper and the lower bounds of the limit
above are identical in the order of d for the general Markov
arrival process case.
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V. MULTI-HOP NETWORKS

In this section, we extend the large deviations results of
the previous section from a single link to a general multi-hop
network. Recall that we had selected the B̄ as the constant
rate at which auxiliary data packets are generated by the
the source for the single link case. However, in a multi-
link path Γ of length |Γ| from source N0 to destination
NL where intermediate nodes N1, N2, . . . , N|Γ|−1 function
as either sources or sinks for their respective streams and
well as routing packets destined for other hosts, the rate of
auxiliary packets arriving at destination N|Γ| is a function of
the aggregate traffic flow across all intermediate links. This
coupling of the sample paths of each individual source process
motivates an approach based on decoupling flows to obtain an
appropriate bound on the end-to-end probability that a packet
transmitted at time-slot 0 will be lost.

We also note that the number of paths ne crossing a
link(edge) e is a function of the topology of the network and
the source-destination partition of the nodes in the network.
We will assume that at each edge, the capacity of the edge
scales as neC to ensure that no source-destination paths a
completely blocked. For a path Γ defined as a set of edges
eNk,Nl+1 , along the path, we define

nΓ
.= min

e∈Γ
ne. (32)

Assumption 5: We consider networks where for each edge
e in the network ne = Ω(Nα) where N is the number of
nodes in the network uniformly for some fixed α ∈ (0, 1).
Also the path length |Γ| = Ω(Nβ) for some β ∈ (0, 1).

This assumption is motivated by the spate of recent results
in scaling laws over large networks [14], [17], [16], [15] such
as ad-hoc networks or in server grids. The authors in [16]
prove that if N nodes are scattered uniformly over a unit
area, divided into sure tiles of area a(N) each, and under a
relaxation of the Protocol Model for wireless ad-hoc networks
proposed in Gupta and Kumar [14], the number of paths
crossing each tile is O(N/

√
a(N)) with high probability when

the propagation occurs along a straight line path. Further,
for direction based routing with errors but with a progressive
routing assumption where the distance between the source and
destination is reduced by at least δ

√
a(N) for some δ > 0 and

a(N) = log N
N , Subramanian and Shakkottai [15] show that

the total number of tiles |Γ|, that a path can touch is upper
bounded by 1

δKa(N) for some K ∈ Θ(1). Thus, since the mean
Euclidean path length is Θ(1), by symmetry the probability
that a path crosses a given tile is lower bounded by δKa(N).

For a symmetric rectangular grid of N computers, ignoring
edge effects (or assuming a wrap-around at the edges to
form a torus) and source-destination pairs chosen uniformly at
random from among the nodes, the expected number of paths
through any edge is

√
N . This, again points to the validity of

Assumption 5.
Assumption 5 together with the definition in (32) implies

that nΓ = Ω(Nα) for any path Γ in the network.
Further, by Assumption 4, we will consider the field size

(packet size) is large enough such that a lost packet can be

decoded simply if the number of auxiliary packets is greater
than the number of lost packets in window.

Let Am
i,e is the flow from source m through edge e at time

i. Then we define X
(n)
i,e

.= 1
n

∑n
m=1 Am

i,e as the normalized
cumulative flow of data packets through e at time i.

Further, we use Lm
Γ,i to denote the number of packets from

source Sm dropped in time-slot i along path P . Recall that we
assume that there are no packet transmissions delays and that
we treat each link as a pipe that instantaneously transfers the
packet from source to destination in case there is sufficient
capacity, else the packet is dropped at the first edge where
there is a congestion. In general, link propagation delays can
be handled easily by the appropriate indexing of time at each
link along the propagation path. However, we skip the details
since it does not affect our analysis in any way.

Also, let Bm
Γ,i be the number of auxiliary packets from

source Sm that reach the destination at the end of path P in
time-slot i. Also fix any T̄ > 0. Assuming that the field size
Fq is large enough as before we can bound the term P (Sk)
corresponding to decoding failure in (9) (using Assumption 4)
to write the probability that packet loss of a packet from source
Sm dropped in time-slot 0 on path Γ as

P (D(nΓ)
Γ,m > d) ≤

T̄∑
T=1

(
d∑

k=−T

2P (
∑

i∈Wk

Lm
Γ,i −Bm

Γ,i > 0)

)

+
∞∑

T=T̄+1

P (ET ). (33)

Observe that the path packet drop term Lm
Γ,i is a sum of the

edge losses at each edge. However, the edge losses are not
independent a each link. Therefore, we bound Lm

Γ,i by

Lm
Γ,i ≤ L̄m

Γ,i
.= M max

e∈Γ
I{X(nΓ)

i,e >C} (34)

where I{A} is the identity function for event {A}. The
intuition behind the above bound is simple – if the most
congested link e along path Γ has X

(nΓ)
i,e > C, then L̄m

Γ,i
corresponds to the case where the entire set of data packets
from Sm, which is bounded by M following Assumption 1,
is dropped along path Γ.

Note that using the bound in (34), we can write the
following inequality

P (
∑

i∈Wk

Lm
Γ,i −Bm

Γ,i > 0) ≤ P (
∑

i∈Wk

L̄m
Γ,i −Bm

Γ,i > 0). (35)

Now, assuming that the source generates auxiliary coded
packets at a maximum data rate of B̄, and using the model of a
data-pipe along with packets can be dropped, the rate at which
auxiliary packets can reach the destination is determined by the
(normalized) cumulative packet X

(nΓ)
i,e on the most congested

link e ∈ Γ, see Figure 4. Thus,

Bm
Γ,i = min

(
B̄, min

e∈Γ
(C −X

(nΓ)
i,e )+

)
. (36)

Next, it follows that

L̄m
Γ,i−Bm

Γ,i = max
e∈Γ

(
MI{X(nΓ)

i,e >C} −min(B̄, (C −X
(nΓ)
i,e )+)

)
.
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Fig. 4. The rate of auxiliary packets received at the destination of path Γ
is equal to the rate at the tail of the most congested link along P as shown
here.

We show this by considering the following two cases. Case
(i) occurs when there is no overflow in any link on the entire
path, i.e., L̄m

Γ,i = 0, and thus LHS in the equation above is
−Bm

Γ,i. The RHS of the equation above, in this case, is

max
e∈Γ

(
−min(B̄, (C −X

(nΓ)
i,e )+)

)
= −min

(
B̄,min

e∈Γ
(C −X

(nΓ)
i,e )+

)
= −Bm

Γ,i = LHS,

and we are done. On the other hand in Case (ii), there is a
loss on one (or more) link e ∈ Γ (i.e., X

(nΓ)
i,e > C). In this

case, (C −X
(nΓ)
i,e )+ = 0 and hence Bm

Γ,i = 0. Then, we have

LHS = L̄m
Γ,i = M = RHS,

for Case (ii) as well.
This implies that

P (
∑

i∈Wk

L̄m
Γ,i −Bm

Γ,i > 0) =

P (
d∑

i=1

max
e∈Γ

(
MI{X(nΓ)

i,e >C} −min(B̄, (C −X
(nΓ)
i,e )+)

)
> 0).

Assumption 6: The packet arrival process at each source
Sm, {Am

i } is i.i.d. in time, i.e. for two time-slots i, j: i 6= j
Am

i is independent of Am
j and the two random variables are

identically distributed.

Let L = {(e1, e2, . . . , ed)}, ei ∈ Γ, i = 1, 2, . . . , d. Note
that |L| = |Γ|d. Then we have that

{
d∑

i=1

max
e∈Γ

(
MI{X(nΓ)

i,e >C} −min(B̄, (C −X
(nΓ)
i,e )+)

)
> 0}

=
⋃

(e1...ed)∈L

(
d∑

i=1

(
MI{X(nΓ)

i,ei
>C} −min(B̄, (C −X

(nΓ)
i,ei

)+)
)

> 0).

To see this, consider any four random variables Z1, Z2, Z3, Z4.
Then, observe that the event {max(Z1, Z2)+max(Z3, Z4) >
0} is the same as {(Z1 + Z3 > 0) ∪ (Z1 + Z4 > 0) ∪(Z2 +
Z3 > 0) ∪ (Z2 + Z4 > 0)} The above statement is merely an
extension of this result.

Fig. 5. Contraction mapping functions f , g and ḡ plotted for the case of
M = 15, C = 10, B̄ = 3, β = 2, E[A] = 8. Note that the large β is merely
for purposes of illustration. A small β > 0 leads to tighter bounds on the
packet loss probability.

Therefore, using the union bound,

P (
d∑

i=1

max
e∈Γ

(
MI{X(nΓ)

i,e >C} −min(B̄, (C −X
(nΓ)
i,e )+)

)
> 0)

≤
∑

(e1,...,ed)∈L

P (
d∑

i=1

(
MI{X(nΓ)

i,ei
>C} −min(B̄, (C −X

(nΓ)
i,ei

)+)
)

> 0).

(37)

Also, since packets can only be dropped from the flow orig-
inating from source Sm in subsequent links on the network,
we have that any flow Am

t,e < Am
t , where Am

t is defined as
in the previous section to be the total number of data packets
generated by Sm in time t. This means that fewer packets are
dropped in link e as the link gets farther away from the source
Sm since the flow has already been ’thinned out’ by dropping
packets in the previous links. Also, since the arrivals are i.i.d.
(from Assumption 6), we have∑

L
P (

d∑
i=1

(
MI{X(nΓ)

i,ei
>C} −min(B̄, (C −X

(nΓ)
i,ei

)+)
)

> 0)

≤
∑
L

P (
d∑

i=1

(
MI{X(nΓ)

i >C} −min(B̄, (C −X
(nΓ)
i )+)

)
> 0),

where X
(nΓ)
i is as defined in (10). Hence, we have from (37),

P (
d∑

i=1

max
e∈Γ

(
MI{X(nΓ)

i,ei
>C} −min(B̄, (C −X

(nΓ)
i,e )+)

)
> 0)

≤ |Γ|dP (
d∑

i=1

(
MI{X(nΓ)

i >C} −min(B̄, (C −X
(nΓ)
i )+)

)
> 0).

(38)

However, note that unlike f(x) in Section IV, g : Rd → R

g(x) .=
d∑

i=1

MI{xi>C} −min(B̄, (C − xi)+)

10



is not a continuous function and hence, we cannot apply the
contraction principle directly. Therefore, we upper bound g(x)
by the function ḡ(x) as follows. Fix any small 0 < β < C−B̄.
Then we define

ḡ(x) .=
d∑

i=1

ḡi(xi)

where

ḡi(xi)
.=


M for x ≥ C
M
β (x− C + β) for C − β ≤ x < C

B̄
B̄−β

(x− C + β) for C − B̄ ≤ x < C − β

−B̄ for x < C − B̄

as shown in Figure 5.
Thus the contraction principle applied to the vector se-

quence X̄(nΓ) indexed by nΓ with rate function IX̄(x̄) in
(11), together with (38) implies that the sequence of random
variables

W (nΓ) .=
d∑

i=1

ḡi(X
(nΓ)
i )

satisfies an LDP with rate function

IW (w, d, B̄) .= inf{IX̄(x̄) : ḡ(x̄) = w}. (39)

Thus, we have for n large enough,

P (
∑

i∈Wk

Lm
Γ,i −Bm

Γ,i > 0) ≤ e−nΓIW (0,d,B̄). (40)

Substituting (40) in (33), using the exponential tightness4 of
P (ET ) from (the path version of) Lemma 2, choosing a fixed
T̄ large enough such that the first term in (33) dominates
(the argument is identical to that in (27) in Theorem 1), and
noting that from Assumption 5, |Γ|d is polynomial in n, we
have the probability that a packet dropped on path Γ between
source Sm and the destination at time-slot 0 is lost (cannot be
recovered) is asymptotically bounded as follows

lim
nΓ→∞

1
nΓ

log P (D(nΓ)
Γ > d) ≤ −IW (0, d, B̄) (41)

proving the following result.

Theorem 2: Consider a path Γ from source Sm = N0

to destination N|Γ| in a network satisfying the topological
requirements in Assumption 5. Also, assume that all sources
Sj in the network have i.i.d. packet arrival process, {Aj

i}
satisfying Assumption 6 with mean E(Aj

0) < C. Also, if
the source generates auxiliary packets with rate B̄, then the
probability that a packet dropped from source Sm in time-slot
0 cannot be recovered with delay D

(N)
Γ,m < d is asymptotically

bounded as

lim
N→∞

1
nΓ

log P (D(nΓ)
Γ,m > d) ≤ −IW (0, d, B̄) (42)

�

4Note that Lemma 2 generalizes to a path because of the facts that on
each edge the probability of loss decays exponentially, and that the number
of edges in a path can grow at most polynomially.

In the following section, we perform numerical simulations
to show that IW (0, d, B̄) is strictly positive and scales linearly
in d for i.i.d. arrival processes.

Remark 3: In a queueing network with buffering at interme-
diate nodes, each node needs to have a buffer of size b = Θ(d)
allocated for every flow passing through it. This follows from
many-sources large deviations for a single server queue [18].
Botvich and Duffield show that at a single link, a buffer of
Θ(nΓb) is necessary to achieve a loss probability that decays
as e−nΓI(b), and I(b) ≈ δb + ν (see (1)). Consequently, the
buffer size at each intermediate node scales similarly (since
loss can occur at any of the links in the path of the flow).

Since, we have assumed that nΓ = Ω(Nα) (recall from (32)
that nΓ is a lower bound on the number of flows through any
intermediate router), the above argument implies that the total
buffering required in the network (with N nodes) scales as
Ω(N1+α).

On the other-hand, for comparable QoS with network cod-
ing, Theorem 2 requires Θ(d) buffers per source-destination
flow. This implies that the total buffer in the network scales
as Θ(Nd) (as there are Θ(N) source-destination pairs). This
gives the spatial buffer multiplexing a per-node buffering gain
of Ω(Nα) over traditional queueing at intermediate nodes.

VI. NUMERICAL RESULTS

A. Single Link

Under the i.i.d. Assumption 6, we can show that the rate
function for the single link packet loss probability using
network coding IY (0, d, B̄) derived in (13) scales linearly in
d if the mean arrival rate E[A] ∈ (C − B̄, C). In this paper
(due to space constraints), we demonstrate this for the simple
case where {Am

i } ∼ Bernoulli(p) with p = 0.6 (hence
E[Am

i ] = 0.6) over a link of capacity 0.9. The rate function
for each A can be derived from the convex dual of the Log
Moment generating function (MGF) of the Bernoulli random
variable to be

IA(x) = x log(x/p) + (1− x) log((1− x)/(1− p)).

Using standard rate function computations (for vectors with
i.i.d. elements) [21], we can write the rate function for the
sequence X̄(n) as

I(X̄)(x̄) =
d∑

i=1

IA(xi). (43)

Substituting in (13), for y = 0, we have

IYk
(y, d, B̄) = inf{IX̄(x̄) : f(x̄) = y}

= min
xi∈[0,1]

d∑
i=1

xi log(xi/p) + (1− xi) log((1− xi)/(1− p))

such that
d∑

i=1

fi(xi) = 0}, (44)

and fi is defined as

fi(x) =
[
(x− C)+

x
M −min(B̄, (C − x)+)

]
.

11
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Fig. 6. Comparison of coding with buffering. Coding with d = 3, 6 performs
marginally poorer than queueing with b = 3. However, coding with d = 7
performs better than queueing with b = 3. Thus, the performance of coding
matches buffering for d = O(b).

Note that fi(x) = 0 at C and is strictly increasing and locally
concave at C (see Figure 5). Also, since the rate function
IA(x) is convex and greater than zero everywhere (except at
x = E[A] where IA(E[A]) = 0), if E[A] ∈ [C − B̄, C] the
rate function is a strictly increasing convex function in a small
neighbourhood around C. Therefore (44) can be written as the
convex optimization problem with convex increasing positive
cost function IA(f−1(zi)) under the constraint

∑d
i=1 zi = 0.

From standard optimization theory it follows that, the objective
obtains it’s minimum when each zi = 0, corresponding to each
xi = C. Hence

IYk
(y, d, B̄) = dIA(C).

For our particular example, IA(C) = 0.2263. Hence the
probability of packet loss with network coding for this case,
scales as Θ(exp(−nd× (0.2263))) showing that coding over
larger blocks provides exponential gain in the probability of
packet loss. This is analogous to Botvich and Duffield’s [18]
result for queueing, repeated in (1) where I(b) scales linearly
as buffer-size b in the large b regime.

We also perform a simulation for the single link case with
i.i.d. packet arrivals to each source with a Poisson distribution
with mean E[Am

i ] = 58, m = 1, 2, . . . , n, i = 0, 1, . . . and
capacity per-flow C = 60. We compute the probability of
packet loss with queueing in intermediate nodes and spatial
buffer multiplexing via network coding at the source alone
and plot the results in Figure 6. We observe that similar
performance in terms of packet loss probabilities can be
achieved if the number of time-slots over which network
coding needs to be performed d is orderwise the same as the
buffer b required for queueing.

B. Path with multiple links
Unlike the single link case, the mapping function ḡ for

the multiple hop case (see Figure 5) is not concave in the
neighbourhood of C. However, local properties of the function
ḡ(x) around x = C, allow IW (0, d, B̄) to scale linearly as
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I W
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, d
)
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β = 0.03

Fig. 7. Rate function for the multiple link case as a function of d

well with d. However,the analysis is considerably lengthier.
Instead, we numerically compute the values of IW (0, d, B̄) for
the Bernoulli arrival process in the previous subsection and
graphically observe that the rate function does indeed scale
linearly with d.

VII. CONCLUSION

In this paper we have studied the comparison of buffering
at each intermediate link along a path versus network coding
at the source and decoding at the destination. Using large
deviations based analysis, we have derived upper and lower
bounds on the probability of packet loss over a single link
using a sliding-window based network coding scheme. By
computing the rate function, we have shown that if the buffer
required for coding is orderwise the same as the buffer for
queueing, the same QoS (packet loss probability) can be
obtained.

Next, we generalize the rate function to the case of a path
with multiple links and for coding buffer of d = Θ(1). We
derive an upper bound on the probability of packet drop that
decays exponentially in nΓ, the minimum number of flows
through any edge along the path. We use this result to show
that the network coding based scheme can provide order-wise
buffer gains in large networks.
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