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On Throughput Optimality with Delayed

Network-State Information
Lei Ying and Sanjay Shakkottai

Abstract—We study the problem of routing/scheduling in a
wireless network with partial/delayed Network (channel and
queue) State Information (NSI). We consider two cases: (i)
centralized routing/scheduling, where a central controller obtains
heterogeneous delayed information from each of the nodes (thus,
the controller has NSI with different delays from different nodes),
and makes the routing/scheduling decisions; (ii) decentralized
routing/scheduling, where each node makes a decision based on
its current channel and queue states along with homogeneous
delayed NSI from other nodes.

For each of the cases (with additional flow restrictions for the
decentralized routing/scheduling case), we first characterize the
optimal network throughput regions under the above described
NSI models and show that the throughput regions shrinks with
the increase of delay. Further, we propose channel and queue
length based routing/scheduling algorithms that achieve the above
throughput regions.

I. INTRODUCTION

The wireless network provides a versatile platform to

support a diverse set of applications such as voice, mul-

timedia, data and messaging. These applications can exist

over many configurations — citywide mesh networks, cel-

lular deployments for mobile users, and ad-hoc battlefield

networks. A key component in engineering such networks is

the routing/scheduling algorithm. So far, most research focuses

on developing routing/scheduling algorithms with complete

Network State Information (NSI - the channel and queue state

information of the entire network) by assuming that instanta-

neous NSI is available [1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11], or channel states are constant [12], [13], [14], [15],

[16], [17]. We refer to [18], [19] for comprehensive surveys.

While these algorithms optimize network performance with

complete and instantaneous NSI; they could be inefficient

in practical deployments because (i) obtaining complete in-

formation could incur significant communication/computation

overhead, and (ii) channel states could vary rapidly in a

dynamic environment – thus, only delayed NSI might be

available.

Notably, there have been recent studies on wireless schedul-

ing with partial/delayed NSI. The decentralized channel-aware

ALOHA has been developed in [20], [21], [22] for uplink

networks, where each node transmits based on their own NSI.

For downlink networks, the authors in [23] have considered
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a scenario where the base-station can only access the NSI

of a subset of mobiles, and have developed a variant of the

MaxWeight rule [2], which is throughput-optimal. Further-

more, the authors in [24], [25], [26], [27], [28] have taken

account of the cost of channel probing, and have studied

the trade-off between probing cost and scheduling gain. Joint

channel-probing and transmission-scheduling algorithms have

been developed to maximize network throughput. In [29],

the authors have studied joint routing and scheduling with

noisy channel estimates in the context of channels that vary

i.i.d. across time. In [30], the authors consider a base-station

connected to a collection of mobiles, and study the scheduling

problem (uplink and downlink) when the channel and queue

states are known periodically. They develop throughput opti-

mal policies where a (matching) decision is made at each slot

based on this globally known delayed information.

While partial/delayed NSI has been studied in the prior

work, there are two distinguishing features in our study.

First, we study the case of a general network topology with

heterogeneous delays from each of the nodes in the network

to the central controller (the decision maker). Second, and

perhaps more important, we study the case of decentralized

decision making where each node makes a transmission deci-

sion based on locally known information, and the information

known at each node is different (i.e., different nodes have

different “views” of the network). The resulting information

inconsistency can cause nodes to make potentially conflicting

decisions (e.g., two nodes on the same collision domain may

decide to transmit simultaneously because they have different

delayed versions of the channel-states and cannot coordinate

their decisions with each other instantaneously). The two cases

to be considered in this paper are summarized below:

(i) There is a central controller that selects a subset of links

to transmit based on heterogeneous delayed NSI at each

time slot.

(ii) There is no central controller, and each node has to make

transmission decision based on their own instantaneous

NSI and delayed NSI from other nodes. Uplink networks

and ad-hoc networks are such examples. In this scenario,

on one hand, the nodes have inconsistent views of the

network because they have different local NSI; but on

the other hand, we need to exploit the local instan-

taneous NSI since it provides more accurate network

information. Developing a consistent policy based on

the inconsistent information is the key challenge in this

scenario.

In both of these contexts, we study routing/scheduling
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algorithms with delayed NSI. The main contributions of this

paper include:

(i) We characterize the network throughput regions with

delayed NSI for both the centralized and decentralized

cases (under additional assumptions on delays and flows,

see Section V). We present examples in Section IV and

Section V where we explicitly compute the throughput-

optimal policy. We will see from these examples that the

network throughput region is determined by the available

NSI, and shrinks with the increase of the delay in NSI.

(ii) We also develop throughput-optimal routing/scheduling

algorithms based on the delayed NSI. For the centralized

case, the algorithm is a variant of the back-pressure algo-

rithm proposed in [1], which uses the expected channel-

states, conditioned on the delayed channel-states, in

the routing/scheduling. For the decentralized case, the

proposed algorithm contains two parts: each node first

calculates a threshold vector based on the global delayed

NSI; and then makes a transmission decision based on

the local instantaneous NSI and the threshold vector.

We finally remark that optimal control with information

delays has been studied since the classic work of Witsenhausen

[32], [33], [34], [35]; in general it is known to be hard to char-

acterize the optimal policy in a delayed/decentralized setting.

However, in this paper, we are interested in determining op-

timal stabilizing policies, which is a weaker requirement than

minimizing a cost function; and we are able to characterize

such stabilizing policies in several settings.

II. BASIC MODEL

We first introduce the basic models in this section.

Network model: Consider a network represented by a graph

G = (N ,L), where N is the set of nodes and L is the set of

directed links (channels). Denote by (m, n) a link from node

m to node n, where m is the transmitter and n is the receiver.

Traffic model: We let [s, d] denote a flow in the network,

where s denotes the source of the flow, and d denotes the

destination of the flow. Further, let F denote the set of all

flows in the network. Assume that time is discretized. Denote

by A[s,d][t] the number of packets injected into node s and des-

tined to node d at time slot t. We assume that {A[s,d][t]}[s,d]∈F

are stationary random variables independent across time and

flows, E[A[s,d][t]] = a[s,d], and A[s,d][t] ≤ Amax for all

[s, d] ∈ F and t. A network with four nodes, four links, and

three flows is illustrated in Figure 1.

Given traffic {A[s,d][t]}[s,d]∈F and a routing/schedulig

policy, we say the network is stochastically stable if the

mean of the sum of the queue-lengths is bounded. Traffic

{A[s,d][t]}[s,d]∈F is said to be supportable if there exists any

routing/scheduling policy (without packet dropping), under

which the network is stochastically stable.

Channel-fading model: We denote by C(m,n)[t] the state

of channel (m, n) at time slot t, i.e., the number of packets

that can be transmitted over link (m, n) during time slot t. We

assume that C(m,n)[t] is random and can be represented by a
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Fig. 1. A network example

finite-state Markov chain1, i.e.,

Pr
(

C(m,n)[t]|C(m,n)[t − 1], . . . , C(m,n)[0]
)

= Pr
(

C(m,n)[t]|C(m,n)[t − 1]
)

.

and C(m,n)[t] ∈ C for |C| < ∞. We assume that C(m,n)[t] ≤
Cmax for all (m, n) ∈ L and t. The one-step transition

probabilities of the Markov chains are assumed to be known

at all nodes, and {C(m,n)[t]}(m,n)∈L are independent across

links.

Interference model: We assume a general collision model

in this paper. If two links interfere with each other, simultane-

ous transmissions on the two links will lead to a collision and

no information (packet) can get through. For link (m, n), we

denote by I(m,n) the set of links that interfere with link (m, n).
For example, in downlink/uplink networks, where only one

link can successfully transmit at a time, I(m,n) = L\{(m, n)}.
Queue dynamics: We assume that each node maintains a

separate queue for each destination. Denote by Q<m,d>[t] the

length of the queue maintained at node m for destination d. It

has been shown in [2] that per-destination queues are sufficient

for stability. In most of this paper, we assume that hop-by-hop

feedback is available so that node m knows those packets

successfully transmitted over link (m, n), and immediately

removes them from the queues. Thus, the dynamics of queue

< m, d > can be described as follows:

QP
<m,d>[t + 1] = QP

<m,d>[t] + A[m,d][t] +
∑

(k,m)∈L

νP
(k,m),d[t] −

∑

(m,n)∈L

νP
(m,n),d[t],

where νP
(m,n),d[t] is the number of packets transmitted over

link (m, n) at time t with destination d. The superscript P
indicates the policy used. (However, for one of the cases to

be considered, somewhat different queue dynamics will be

assumed, which will be described explicitly when the case

is presented).

III. MORE NOTATIONS

To simplify our notations, we let C[t] denote the states of

all channels at time slot t, i.e.,

C[t] ,
{

C(m,n)[t]
}

(m,n)∈L
.

1In this paper, whenever there is no ambiguity, we abuse notation to let
Pr(C(m,n) [t]|C(m,n)[t − 1]) := Pr(C(m,n)[t] = c1|C(m,n)[t − 1] = c2)
(i.e., we do not explicitly indicate the values the random variables take in
conditional probability expressions).
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We also let C[t](τ1 : τ2) denote the states of all channels from

time slot t − τ2 to t − τ1 (τ2 ≥ τ1), i.e.,

C[t](τ1, τ2) ,
{

C(m,n)[t − s]
}

(m,n)∈L,s∈[τ1,τ2]
.

Similarly, we define Q[t] and Q[t](τ1, τ2).
If the network is stochastically stable under

routig/scheduling policy P , we denote by C[∞] and

QP [∞] the steady-state channel and queue states under

policy P . We further define

C(τ1, τ2) , lim
t→∞

{

C(m,n)[t − s]
}

(m,n)∈L,s∈[τ1,τ2]
,

and QP(τ1, τ2) is defined similarly.

Furthermore, let DP
(m,n)[t] denote the transmission decision

on link (m, n) under policy P , i.e., DP
(m,n)[t] = 1 if node

m attempts to transmit over link (m, n) at time slot t; and

DP
(m,n)[t] = 0 otherwise. We also let SP

(m,n)[t] denote the

achievable rate over link (m, n) at time t. Assuming that a

node can only transmit over one link at a time, we have

SP
(m,n)[t] = C(m,n)[t]D

P
(m,n)[t]

∏

(k,l)∈I(m,n)

(

1 − DP
(k,l)[t]

)

.

Note that SP
(m,n)[t] ≥ νP

(m,n)[t], where the strict inequality

holds when there is no enough packets in the queue.

Finally, we say a set of links M is an independent-set if

for any link (m, n) ∈ M, I(m,n) ∩M = ∅.

IV. CENTRALIZED ROUTING/SCHEDULING WITH

DELAYED NSI: AN EXAMPLE AND THE MAIN RESULT

We first consider the centralized case where the central

controller knows C[t − τ ] and Q[t − τ ], and makes rout-

ing/scheduling decisions based on this delayed NSI2. Here,

we abuse notation and let τ denote the vector of delays. In

particular, τ = {τ(m,n)}(m,n)∈L when associated with the

channel-states and τ = {τ<m,d>}m,d∈N when associated with

the queue-states. We also assume that the routing/scheduling

decisions are executed in the network immediately without

delay.

A. An Illustrative Example

Consider a wireless downlink network with two nodes and

a single base-station as shown in Figure 2. Denote by (0, 1)
the channel from the base-station to node 1 and by (0, 2)
the channel from the base-station to node 2. Assume that the

channels are represented by the two-state Markov chain as

shown in Figure 3.

We consider two different NSI structures:

2In this paper, we assume that the central controller knows the channel and
queue trajectories with some (node dependent) delay. This model can easily
be relaxed to the case where as before, the controller knows the channels
with delay; however, it knows the queue lengths only roughly periodically

with (node-dependent) delay. In other words, at each time t and for each
queue Q<m,d>, it suffices for the controller to know the queue length only
at some time s in the past (as opposed to the entire trajectory) in the finite
interval s ∈ (t − d̄<m,d>, t − d<m,d>), where 0 ≤ τm,n ≤ d<m,d> ≤

d̄<m,d> < ∞. However, for notational ease, in this paper, we only discuss

the case where d<m,d> = d̄<m,d> = τ<m,d> .

Node 1

Node 2

Fig. 2. A downlink network

State 2: 0 packets/time slot

0.8

0.4

0.2 0.61 2

State 1: 50 packets/time slot

Fig. 3. A two-state Markov chain

(i) The base-station has the instantaneous NSI. In this case,

the network throughput region is the region depicted

using the “+”-line in Figure 4. The following queue-

length-based throughput-optimal scheduling algorithm

has been proposed in [1]: At time slot t, the base-station

transmits to node i∗[t] such that

i∗[t] = arg max
i=1,2

Q<0,i>[t]C(0,i)[t]. (1)

(ii) The base-station has one time slot delayed NSI, i.e., the

base-station only has C(0,i)[t−1] and Q<0,i>[t−1]. Then

the network throughput region is the region depicted

using the “×”-line Figure 4. A throughput optimal policy

is as follows: At time slot t, the base-station transmits

to node i∗[t] such that

i∗[t] = arg max
i=1,2

Q<0,i>[t − 1]E[C(0,i)[t]|C(0,i)[t − 1]].

(2)

The throughput optimality of the algorithm above will

be proved in Section VI.
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Fig. 4. The throughput regions of the downlink network
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Remark 1: Comparing case (i) and (ii), we can see that the

delay in NSI leads to a throughput degradation. The intuition is

easy to understand. While, without delay, the base-station can

transmit 50 packets/slot over link (0, i) when C(0,i)[t] = 50;
only 10 packets/slot in average can be successfully transmitted

if the base-station does not have C(0,i)[t], but only knows

C(0,i)[t− 1] = 50. With the one-time-slot delay, the channels

revealed to the base-station can be modeled as the Markov

chain illustrated in Figure 5. Such a channel twist due to

information delay reduces the achievable throughput region.

We remark that qualitatively similar observations have been

made in the context of multi-channel access point networks

for uplink and downlink scheduling3 in [30].

State 2: 20 packets/time slot

0.8

0.4

0.2 0.61 2

State 1: 10 packets/time slot

Fig. 5. The twisted two-state Markov chain

Remark 2: Furthermore, we would like to comment that

incorporating the delay in scheduling is critical to achieve the

maximum network throughput. For example, we could simply

treat the delayed NSI as the instantaneous NSI, and use the

following naive algorithm: At time slot t, the base-station

transmits to node i∗[t] such that

i∗[t] = arg max
i=1,2

Q<0,i>[t − 1]C(0,i)[t − 1].

Then, the achievable throughput region is the region depicted

using the “∗”-line in Figure 4 (this throughput region is

obtained using a simulation with constant arrivals). We can

see that this information mismatch (using the delayed NSI as

the current NSI) leads to a significant performance loss.

B. Main Result

For the centralized scenario, we propose the following on-

off routing/scheduling based on conditional expectation.

On-Off Routing/Scheduling: At time slot t,

(1) The controller first computes the optimal independent-

link-set M∗[t] which maximizes

∑

(m,n)∈M

E
[

C(m,n)[t]
∣

∣C(m,n)[t − τ(m,n)]
]

P(m,n)[t],

where

P(m,n)[t] = max
d∈N

(

Q<m,d>[t − τ<m,d>]

− Q<n,d>[t − τ<n,d>]
)

,

3The model studied in [30] is in the context where the base-station (a
central controller) periodically gets all channel and queue states together
(homogeneous delay).

(2) Node m transmits the packets from queue d∗(m,n)[t] over

link (m, n) with a rate C(m,n)[t] if (m, n) ∈ M∗[t],
where

d∗(m,n)[t] = arg max
d

(

Q<m,d>[t − τ<m,d>]

− Q<n,d>[t − τ<n,d>]
)

.

We will prove in Section VI that this on-off rout-

ing/scheduling is throughput-optimal if the delays in channel

feedbacks are smaller than the delays in queue feedbacks.

Theorem 1: Given the delays satisfying max
(m,n)∈L

τ(m,n) <

min
m,d∈N

τ<m,d> and traffic A[t] such that (1 + ǫ)A[t] is sup-

portable, the network is stochastically stable under the on-off

routing/scheduling algorithm.

�

V. DECENTRALIZED ROUTING/SCHEDULING WITH

DELAYED NSI: EXAMPLES AND MAIN RESULTS

In this section, we consider the decentralized scenario where

a node has its own local instantaneous NSI and a network-

wide delayed NSI. Thus, the nodes have different views of

the network. The challenge is to develop a consistent policy

based on the inconsistent NSI.

A. Illustrative Example: A Single-hop Network

Node 1

Node 2

Fig. 6. Uplink network

Consider an uplink network with two nodes and a single

base-station as illustrated in Figure 6. The channels between

the base-station and the nodes are each described by a two-

state Markov chain as illustrated in Figure 3.

In this example, we assume that each of the two nodes

has exact knowledge of its channel and queue state (over the

current and previous time-slots), but has one-time-slot delay in

the information from the other node. Equivalently, both of the

nodes have delayed NSI {C(i,0)[t−1], Q<i,0>[t−1]}i=1,2, and

additionally, each node i only knows C(i,0)[t] and Q<i,0>[t].
In this case, the throughput region is the region depicted

using the “×”-line in Figure 7. A throughput optimal policy

is as follows: At time slot t,

(1) Node 1 and 2 first calculate a threshold vector T∗[t] by

solving the optimization problem (3).

(2) Node i transmits to the base-station if C(i,0)[t] ≥
T ∗

(i,0)[t].

Remark 1: The algorithm above consists of two steps:
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T∗[t] = arg max
T

Q<1,0>[t − 1]E
[

C(1,0)[t]1C(1,0)[t]≥T(1,0),C(2,0)[t]<T(2,0)

∣

∣

∣C[t − 1]
]

+

Q<2,0>[t − 1]E
[

C(2,0)[t]1C(2,0)[t]≥T(2,0),C(1,0)[t]<T(1,0)

∣

∣

∣C[t − 1]
]

(3)

(1) Determine the threshold vector based on global delayed

NSI.

(2) Make the transmission decisions based on local instan-

taneous (current) NSI.

Remark 2: This algorithm is a combination of greedy-

contention scheduling and collision-avoidance scheduling. For

example, given C(1,0)[t − 1] = C(2,0)[t − 1] = 50,

• If Q<1,0>[t− 1] > 4Q<2,0>[t− 1], then T∗[t] = [0, 51].
Thus, node 2 keeps silent, and node 1 attempts to

transmit. This corresponds to a “conservative” collision-

avoidance scheduling, where node 2 does not transmit ir-

respective of its current local channel state (i.e, C(2,0)[t]).
On the other hand, node 1 transmits (successfully) only

if C(1,0)[t] = 50.
• If Q<1,0>[t− 1]/Q<2,0>[t− 1] ∈ [0.25, 4], then T∗[t] =

[50, 50]. In this case, both nodes attempt to transmit

when C(i,0)[t] = 50, i = 1, 2. Further, if any one

of the users’ current channel is in the 0 state, that

node does not attempt to transmit. This corresponds to

a greedy contention scheduling mechanism, where the

randomization is provided by the channel (i.e., both

channels are in state 50 in the previous time-slot, and

there is a positive probability for each of the four cases

(50, 50), (50, 0)(0, 50, (0, 0) to occur in the current time-

slot).

Remark 3: We also consider a strategy where we ignore

the delays in NSI, and use the algorithm that is optimal

with the complete and instantaneous NSI: Node 1 attempts to

transmit if C(1,0)[t]Q(1,0)[t] > C(2,0)[t − 1]Q(2,0)[t − 1], and

node 2 attempts to transmit if C(2,0)[t]Q(2,0)[t] ≥ C(1,0)[t −
1]Q(1,0)[t−1]. Assuming constant arrivals, the throughput re-

gion is obtained using the simulation, and depicted using “�”-

line in Figure 7. We can see that the information mismatch

leads to a significant performance loss.

To illustrate the impact of delayed NSI on the network

throughput, we also show the throughput region of the fol-

lowing two scenarios in Figure 7.

(i) Both nodes have {C(i,0)[t], Q<i,0>[t]}i=1,2. The

throughput region is depicted using the “+”-line.

(ii) Both nodes have {C(i,0)[t − 1], Q<i,0>[t − 1]}, but no

instantaneous NSI is available. The throughput region is

depicted using the “∗”-line.

We can see that the network throughput region shrinks with

the increase of the delay. Thus, to maximize the network

performance under delayed NSI, it is important that we

understand the impact of the delayed NSI, and intelligently

use the delayed NSI in routing/scheduling.

B. Illustrative Example: A Multi-hop Network

To further demonstrate the impact of delayed NSI. We

consider a two-hop network with two flows as in Figure 8.
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Fig. 7. The throughput regions of the single-hop network

We consider two NSI structures:

(i) The complete NSI is available at node 1 and 2. The

network throughput region is depicted using the “+”-line

in Figure 9.

(ii) Node 1 has C(1,2)[t], Q<1,2>[t], Q<1,3>[t], C(2,3)[t−1],
and Q<2,3>[t − 1]. Node 2 has C(2,3)[t], Q<2,3>[t],
C(1,2)[t−1], Q<1,2>[t−1], and Q<1,3>[t−1]. The net-

work throughput region is depicted using the “×”-line in

Figure 9. In this scenario, the throughput-optimal algo-

rithm can be viewed as a “back-pressure” like algorithm

[1], [2] which determines the policy based on consistent

delayed NSI and makes transmission decisions based on

the best available NSI (we refer to Section V-C and (4)

for additional details).

31 2

Fig. 8. Two-hop network

Remark: We also consider an information mismatch sce-

nario, where we use the algorithm that is optimal with NSI

structure (i) for NSI structure (ii). Assuming constant arrivals,

the throughput region is obtained using the simulation, and

depicted using “∗”-line in Figure 7. We can see that such a

information mismatch also leads to a performance loss.

C. Main Result

We now study multi-hop networks, where each node has

its local instantaneous NSI, and homogeneous delayed NSI

from other nodes. We propose the following threshold-based

routing/scheduling algorithm.
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Fig. 9. Two-hop network: Throughput regions

Threshold-Based Routing/Scheduling: At time slot t,

(1) All nodes first compute a common threshold vector

T∗[t] by solving the optimization problem (4).

(2) Node m attempts to transmit packets from queue d∗m[t]
over link (m, n) if C(m,n) ≥ T ∗

(m,n)[t], where

d∗(m,n)[t] = argmax
d

(Q<m,d>[t − τ ] − Q<n,d>[t − τ ]) .

We consider two different NSI structures:

S1 Node m has (C(m,n)[t], Q<m,d>[t]) for all (m, n) ∈ L
and d ∈ N , and (C(l,k)[t − 1], Q<l,d>[t − 1]) for all

(l, k) ∈ L for all l, d ∈ N . In other words, each node has

their instantaneous local NSI, and one time slot delayed

NSI of the entire network.

S2 All nodes have C[t − τ ] and Q[t − τ ]. Node m also

has C(m,n)[t](0 : τ − 1) and Q<m,d>[t](0 : τ − 1) for

(m, n) ∈ L and d ∈ N . We assume that all flows are

single-hop flows, and a transmitter is disjoint from other

transmitters and receivers. It is easy to see that only

a single queue is needed for each flow. Furthermore,

we assume that transmitters cannot detect collisions (it

needs to explicitly wait for an acknowledgment (ACK)

from the receiver to determine success/failure of the

transmission), and a source does not delete transmitted

packets until it receives an acknowledgment from the

destination (after which it can flush packets in its queue

corresponding to the successful ACKs). Thus, the queue

dynamics can be described as follows:

Q<m,d>[t + 1]

=
(

Q<m,d>[t] + A[m,d][t] − ν<m,d>[t − τf ]
)+

, (5)

where τf is the feedback delay, and assumed to be larger

than τ.

The main result, given the two NSI structures above, is as

follows.

Theorem 2: Given NSI structure S1 or S2, and traffic A[t]
such that (1 + ǫ)A[t] is supportable, the network is stochas-

tically stable under the threshold-based routing/scheduling

algorithm.

�

VI. CENTRALIZED ALGORITHM WITH DELAYED NSI:

DETAILED ANALYSIS

A. Throughput Region

In this subsection, we will characterize the optimal through-

put region with a central controller and delayed NSI. First,

given

C[0] = {C(m,n)[0]}(m,n)∈L

and an independent-link-set M, we define

S (C[0],M)

=
{

S(m,n)

(

C(m,n)[0],M
)}

(m,n)∈L

=
{

E
[

C(m,n)[τ(m,n)]
∣

∣C(m,n)[0]
]

1(m,n)∈M

}

(m,n)∈L
.

Further, we define η(C[0]) to be the convex hull of

S(C[0],M) over all independent-link set M :

η(C[0]) = CHM(S(C[0],M)).

Then, we define

Λτ =







η : η =
∑

c∈C|L|

Pr(C[0] = c)ηc, ηc ∈ η(C[0] = c)







.

In the following analysis, we will prove that Λτ is the

optimal throughput region. To simplify our notation, we define

C[t − τ ] =
{

C(m,n)[t − τ(m,n)]
}

(m,n)∈L

and

Q[t − τ ] = {Q<m,d>[t − τ<m,d>]}
m,d∈N .

Furthermore, we define

Y[t] =
{

Q<m,d>[t](0 : τ<m,d>), C(m,n)[t](0 : τ(m,n))
}

for all m, d ∈ N and (m, n) ∈ L. It is easy to see that Y[t] is

Markovian. Now, given arrivals A[t] = {A[s,d][t]}[s,d]∈F , the

network is stochastically stable under a scheduling policy P
if YP [t] is positive recurrent, where the superscript indicates

the scheduling policy. Thus, given a stabilizing policy P , we

define the steady-state distribution YP [∞] as follows:
{(

QP
<m,d>(0 : τ<m,d>), C(m,n)(0 : τ(m,n))

)}

, lim
t→∞

{

QP
<m,d>[t](0 : τ<m,d>), C(m,n)[t](0 : τ(m,n))

}

= lim
t→∞

YP [t]

= YP [∞].

Now denote by DP
(

Q[t − τ ] = q,C[t − τ ] = c
)

the

decision under policy P given delayed NSI (Q[t − τ ] =
q,C[t − τ ] = c). Based on a stabilizing policy P , we now

define a corresponding (probabilistic) time-sharing policy Ps

which uses the knowledge of the steady-state distribution of

the queue lengths and channel states under policy P (denoted

as before by YP [∞]) along with the delayed channel states c

as follows:

Time-sharing Policy Ps : Given the delayed channel-state

information C[t − τ ] = c, we let

rPq|c = Pr
(

Q(τ : τ ) = q

∣

∣

∣
C(τ : τ ) = c

)

.
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T∗[t] = argmax
T

∑

(m,n)∈L

max
d

(Q<m,d>[t − τ ] − Q<n,d>[t − τ ]) ×

E
[

C(m,n)[t]1C(m,n)[t]≥T(m,n)
Π(l,k)∈I(m,n)

1C(l,k)[t]<T(l,k)

∣

∣

∣C[t − τ ]
]

. (4)

Then, at each time when the delayed channel state is

C[t− τ ] = c, the policy Ps probabilistically makes decisions

(denoted by DPs) as follows:

Let Q = {q : rP
q|c > 0}. The decision is to choose

DPs (C[t − τ ] = c) = DP
(

Q[t − τ ] = q,C[t − τ ] = c

)

with probability rP
q|c.

In other words, for each delayed channel state c, the policy

Ps first randomly (with probability rP
q|c) picks a possible

steady-state queue lengths under policy P and uses the re-

sulting pair (q, c) as the “input” to policy P (which is known

to be stabilizing) in order to get a decision. We note that this

rule is in the same spirit as the Static Service Split (SSS) Rule

in [3].

Next we will show that the service rates obtained under P
or Ps are the same.

Lemma 3: Assume the delays satisfying max
(m,n)∈L

τ(m,n) <

min
k,d∈N

τ<k,d>. Conditioned on C[t − τ ], Q<k,d> [t − τ<k,d>]

and C(m,n) [t − s] are independent for any s < τ(m,n),
(m, n) ∈ L, and k, d ∈ N .

Proof: Note that Q<k,d>[t − τ<k,d>] is determined by

C[t](τ<k,d>, t), A[t](τ<k,d>, t), and DP [t](τ<k,d>, t), where

DP [t] = DP (Q[t − τ ],C[t − τ ]) .

It can be easily verified that the lemma holds when

max
(m,n)∈L

τ(m,n) < min
k,d∈N

τ<k,d>.

Lemma 4: Given max
(m,n)∈L

τ(m,n) < min
k,d∈N

τ<k,d> and pol-

icy P that stabilizes traffic A[t], we have that

lim
t→∞

E
[

SP
(m,n)[t]

]

= lim
t→∞

E
[

SPs

(m,n)[t]
]

,

where Ps is the corresponding time-sharing policy.

Proof: The lemma is proved in(6), where equality (a)
holds due to Lemma 3, and equality (b) yields from the

definition of the time-sharing policy Ps.
Lemma 5: Consider the centralized case where the central

controller makes routing/scheduling decisions based on C[t−
τ ] and Q[t− τ ]. Given the delays satisfying max

(m,n)∈L
τ(k,n) <

min
m,d∈N

τ<k,d>, traffic A[t] is supportable if and only if

E [A[t]] ∈ Λτ .

Proof: First if A[t] is supportable, then there exists a

policy P , under which the network is stochastically stable.

From Lemma 4, we can find a corresponding Ps which

allocates the same amount service rate to each link. Note that

lim
t→∞

E
[

SPs [t]
∣

∣C[t − τ ] = c
]

∈ η(C[0] = c).

According to the definition of Λτ , it is easy to see that

E[A[t]] ∈ Λτ if A[t] can be supported by the time-sharing

policy Ps.

The other direction is immediate. In particular, given the

arrival rates, we can define a channel state dependent time-

sharing rule over appropriate vertices of Λτ that will stabilize

(support) the process A[t] (see [3] Theorem 1 for an analogous

proof).

B. Throughput Optimality

In this subsection, we prove that the on-off rout-

ing/scheduling is throughput optimal.

Theorem 1: Given the delays satisfying max
(m,n)∈L

τ(m,n) <

min
m,d∈N

τ<m,d> and traffic A[t] such that (1 + ǫ)A[t] is sup-

portable, the network is stochastically stable under the on-off

routing/scheduling algorithm.

Proof: Define a Lyapunov function V [t] such that

V [t] =
∑

m,d∈N

Q2
<m,d>[t],

so we have

E [V [t + 1] − V [t] |C[t − τ ],Q[t − τ ] ]

= E





∑

m,d

(Q<m,d>[t + 1] − Q<m,d>[t])×

(Q<m,d>[t + 1] + Q<m,d>[t])
∣

∣

∣C[t − τ ],Q[t − τ ]
]

.

Define ∆Q<m,d>[t] = Q<m,d>[t + 1]− Q<m,d>[t], we have

that

E [V [t + 1] − V [t] |C[t − τ ],Q[t − τ ] ]

= E





∑

m,d

2∆Q<m,d>[t]Q<m,d>[t − τ<m,d>]+

∆Q<m,d>[t]
(

Q<m,d>[t + 1] + Q<m,d>[t] −

2Q<m,d>[t − τ<m,d>]
)∣

∣

∣C[t − τ ],Q[t − τ ]
]

.

Note that ∆Q<m,d>[t] and Q<m,d>[t] − Q<m,d>[t −
τ<m,d>] are both bounded since A[t] and C[t] are bounded.

Thus, there exists a constant K such that inequality (7)

holds, where M∗[t] and d∗(m,n)[t] are as defined in the on-

off scheduling algorithm.

Since (1 + ǫ)A[t] is supportable, we have (1 + ǫ)E[A[t]] ∈
Λτ , which implies that there exists {η̄(c) ∈ η(C[0] = c)}c



8

E
[

SP
(m,n)[∞]

]

= E
[

E
[

C(m,n)(0 : 0)DP
(m,n) (Q(τ , τ ),C(τ , τ ))

∣

∣

∣Q(τ , τ ),C(τ , τ )
]]

= E
[

DP
(m,n) (Q(τ , τ ),C(τ , τ )) E

[

C(m,n)(0 : 0) |Q(τ , τ ),C(τ , τ )
]

]

=(a) E
[

DP
(m,n) (Q(τ , τ ),C(τ , τ )) E

[

C(m,n)(0 : 0)
∣

∣C(m,n)(τ(m,n) : τ(m,n))
]

]

= E
[

E
[

C(m,n)(0 : 0)
∣

∣C(m,n)(τ(m,n) : τ(m,n))
]

E
[

DP
(m,n) (Q(τ , τ ),C(τ , τ ))

∣

∣

∣C(τ : τ )
]]

=(b) E
[

E
[

C(m,n)(0 : 0)
∣

∣C(m,n)(τ(m,n) : τ(m,n))
]

E
[

DPs

(m,n) (C(τ , τ ))
∣

∣

∣C(τ : τ )
]]

= E
[

SPs

(m,n)[∞]
]

(6)

E [V [t + 1] − V [t] |C[t − τ ],Q[t − τ ] ]

≤ K + 2
∑

m,d

Q<m,d>[t − τ<m,d>]
(

a[m,d]1[m,d]∈F +
∑

(k,m)∈L

E[C(k,m)[t]|C(k,m)[t − τ(k,m)]]1(k,m)∈M∗[t],d∗
(k,m)

[t]=d

−
∑

(m,n)∈L

E[C(m,n)[t]|C(m,n)[t − τ(m,n)]]1(m,n)∈M∗[t],d∗
(m,n)

[t]=d

)

= K + 2
∑

m,d

Q<m,d>[t − τ<m,d>]a[m,d]1[m,d]∈F +

2
∑

(m,n),d

(Q<m,d>[t − τ<m,d>] − Q<n,d>[t − τ<n,d>]) E[C(m,n)[t]|C(m,n)[t − τ(m,n)]]1(m,n)∈M∗[t],d∗
(m,n)

[t]=d (7)

such that

∑

c∈C|L|

Pr(C[t − τ ] = c)

(

∑

d∈N

(1 + ǫ)a[m,d]1[m,d]∈F+

∑

(k,m)∈L

η̄(k,m)(c) −
∑

(m,n)∈L

η̄(m,n)(c)



 ≤ 0 (8)

for all m, d ∈ N , which leads to inequality (9).

From the definition of the on-off scheduling algorithm, we

further have inequality (10) holds for any given C[t − τ ].
Then, taking expectation on both sides of equality (9) over

C[t−τ ], and from inequalities (8) and (10), we can conclude

that

E [V [t + 1] − V [t]|Q[t − τ ]]

≤ −2ǫ
∑

m,d

Q<m,d>[t − τ<m,d>]a[m,d]∈F + K,

which implies that

E [V [t + 1] − V [t]]

≤ −2ǫE





∑

m,d

a[m,d]Q<m,d>[t − τ<m,d>]1[m,d]∈F



+ K.

Thus, we can conclude that

lim sup
T→∞

1

T

T
∑

t=0

E





∑

[m,d]∈F

Q<m,d>[t − τ<m,d>]1[m,d]∈F





≤
K + V [0] − limT→∞ V [T ]

2ǫ max[m,d] a[m,d]
< ∞, (11)

and the theorem holds.

VII. DECENTRALIZED ROUTING/SCHEDULING: DETAILED

ANALYSIS

In this section, we study the decentralized rout-

ing/scheduling. We only present the detailed analysis for NSI

structure S2 since the analysis of NSI structure S1 is similar.

A. Throughput Region

First, given a threshold vector T = {T(m,n)}(m,n)∈L and a

probability vector p = {p(m,n)}(m,n)∈L, we define a threshold

policy T (T,p) as follows:

Threshold Policy T (T,p):

(i) If C(m,n)[t] > T(m,n), node m transmits over link

(m, n) at time slot t.
(ii) If C(m,n)[t] = T(m,n), node m transmits over link

(m, n) with probability p(m,n) at time slot t.
(iii) If C(m,n)[t] < T(m,n), node m keeps silent at time slot

t.

Next, we denote by S(m,n)(T (T,p))[t] the achievable rate

over link (m, n) at time slot t under the threshold policy

T (T,p). Note that S(m,n)(T (T,p))[t] = C(m,n)[t] if no link

in I(m,n) is active simultaneously; and S(m,n)(T (T,p))[t] =
0 otherwise. Given C[t− τ ] = c, the expected achievable rate

over link (m, n) is

E
[

S(m,n)(T (T,p))[t]
∣

∣C[t − τ ] = c
]

.

Then, we define η(c) to be the convex hull of

E [S(T (T,p))[t]|C[t − τ ] = c] over all T and p, i.e.,

η(c) = CHT,p (E [S(T (T,p))[t]|C[t − τ ] = c]) .
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E [V [t + 1] − V [t] |C[t − τ ],Q[t − τ ] ]

≤ K + 2
∑

m,d

Q<m,d>[t − τ<m,d>]
(

a[m,d]1[m,d]∈F +
∑

(k,m)∈L

η̄(k,m) (C[t − τ ]) −
∑

(m,n)∈L

η̄(m,n) (C[t − τ ])
)

+

2
∑

(m,n),d

(

E[C(m,n)[t]|C(m,n)[t − τ(m,n)]]1(m,n)∈M∗[t],d∗
(m,n)

[t]=d − η̄(m,n) (C[t − τ ])
)

×

(Q<m,d>[t − τ<m,d>] − Q<n,d>[t − τ<n,d>]) (9)

∑

(m,n),d

(

E[C(m,n)[t]|C(m,n)[t − τ(m,n)]]1(m,n)∈M∗[t],d∗
(m,n)

[t]=d − η̄(m,n) (C[t − τ ])
)

×

(Q<m,d>[t − τ<m,d>] − Q<n,d>[t − τ<n,d>]) ≤ 0. (10)

Furthermore, we define Λ̃τ such that

Λ̃τ =







η : η =
∑

c∈C|L|

Pr(C[t − τ ] = c)ηc, ηc ∈ η(c)







.

Next define

Y[t] =
(

C[t](0 : τ + τf ),Q[t](0 : τ + τf )
)

.

In the following lemma, we show that Y[t] is Markovian.

Lemma 6: Assume queues evolve as described in (5), then

Y[t] is Markovian.

Proof: First, it is easy to see that

Pr (C[t + 1]|Y[t](0 : t)) = Pr (C[t + 1]|C[t])

= Pr (C[t + 1]|Y[t]) . (12)

Next, from queue dynamics (5), we can see that Q[t + 1]
is a function of A[t], Q[t], and S[t − τf ]. Note that A[t] is

independent across time, Q[t] is included in Y[t], and S[t−τf ]
is determined by Q[t](τf : τf +τ) and C[t](τf : τf +τ), which

are also included in Y[t]. Thus, we can conclude that

Pr (Q[t + 1]|Y[t](0 : t)) = Pr (Q[t + 1]|Y[t]) . (13)

From equations (12) and (13), we can conclude that

Pr (Y[t + 1]|Y[t](0 : t)) = Pr (Y[t + 1]|Y[t]) ,

and the lemma holds.

In the next lemma, we will show that given traffic A[t], if

the network can be stabilized by a scheduling algorithm P ,
then there exists a time-sharing policy Ps that stabilizes the

network as well. This is analogous to the development of the

time-sharing policy in Section VI. To demonstrate this, we

first define a time-sharing policy for a given stabilizing P .
Note that if A[t] is supportable under P , then YP [t] is

positive recurrent. Thus, we can define

(

C(0 : τ + τf ),QP(0 : τ + τf )
)

, lim
t→∞

(

C[t](0 : τ + τf ),QP [t](0 : τ + τf )
)

= limt→∞ YP [t]. (14)

Next we define a time-sharing policy related to P .

Time-sharing Policy Ps : Given delayed information C[t−
τ ] = c, we let

rPq|c = Pr
(

QP(0 : τ) = q(0 : τ)|C(τ : τ) = c
)

.

Then, at each time when the delayed channel state is C[t−τ ] =
c, the policy Ps probabilistically make decisions (denoted

by DPs ) as follows: Let Q = {q : rP
q|c > 0}. The policy

Ps selects a q ∈ Q with probability rP
q|c, and makes the

corresponding decision be given by

DPs (C[t](0 : τ − 1),C[t − τ ] = c) =

DP
(

C[t](0 : τ − 1),C[t − τ ] = c,Q[t](0 : τ) = q(0 : τ)
)

.

Note that this time-sharing policy is analogous to that

described in Section VI , in the sense that it generates the

decisions using a known stabilizing policy P by “feeding” it

inputs which are randomly chosen (according to the stationary

conditional distribution rP
q|c).

Example: Consider the two-user example studied in Sec-

tion V-A, where, at each of the nodes, there is one-time-slot

delay in the channel and queue state information from the

other node. In this case, suppose that for given arrivals and

channel model (i.e., Markov chain transition probabilities),

a stabilizing queue and channel state based scheduling pol-

icy exists (denoted by P) that makes transmission attempt

decisions as described below. Note that P makes decision

based on the common delayed NSI (C(1,0)[t−1], C(2,0)[t−1])
and (Q(1,0)[t− 1], Q(2,0)[t− 1]), along with the local current

channel state information at each of the nodes4)

For the delayed channel state C(1,0)[t−1] = C(2,0)[t−1] =
50, the stabilizing policy P makes decisions as follows:

(a) If Q(1,0)[t − 1] > 4Q(2,0)[t − 1], node 1 attempts

to transmit if its channel is non-zero (in this case,

if C(1,0)[t] = 50), and remains silent if it’s current

channel is zero (i.e, C(1,0)[t] = 0). Node 2 remains silent

irrespective of its current local channel state (C(2,0)[t]).
Note that in this case, it is possible that neither of

the nodes transmit even though a centralized scheduler

4While policy P can potentially use the current local queue length
information at each of the nodes, in this example, it chooses not to do so.
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that knows all the channels at each time might make

a transmission attempt (this happens when (C(1,0)[t] =
0, C(2,0)[t] = 50)).

(b) If Q(2,0)[t − 1] > 4Q(1,0)[t − 1], node 2 attempts to

transmit and node 1 remains silent. The above decision

happens irrespective of the current local channel states.

(c) Finally, if Q(1,0)[t − 1]/Q(2,0)[t− 1] ∈ [0.25, 4], node i
(i = 1, 2) attempts to transmit if C(i,0)[t] = 50. In this

case, a collision could occur if both the (local) channels

are at state 50.

Similarly, suppose that for each of the other cases of delayed

channel state (i.e., for each possible tuple of values of the

random variables (C(1,0)[t − 1], C(2,0)[t − 1])), the policy P
can be described.

Further, suppose that under this policy P the following holds

in steady-state (stationarity):

Pr

(

QP
(1,0)(1 : 1)

QP
(2,0)(1 : 1)

> 4|C(1 : 1) = (50, 50)

)

= 0.3

Pr

(

QP
(1,0)(1 : 1)

QP
(2,0)(1 : 1)

<
1

4
|C(1 : 1) = (50, 50)

)

= 0.3

Pr

(

QP
(2,0)(1 : 1)

QP
(1,0)(1 : 1)

∈ [0.25, 4]|C(1 : 1) = (50, 50)

)

= 0.4.

Similarly, we can describe the conditional probabilities for

other values of the delayed channel states. We recall that in the

context of this example, C(1 : 1) corresponds to the channel

state of the pair of users with one-time-slot delay under system

stationarity. Then, the corresponding time-sharing policy is as

follows:

Time-sharing Policy: For each channel state (C(1,0)[t −
1], C(2,0)[t − 1]), the time-sharing policy Ps will make a

randomized decision depending on the decision taken by P .
Suppose that C(1,0)[t−1] = C(2,0)[t−1] = 50. Then, under

the time-sharing policy Ps,

(a) With probability 0.3, node 1 attempts to transmit and

node 2 keeps silent.

(b) With probability 0.3, node 2 attempts to transmit and

node 1 keeps silent.

(c) With probability 0.4, both nodes (i = 1, 2) attempt to

transmit if C(i,0)[t] = 50 (note that in this case, collision

could occur).

Similarly, the time-sharing policy can be described for various

other values of the delayed channel states.

In the following lemma, we will show that the link rates

under P is the same as the service rate obtained under the

corresponding Ps.
Lemma 7: Given policy P which stabilizes the network

with traffic A[t], we have that

lim
t→∞

E
[

SP
(m,n)[t]

]

= lim
t→∞

E
[

SPs

(m,n)[t]
]

,

where Ps is the corresponding time-sharing policy.

Proof: First, we can obtain equation (15), where the

second equality yields from the definition of the time-sharing

policy.

Note that Q(m,n)[t] is a function of A(m,n)[t](0 : t) and

S(m,n)[t](0 : τf ), and S(m,n)[t − τ̃ ] is determined by Q[t −
τ̃ ](0 : τ) and C[t− τ̃ ](0 : τ). Since τf > τ, we can conclude

that, conditioned on C(m,n)[t − τ ], C(m,n)[t − r] (r ≤ τ ) is

independent of Q(l,k)[s] for any (l, k) ∈ L and s ≤ t. In other

words, under policy P ,

Pr
(

C(0 : τ − 1)|C(τ : τ),QP(0 : τ)
)

= Pr (C(0 : τ − 1)|C(τ : τ)) . (16)

Thus, we can further obtain that

lim
t→∞

E[SPs

(m,n)[t]|C[t − τ ]] = lim
t→∞

E[SPs

(m,n)[t]|C[t − τ ]]

as demonstrated in equality (17), where the last equality holds

due to equation (16).

Now, give
(

QP(0 : τ) = q(0 : τ),C(τ : τ) = c
)

, there ex-

ist T(c,q(0 : τ)) and p(c,q(0 : τ)) such that equality

(18) holds for all (m, n) ∈ L. In other words, there exist

T(c,q(0 : τ)) and p(c,q(0 : τ)) such that, given the queue

lengths and delayed channel states, the probability the channel

state of (m, n) is greater than or equal to the threshold is the

same as the probability that link (m, n) is active under the

time-sharing policy. Then, we can further define a threshold-

based time-sharing policy.

Threshold-Based Time-sharing Policy Pts : Given de-

layed channel-states C[t − τ ] = c, we let

rPq|c = Pr
(

QP(0 : τ) = q(0 : τ)|C(τ : τ) = c
)

.

Then, at each time when the delayed channel state is C[t−τ ] =
c, the policy Pts probabilistically make decisions (denoted by

DPts ) as follows: Let Q = {q : rP
q|c > 0}. Policy Pts chooses

q ∈ Q, with probability rP
q|c, and lets the corresponding

decision be given by

DPts

(m,n)

(

C(m,n)[t](0 : τ − 1),C[t − τ ] = c
)

= 1C(m,n)[t]>T(m,n)(c,q(0:τ)) + z1C(m,n)[t]=T(m,n)(c,q(0:τ)),

where

Pr(z = 1) = p(m,n)(c,q(0 : τ)).

In other words, for each delayed channel state c, the policy

Pts first randomly (with probability rP
q|c) picks a possible sta-

tionary queue length under policy P . Then the policy uses the

resulting pair (q, c) to determine the threshold T(m,n)(c,q)
and the probability p(m,n)(c,q), and uses the threshold and

the probability to make the transmission decision.

In the following lemma, we will show that considering Ps

and Pts, which are related to the same stabilizing policy P ,
the service rate obtained by link (m, n) under the threshold

time-sharing policy is no less than the one under the time

sharing policy.

Lemma 8: Assuming that Ps and Pts are the time-sharing

policy and the threshold-based time-sharing policy defined

based the stabilizing policy P , then

lim
t→∞

E
[

SPs

(m,n)[t]
]

≤ lim
t→∞

E
[

SPts

(m,n)[t]
]

.
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E[SPs

(m,n)[t]|C[t − τ ] = c]

= E
[

C(m,n)[t]D
Ps

(m,n)

(

C(m,n)[t](0 : τ − 1),C[t − τ ]
)

×

∏

(l,k)∈I(m,n)

(

1 − DPs

(l,k)

(

C(l,k)[t](0 : τ − 1),C[t − τ ]
)

)

∣

∣

∣

∣

∣

∣

C[t − τ ] = c





=
∑

q(0:τ)

Pr
(

QP(0 : τ) = q(0 : τ)|C(τ : τ) = c
)

×

E
[

C(m,n)[t]D
P
(m,n)

(

C(m,n)[t](0 : τ − 1),C[t − τ ],Q[t](0 : τ) = q(0 : τ)
)

×

∏

(l,k)∈I(m,n)

(

1 − DP
(l,k)

(

C(l,k)[t](0 : τ − 1),C[t − τ ],Q[t](0 : τ) = q(0 : τ)
)

)

∣

∣

∣

∣

∣

∣

C[t − τ ] = c



 (15)

lim
t→∞

E[SPs

(m,n)[t]|C[t − τ ] = c]

=
∑

q(0:τ)

Pr
(

QP(0 : τ) = q(0 : τ)|C(τ : τ) = c
)

E
[

C(m,n)(0 : 0)DP
(m,n)

(

C(m,n)(0 : τ − 1),C(τ : τ),Q(0 : τ)
)

×

∏

(l,k)∈I(m,n)

(

1 − DP
(l,k)

(

C(l,k)(0 : τ − 1),C(τ : τ),Q(0 : τ)
)

)

∣

∣

∣

∣

∣

∣

C(τ : τ) = c,Q(0 : τ) = q(0 : τ)





= lim
t→∞

E
[

E
[

SP
(m,n)[t]

∣

∣

∣Q
P(0 : τ)

] ∣

∣

∣C[t − τ ] = c
]

= lim
t→∞

E
[

SP
(m,n)[t]

∣

∣

∣C[t − τ ] = c

]

(17)

Pr
(

C(m,n)(0 : 0) > T(m,n)(c,q(0 : τ))
∣

∣C(τ : τ) = c
)

+ p(m,n)(c,q(0 : τ)) Pr
(

C(m,n)(0 : 0) = T(m,n)(c,q(0 : τ))
∣

∣C(τ : τ) = c
)

=

Pr
(

DP
(m,n)

(

C(m,n)(0 : τ − 1),C(τ : τ), Q<m,n>(0 : τ − 1) = q<m,n>(0 : τ − 1),Q(τ : τ) = q(τ : τ)
)

= 1
∣

∣

∣C(τ : τ) = c
)

(18)

E
[

C(m,n)[t]1C(m,n)[t]>T(m,n)(c,q(0:τ)) + C(m,n)[t]z1C(m,n)[t]>T(m,n)(c,q(0:τ))

∣

∣

∣C(τ : τ) = c
]

≥

E
[

C(m,n)[t]D
P
(m,n)

(

C(m,n)(0 : τ − 1),C(τ : τ), Q<m,n>(0 : τ − 1) = q<m,n>(0 : τ − 1),Q(τ : τ) = q(τ : τ)
)∣

∣

∣C(τ : τ) = c
]

(19)

Proof: From equality (18), we can obtain equation (19)

holds for any link (m, n). Combining (18) and (19), we can

conclude that the lemma holds.

Lemma 9: Considering NSI structure S2, traffic A[t] is

supportable if and only if A[t] ∈ Λ̃τ .
Proof: From Lemma 7 and 8, we can conclude that

E[A(m,n)[∞]] ≤ lim
t→∞

E
[

SPts

(m,n)[∞]
]

if A[t] is supportable. From the definition of the threshold-

based time-sharing policy, we also have that

E
[

SPts [∞]
]

∈ Λ̃τ ,

which implies that E[A[t]] ∈ Λ̃τ if A[t] is supportable.

Now assume E[A[t]] ∈ Λ̃τ , then from the definition of Λ̃τ ,
there exists a threshold time-sharing policy that stabilizes the

network.

B. Throughput Optimality

Next we show the threshold routing/scheduling algorithm is

throughput-optimal for case (ii).

Theorem 2 Given NSI structure S2, and traffic A[t] such

that (1 + ǫ)E[A[t]] ∈ Λ̃τ , the network is stochastically stable

under the threshold-based routing/scheduling algorithm.

Proof: Define Q̃<m,d>[t] to be the number of packets that

are queued at node m, but have not been delivered to node d.
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Define a Lyapunov function

V [t] =
∑

(m,n)

Q̃2
<m,n>[t].

Similar to the analysis in Theorem 1, we can obtain that there

exists K > 0 such that

E [V [t + 1] − V [t]]

≤ −2ǫ
∑

(m,n)

a(m,n)E[Q̃<m,n>[t − τ ]]1(m,n)∈F + K,

and the theorem holds.

VIII. CONCLUSION

In this paper, we studied the impact of delayed NSI on

network throughput. We provided the relations between the

delays in NSI and the network throughput region. We also

developed throughput-optimal scheduling algorithms that in-

corporate the delayed NSI, both in the context of centralized

and decentralized scheduling. In the decentralized scenario, we

characterized the impact for two special cases (homogeneous

delayed NSI from other nodes, with flow/delay restrictions).

In our future research, we will consider the decentralized rout-

ing/scheduling with heterogeneously delayed NSI and multi-

hop traffic flows.
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