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Abstract—We study limited-coordination scheduling in a wire-
less downlink network with multiple base stations, each serving
a collection of users over shared channel resources. When neigh-
boring base stations simultaneously schedule users on the same
channel resource, collisions occur due to interference, leading
to loss of throughput. Full coordination to avoid this problem
requires each base station to have complete “instantaneous”
channel-state information for all its own users, as well as
the ability to communicate on the same timescale as channel
fluctuations with neighboring base stations. As such a scheme
is impractical, if not impossible, to implement, we consider the
setting where each base station has only limited instantaneous
channel-state information for its own users, and can communicate
with other base stations with a significant lag from the channel
state variations to coordinate scheduling decisions.

In this setting, we first characterize the throughput capacity
of the system. A key insight is that sharing delayed queue-length
information enables coordination on a slow timescale among
the base stations, and this permits each base station to use
limited and local channel-state along with global delayed queue-
state to stabilize its users’ packet queues. Based on this, we
develop a distributed, queue-aware scheduling (and information
exchange) algorithm that is provably throughput-optimal. Finally,
we study the effect of inter-base-station coordination delay on the
system packet delay performance under the throughput-optimal
algorithm.

I. INTRODUCTION

Next-generation cellular systems like 3GPP-Long Term

Evolution (LTE) [1] are based on the technique of Orthog-

onal Frequency Division Multiple Access (OFDMA), and

promise high-speed packet-based services for a variety of

applications. In a typical downlink of such a cellular system,

base stations enable multiple mobile users to share available

channel resources by assigning them different frequency bands

or “tones”. These tone-based channels experience temporal

fluctuations in quality due to fading, and these fluctuations

dictate the instantaneous data rates that can be sustained within

a time slot. Base stations obtain channel quality measurements

from the mobile users attached to them, and perform resource

allocation, on a timescale of about every 1-2 milliseconds. This
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helps the base stations opportunistically exploit local channel

fluctuations to schedule data transmissions to the users.

Data transmission in a multicellular environment with many

base stations is, however, impeded by the following factors:

1) Co-channel interference: A system of several base

stations is prone to inter-cell interference, where trans-

missions to neighboring mobile users assigned the same

frequencies in different cells collide, resulting in a loss

of throughput. The issue of interference management is

especially vital in modern LTE-based femtocell networks

[2], which are comprised of a heterogeneous deployment

of base stations, each with a small footprint. Due to un-

planned or ad-hoc deployments, femtocell base stations

suffer from radio interference from nearby femtocells

and macrocells, and this impacts overall throughput.

Mitigating inter-cell interference in femtocell networks

has thus been a subject of much recent research [3], [4].

2) High backhaul latency: Avoiding interference entirely

demands that the base stations coordinate their transmis-

sions using instantaneous channel state information ac-

quired from other base stations. Such coordination at the

timescale of channel fluctuations, however, is rendered

infeasible by the relatively high latencies (of the order of

10s-100s of milliseconds) of backhaul links that connect

base stations. Femtocell base stations typically use third-

party IP/Ethernet backhauls to coordinate interfering

transmissions, and are constrained to communicate over

much slower timescales [3]. Communication between

base stations is thus limited to sharing information

which is significantly delayed compared to instantaneous

channel state variations.

3) Partial local channel state information: Base stations

cannot acquire even the complete instantaneous channel

states for all their own users. This is because OFDMA-

based systems like LTE have many sub-channels, and

getting channel state information for all users on each

sub-channel in every time-slot may be prohibitive in

terms of available feedback bandwidth.

In such a setting, the challenge is how to effectively use a

combination of network state information available at the base

stations – (a) partial “local” information, i.e., instantaneous

channel quality estimates, gathered from users at the timescale

of channel state variations, and (b) other “global” information

(such as channel statistics, accumulated queue lengths, user

interference patterns etc.) gathered from other base stations

and significantly delayed from the instantaneous channel state

variations – and schedule for maximum throughput.
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This paper considers a collection of base stations, each

serving an exclusive set of users, in a time-slotted system.

To capture the fact that certain users may interfere (e.g. users

in different cells on the same frequencies located close to

each other) while others may not (e.g. users on orthogonal

channels, or on common frequencies but far from each other),

we model an arbitrary collection of subsets of interfering

users in the user population. Inter-cell interference is modeled

by assuming that transmissions to interfering users by their

respective base stations collide if scheduled simultaneously.

At each time slot, each base station can access instantaneous

channel states for a subset of its users, exchange delayed

information with other base stations, and finally schedule users

from the chosen subset.

With this information structure at the base stations, we first

characterize the network throughput region, i.e., the set of

all long-term joint service rates achievable for all users. A

key observation we exploit is that common state information

provided by global delayed queues allows coupling of deci-

sions across base stations. We demonstrate the optimal way

of using this coupled state to coordinate scheduling across

multiple base stations, and develop a provably throughput-

optimal scheduling algorithm. In other words, when it is

possible to share global delayed information among base

stations, it is enough to share delayed queue lengths to achieve

throughput-optimality. To the best of our knowledge, this is the

first throughput-optimality result using the information struc-

ture of local limited instantaneous channel state and global

delayed information (queue lengths). We also quantify, via

analysis and simulations, how the packet delay performance of

our throughput-optimal scheduling algorithm varies with the

amount of delay in the shared queue length information.

A. Main Contributions

The main contributions of this paper are as follows:

1) We derive the throughput region of a multi-base-station

system, with given arbitrary subsets of interfering users,

in which the base stations schedule using the information

structure of (a) local limited channel state information,

and (b) globally shared information which is indepen-

dent of the instantaneous channel states. Moreover, we

show that any rate within the throughput region can

be obtained by timesharing, using common randomness,

across a simple class of static scheduling policies. In a

static scheduling policy, each base station always picks

a fixed subset of its users, and schedules each user in

that subset depending solely on its instantaneous channel

state and a fixed binary vector associated with that state.

2) We present a two-tier, distributed and provably

throughput-optimal scheduling algorithm that relies on

the base stations sharing their users’ queue lengths every

T (an integer parameter) time slots. Specifically, at

every T -th time slot, all the base stations communicate

their queue lengths to each other. For the next T
time slots, each base station uses this (delayed) queue

length information, along with knowledge about channel

statistics and interfering users, to locally observe an

appropriate subset of its channels’ states and schedule

the corresponding users. The parameter T in our algo-

rithm is the maximum “staleness” of exchanged queue

length information, and is also a measure of the inter-

base-station coordination time. Moreover, the scheduling

algorithm is throughput-optimal for any fixed value of

T , meaning that the coordination time T can be easily

adapted to suit the latency of the backhaul between base

stations without sacrificing throughput.

3) We provide analytical bounds on the system packet

delay performance as a function of T , and carry out

simulations to illustrate the degradation in the packet

delay with increasing T .

B. Related Work

Throughput-optimal scheduling for wireless networks dates

back to the pioneering work of Tassiulas et al. [5], [6].

Since then, there has been much work on throughput-optimal

wireless scheduling, both with a central scheduler having

complete network-state information [7], [8], [9] and distributed

implementations [10], [11], [12], [13]. Further references can

be found in [14], [15]. Scheduling with partial or limited

channel state information has been addressed in [16], where in-

frequent channel state information used to schedule, and [17],

[18], [19], [20] where scheduling is studied with partial or

inaccurate observability of the aggregate channel state. In [21],

[22], [23], the authors develop throughput-optimal algorithms

using delayed channel-state information with channel state

and topology uncertainty in an ad hoc network setting, where

channels are independent across users. Our results differ in

two ways. First, the authors in [21], [22], [23] do not consider

the setting as in this paper where only limited channel-state

is available at base stations – in the ad hoc network setting

where neighborhoods are small, complete local-channel state

is available, which is not the case in 4G base stations. In

addition to the challenge of the subset selection problem,

the key conceptual difference and contribution of this paper

is that this subset selection occurs through the base station

coordination, as we further explain below. Second, our results

in this paper allow channels to be arbitrarily correlated across

users. This combination of limited and correlated channel state

leads to different trade-offs and scheduling algorithms.

In the multiple base station setting, two-tiered interference

mitigation through load balancing and base station coordina-

tion has been studied in [24], but under the assumption that a

central scheduler has instantaneous queue states of all users,

and each base station has complete channel states of its users.

The authors use the central scheduler to determine (based on

statistics and instantaneous queue state) which of the base

stations are allowed to transmit (ON base stations) and which

are OFF in order to minimize interference, following which

each ON base station schedules users based on its channel

state information. However, the authors do not investigate

queue-stability or throughput-optimality. Further, as we see

from our analysis, in a distributed setting where there is

no central coordinator, the optimal scheduler in fact allows

collisions between transmissions from multiple base stations.
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Fig. 1. Throughput region for a 2-user system under scheduling with different
information structures

The intuition for this is that due to channel randomness, it

is better to be “optimistic” under some situations and attempt

transmission at a base station with the hope that a contending

base station’s channels will be poor, and hence the contending

base station will not attempt to transmit.

In [25] the authors propose a gradient power-control al-

gorithm to mitigate inter-cell interference and dynamically

reuse frequencies, while [26] considers scheduling algorithms

to effectively allocate subcarriers or frequencies to users in

a multicellular environment to maximize the sum throughput

of the system. In [27] the authors assume coarse-grained

communication among base stations along with a dynamic user

model in which users randomly enter and exit the network,

and present simulation results for scheduling strategies with

the main metric being file transfer delay.

The authors in [4], [3] consider the problem of delayed

coordination that results among LTE-Advanced femtocell base

stations connected by an IP-based backhaul. They develop

heuristic scheduling algorithms that account for coordination

latencies, and carry out extensive numerical studies. None

of the above works, though, examines the importance of

using global information via delayed queue lengths and local

instantaneous channel state information to stabilize queues and

achieve throughput-optimality.

Finally, there is work from a physical layer perspective

to maximize sum rate. However, it does not address either

delayed/limited information or stability. The reader is referred

to [24] for a comprehensive survey.

II. MOTIVATING EXAMPLE: HOW THROUGHPUT DEPENDS

ON THE COORDINATION TIMESCALE

In this section, we present an example to illustrate how the

extent of coordination in scheduling, i.e. sharing information

across base stations, affects the throughput/capacity of multi-

cellular wireless systems.

Let us consider a scenario involving two base stations and

two wireless users: base station b1 serving user u1 and base

station b2 serving user u2 in discrete time slots. Assume that

the joint channel states of the two users are either (1, 2) or

(2, 1), each with probability 0.45, or (2, 2) with probability

0.1, independently in each time slot. The channel state denotes

how many packets can be transmitted to the user in the event

of a successfully scheduled transmission. Corresponding to the

situation in an LTE system where the two users are assigned

the same frequencies and are located close to each other at

the cell boundary, we assume that transmissions to these two

users collide if scheduled together. At every time slot, each

base station decides whether to schedule its respective user or

not depending on the structure of network state information

it possesses. We consider three possible structures of network

state information:

1) First, assume that at every time slot, each base station

knows only its own user’s current channel state (i.e.,

the base stations have local channel state information

with no coordination). In this case we can show that the

throughput region is enclosed by the solid curved lines

connecting the points (0, 1.55), (0.9, 0.9) and (1.55, 0)
in Fig. 1. Essentially, this is equivalent to saying that

each base station decides independently to schedule its

own user with some fixed probability. The first (resp.

third) point represents the case when user u1 (resp. u2)

is always scheduled and the other user is always not

scheduled. The second point represents the case when

each user is scheduled if and only if its observed channel

state is 2.

2) Next, assume again that each base station knows only

its own user’s current channel state, but that the base

stations can exchange delayed or slowly varying infor-

mation – more specifically, any information independent

of their users’ current channel states. This models the

fact that backhaul capabilities between the base stations

do not permit exchange of instantaneous channel state

information occurring on a fast timescale. For instance,

the base stations can rely on a source of common

randomness to make their scheduling decisions. This

is the situation in which the base stations have local

channel state information with “slow” global coordina-

tion. We see here that the throughput region expands

to the convex hull of the earlier three points (Fig. 1);

intuitively, collaboration allows timesharing.

3) Finally, we assume the base stations can obtain instan-

taneous global channel state information, i.e., acquire

both the users’ channel states before making scheduling

decisions. This models the fact where the base stations

can hypothetically exchange information as fast as the

instantaneous channel states vary, and we find that the

throughput region expands further to the convex hull of

the points (0, 1.55), (0.9, 1.1), (1.1, 0.9) and (1.55, 0)
(Fig. 1). This is because the second (resp. third) point

can be achieved by scheduling only user u1 (resp. u2)

when its channel state is 2 - the advantage in knowing

both users’ instantaneous channel states comes from the

fact that a base station can suitably “back off” when

both channels have state 2.

The example shows that there can be a significant difference

in network throughput depending on the extent of global coor-

dination (none/slow/fast) between base stations. As mentioned

earlier, Case 3 – when the base stations access complete

instantaneous channel state information – is practically infea-

sible due to the high latency of inter-base station backhaul

links relative to the timescale of channel quality variations.

However, backhauls in present-day LTE-based systems effec-
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Fig. 2. Coordinated scheduling with local information

tively allow delayed information on a slower timescale to be

shared across base stations. This prompts us to treat Case 2

(where coordination among base stations is possible only on

a timescale slower than that of the channel state) in detail

in this paper, and to develop throughput-optimal scheduling

algorithms for this setting.

III. SYSTEM MODEL

This section describes the notation and definitions necessary

to develop a formal model for coordinated wireless scheduling,

incorporating the effect of coordination latencies between

scheduling base stations.

A. Network Model

Consider N base stations b1, . . . , bN wishing to send packet

data to M users u1, . . . , uM on the wireless downlink. Each

user is associated with a unique base station from which it can

receive data; we use U(bi) to denote the set of users associated

to base station bi, and B(uj) to denote the base station to

which user uj is associated. We denote the set of base stations

and the set of users by N and M respectively.

B. Arrival and Channel Model

Time is slotted into discrete units. Data packets destined for

user uj ∈ U(bi) arrive at base station bi as a stationary non-

negative integer-valued random process Aj(t), t = 1, 2, . . ..
For simplicity we will assume that Aj(t) is independent and

identically distributed (iid) over time slots t with E[Aj(t)] =

λj , and Aj(t) ≤ Amax. Let A(t)
△
= (A1(t), . . . , AM (t)).

Packets get queued if they are not immediately transmitted.

The channel between user uj and its associated base station is

time-varying, and we assume that its state stays constant for

the duration of a time slot. We denote the channel state random

process by Cj(t), t = 1, 2, . . ., where for any j, Cj(t) takes

values in a finite set C. We explicitly assume that C consists of

the integers 0 ≤ c1 < c2 < · · · < cK = Cmax. The aggregate

channel state process C(t)
△
= (Cj(t) : j = 1, . . . ,M) is

assumed to be independent and identically distributed (iid)

over time slots, but the channel states can be correlated

across users. For a subset W ⊆ {u1, . . . , uM} of users, we

overload notation and denote by CW (t) the channel state

of just the subset W . Let π(·) denote the probability mass

function of the aggregate channel state (C1(t), . . . , CM (t)),

i.e., π(r1, . . . , rM )
△
= P[C1(t) = r1, . . . , CM (t) = rM ]. Here,

for each channel i, ri takes values in the set of possible channel

states C = {c1, c2, . . . , cK}. Such a canonical wireless system

is shown in Fig. 2.

C. Queueing Model

Each base station bi maintains one packet queue for every

user uj associated with it, into which data packets destined to

uj get buffered if they are not immediately transmitted. We

denote the fact that user uj ∈ U(bi) is successfully scheduled

for data reception at time slot t by setting a binary random

variable Dj(t) = 1. When this happens, up to Cj(t) packets

can be drained from its packet queue. Thus if Qj(t) denotes

the queue-length process for the packet queue of user uj , then

the evolution of Qj can be described as

Qj(t+ 1) = max{Qj(t)−Dj(t)Cj(t), 0}+Aj(t). (1)

Another form of (1) which we use later is

Qj(t+ 1) = Qj(t) +Aj(t)− Ej(t), (2)

where Ej(t)
△
= min{Dj(t)Cj(t), Q(t)}. Let Q(t) represent

the vector of queue lengths (Q1(t), . . . , QM (t)) at time slot

t.

D. Multiple Base Station Scheduling Model

In the multiple base station network, at every time slot

t, each base station bi schedules transmissions for a set of

its users. Following the motivating example, we model the

information structure that each base station uses to schedule

users as having two important properties:

1) Limited, local channel state information at base sta-

tions: Each base station accesses instantaneous channel

state information for only a subset of its users prior

to scheduling. We let each base station bi choose a

subset Obi(t) of its users at every time slot t, from

a fixed arbitrary collection O(bi) of subsets of U(bi).
Following this, the instantaneous state CObi

(t)(t) of the

chosen users’ channels is available to bi, and it can use

this knowledge to schedule users in Obi(t). We use a

binary random variable Bi(t) to represent whether a user

i ∈ Obi(t) is scheduled at time t (Bi(t) = 1 denotes

that i is scheduled). This framework formally captures

the fact that channel state feedback capabilities between

base stations and their users are potentially limited.

2) Delayed, slower-timescale coordination between base

stations: Base stations can share information to help

coordinate scheduling, but instantaneous channel state

information at each time slot cannot be shared. This

captures the fact that the backhaul links that allow

base stations to communicate suffer from a high latency

relative to the timescale of channel state variation.

To model this formally, we first fix a sufficiently large

integer R > 0 which we will call the system history

parameter. At time slot t, we assume that each base

station can access the history of the entire network



5

– queue lengths, channel states, arrivals – for all the

previous R time slots up to and not including t, denoted

by the (random) vector HR(t)
△
= (Q(t−R), . . . , Q(t−

1), C(t−R), . . . , C(t−1), A(t−R), . . . , A(t−1)). This

says that the backhaul coordination links are capable

of letting the base stations share their past observations

with each other; however, any instantaneous (at time t)
channel state information cannot be propagated within

the same time slot. We remark that the restriction of

available system history to the previous R time slots is

made for technical convenience – our results hold when,

for instance, the entire system history (past channel

states, scheduling decisions and arrivals) is available at

the base stations. 1

At each time slot t, in addition to the system history

HR(t), we assume that all the base stations can utilize

common randomness, represented by a random variable

G(t) that is independent from the instantaneous channel

state C(t). The independence of G(t) from the instan-

taneous channel state is in keeping with the constraint

that base stations are incapable of sharing instantaneous

channel state information among themselves. G(t) rep-

resents any common, auxiliary information which can

be used by all the base stations. For instance, G(t) can

denote measured channel/arrival/queue statistics, or just

a current time index that drives time-dependent schedul-

ing, or the outcome of a common “coin toss” sequence

to timeshare across base stations etc. It models common

information that can be propagated across the inter-base

station backhaul in order to coordinate scheduling (we

discuss this in detail in Section IV in the context of

time-sharing policies).

Thus, the total information available to the base stations

at each time slot t, as a result of slow coordination over

the backhaul, is XR(t)
△
= (HR(t), G(t)), which we call

the system state.

In summary, every base station first picks a subset of its

users to observe their instantaneous channel states – this can

depend on queue lengths, channel states, arrivals and auxiliary

information in the last R slots. After having observed the

instantaneous channel states for that subset, the base station

schedules users in the subset depending on their instantaneous

channel states and the global information it already possesses.

We term the collective set of rules applied at each time slot by

every base station to schedule users as the scheduling policy

or algorithm used by the base stations.

E. Interference Model

As introduced earlier, data transmissions to users in dif-

ferent cells that are close to each other and use the same

frequencies are prone to interference. At the same time,

1In addition, we note that if queue length information is shared with a
latency of η > 1 time slots instead of 1, the scheduling algorithm proposed in
this work can be used with a slight modification to yield the same throughput
and queue length performance, so knowing the state of the network at time
t − 1 is not a restrictive modeling assumption. This is because because
using delayed queue length information in scheduling does not affect stability
properties as long as the delay is bounded.

transmissions to users on suitably orthogonal channels (e.g.

different frequencies or tones in an OFDMA-based system)

can occur simultaneously without any interference. For each

user uj ∈ M, let I(uj) ⊂ M denote the set of users that

interfere with uj , meaning that user uj cannot receive any data

packets in a time slot at which a user in I(uj) is scheduled.

We assume that uj /∈ I(uj) for all j. For instance, I(uj) = ∅
means that user uj does not experience interference from any

other user. Thus, we have, for all users uj ,

Dj(t) = Bj(t)
∏

uk∈I(uj)

(1−Bk(t)). (3)

With this, the maximum number of packets that can be drained

from the queue for user uj at time t becomes

Fj(t)
△
= Cj(t)Dj(t). (4)

Such a collision interference model together with the

“GO/NO-GO” type scheduling model described earlier models

a rudimentary “binary” power-control scheme for users in the

network. 2

F. Objective/Performance Metric

For the setup described above, note that under any schedul-

ing policy, the system state XT (t) is a discrete time Markov

chain. Let us assume that this Markov chain is irreducible

and aperiodic 3. Following standard terminology, we say that

a vector of arrival rates λ = (λ1, . . . , λM ) with λi ≥ 0, i =
1, . . . ,M is supported by a scheduling policy if the Markov

chain XT (t) is positive recurrent under the policy when the

packet arrival rates at the user queues are E[Aj(t)] = λj ,

j = 1 . . . ,M (this corresponds to the intuitive notion that the

queues in the network are drained as fast as they fill up, i.e.,

they are stable). The goal is then to characterize the stability

region, which we define to be the set of all vectors of arrival

rates (λj : j = 1, . . . ,M) supported by at least one scheduling

policy. In addition, we wish to investigate whether there exists

a single scheduling policy which can support any arrival rate

vector in the stability region – a property we call throughput

optimality of a scheduling policy.

IV. THE STABILITY REGION WITH SLOW GLOBAL

COORDINATION

In this section, we explicitly characterize the stability region

of a system of base stations that schedule users with coordi-

nation and limited local channel state information. We first

2We remark that this zero-rate interference model is assumed only for ease
of exposition. With minor changes, our results and algorithm can be extended
to a more complex model in which interfering users experience reduced rates.
More precisely, reduced channel rates under collisions can be captured by
modifying the definition of Fj(t) in equations (3)-(4) to be a specification of
rates for each user corresponding to which users interfere. This would replace
the hard interference constraint expressed in equation (4). Thus, the effect of
adaptive modulation/coding schemes under interference can also be modeled,
but at the expense of significant notational complications.

3As in [18], this can be ensured by imposing appropriate conditions on the
arrival and channel process (e.g. their marginal distributions are supported with
positive probability on the components in {0, 1, ..., L}). Weaker conditions
for different stability definitions are possible, see Section 2, [18] and Section 3,
[9] for additional discussion.
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introduce a class of static scheduling policies, called Static

Service Split (SSS) policies, which use only instantaneous

local channel state information at each base station to make

scheduling decisions. SSS policies can achieve a finite set of

rates in the stability region, and by using additional common

randomness (e.g., a common sequence of coin toss outcomes),

the base stations can suitably time-share across SSS policies.

We show in Theorem 1 that the stability region is, in fact,

the convex hull that results from all the possible time-sharing

combinations of SSS policies. In other words, any given

scheduling policy is similar, in the sense of long-term service

rates, to a Static Time-sharing (STS) policy, or a time-shared

combination of SSS policies.

A. SSS Policies

Let us consider a class of “simple” scheduling policies

which, inspired by [7], we will term Static Service Split

(SSS) policies. However, unlike the standard SSS policies

used in literature for scheduling with complete channel state

information [7], [28], our SSS policies are essentially “two-

tiered”, and are specifications of both (i) fixed subsets that

base stations must always pick and (ii) fixed “binary vectors”

for every observed subset channel state, that indicate exactly

which users must be scheduled when that channel state is

observed.

Formally, an SSS policy P is defined by a tuple P =
(W1, . . . ,WN , z1, . . . , zN ), where for each i, Wi is a permis-

sible subset of users for base station bi, and zi is a collection

of binary length-|Wi| vectors, one for each possible set of

observed channel states of users in Wi. Equivalently, we can

think of zi as a map that takes the channel states CWi
(t)

observed for subset Wi into a binary vector zi(CWi
(t)) ∈

{0, 1}|Wi|. Scheduling using the SSS policy P is carried out

as follows. At each time slot t,

1) Each base station bi picks a fixed subset Obi(t) = Wi of

its users in order to observe their instantaneous channel

states.

2) All the users for bi not in Wi are not scheduled,

i.e., Bj(t) = 0 for such users. A user uj in Wi

is scheduled if and only if (zi(CWi
(t)))j = 1, i.e.,

Bj(t) = (zi(CWi
(t)))j .

As an example, suppose that base station b1 picks the subset

W1 = {u1, u2} of two of its users, where each user’s channel

state can be either 0 or 1. Then, it can use 4 binary vectors

zi(CW1 ) – one for every 2-tuple CW1 of observed channel

states (there are 4 in all). If, say, z1([1, 1]) = [0, 1], this means

that if both channel states are observed to be 1, only the second

user must be scheduled to transmit, and so on.

Thus, an SSS policy only specifies “local” scheduling rules

per base station: each base station uses channel-state informa-

tion from a predefined subset of users and schedules users in

the subset accordingly. Note that scheduling decisions among

different base stations are functions purely of the instantaneous

channel states of their respective users, and are not coupled

by any other common/shared information. In what follows,

we introduce a more general class of scheduling policies

called Static Time-sharing policies, which involve the base

stations time-sharing between SSS policies using a common

randomness sequence {G(t)}t.

B. Static Time-sharing Policies

A Static Time-sharing (STS) policy results when base sta-

tions use common randomness to time-share between SSS

policies. It is parameterized by a finite set of SSS policies

(Pi)
K
i=1, together with a corresponding set of nonnegative

weights (φi)
K
i=1 that sum to 1. At each time slot t, independent

of previous time slots, all the base stations together decide

to schedule according to the SSS policy Pi with probability

φi. This can be achieved, if, for instance, the base stations

use a common random sequence {G(t)}t where each G(t) ∈
{1, 2, . . . ,K} is the outcome of an independent K-sided coin-

toss with probability distribution (φi)
K
i=1, and indexes the SSS

policy φG(t) for time slot t. Thus, in an STS policy, scheduling

decisions among different base stations are coupled not only

through their users’ instantaneous channel states, but also via

the common randomness that they use. In the next section, we

will see that STS policies can achieve all rates in the convex

hull of the rates of SSS policies (i.e., the “corner point rates”),

and moreover, that no scheduling policy limited by a high-

latency backhaul can stabilize rates outside this convex hull.

C. Characterization of the Stability Region

Towards an explicit characterization of the stability region

with slow/high-latency backhauls, let us define the rate vector

µP associated with an SSS policy P . For each user uj , as in

(4), let

FP
j (t)

△
= Cj(t)D

P
j (t),

where DP
j (t) is simply Dj(t) from (3) but with the su-

perscript P indicating explicit dependence on the scheduling

policy P . Next, let µP △
= (µP

1 , . . . , µ
P
M ), where

µP
j

△
= E[FP

j (t)]

=
∑

r≡(r1,...,rM)

π(r1, . . . , rM ) rj (zi(r|Wi
))j ×

∏

uk∈I(uj)
bl=B(uk)

(1− (zl(r|Wl
))k). (5)

Observe that µP represents the vector of long-term, ergodic

service rates that the SSS policy P delivers to the flows to all

the users in the system.4 In a similar manner, if P is an STS

policy, i.e., P is a combination of SSS policies (P1, . . . ,PK)
with weights φ1, . . . , φK , then we define the rate vector µP =
(µP

1 , . . . , µ
P
M ) associated with P by

µP
j

△
=

K
∑

i=1

φiµ
Pi

j . (6)

4Equation (5) defines the expected offered service rate µP
j per time slot

that user uj sees under the scheduling policy P . For this purpose, the product
on the right hand side in (5) is taken over all users that interfere with user
uj (these users could be associated to different BSs). Thus, a general term
in the product is for a user uk that interferes with uj and the (unique) BS
bl = B(uk) to which uk is associated. In this regard, the subscript l in the
sum represents the BS of an interfering user.
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Fig. 3. Stability region example: Three-user, Two-base-station System with
slow coordination between the base stations

Essentially, the rate vector for an STS policy is defined to

be the convex combination of the rate vectors of its component

SSS policies.

For an SSS policy P with rate vector µP , all arrival rate

vectors λ = (λ1, . . . , λM ) , with λi ≥ 0, i = 1, . . . ,M ,

that are dominated by µP lie in the system stability region,

since the scheduling policy P stabilizes them. Furthermore,

any arrival rate vector that is the convex combination of

SSS policy rate vectors also belongs to the stability region,

since an appropriate STS policy corresponding to the convex

combination stabilizes it. Let

R
△
= int Co({µP : P an SSS policy})

= int {µP : P an STS policy},

where Int Co(∆) refers to the interior of the convex hull of

the set ∆ in standard Euclidean space. Then, the preceding

argument indicates that R is definitely an inner bound to the

stability region (recall that the stability region consists of all

those arrival rate vectors which can be supported by some

scheduling policy). Theorem 1 below states that in fact, the

stability region is no more than R:

Theorem 1. The stability region of the system is R, i.e., a

vector of arrival rates λ = (λ1, . . . , λM ) with λi ≥ 0, i =
1, . . . ,M is supported by a scheduling policy if and only if

λ ∈ R.

This result says that any scheduling policy which stabilizes

the system for a certain choice of arrival rates effectively

behaves like an STS policy, i.e., a suitable time-shared combi-

nation of SSS scheduling policies, in the sense of the long-term

service rates it delivers. This result is useful later, in Section

V, towards showing that a particular scheduling algorithm

we develop is throughput-optimal. The proof of this theorem

is similar in spirit to the results in [7], [21], [22] used to

characterize the stability region. It uses the fact that a system

stable/ergodic under a policy must have consistent long-term

fractions, which are in turn used to construct STS policies

yielding the same service rates. Refer to Appendix A for the

proof.

D. Example: Stability Region for a Three-user, Two-base-

station System

To illustrate the concepts and result of the previous section,

let us derive the stability region for a simple case of two base

stations b1 and b2 serving a total of three users {u1, u2, u3}.

u1 is associated to b1 whereas u2 and u3 are associated to

b2. Channel states for all the three users are either 0 or 1

(ON/OFF channels). Consider the case when all the users are

in geographic proximity to each other and have been assigned

the same frequency bands by their respective base stations, so

that simultaneously scheduled transmissions to any two users

collide. In other words, I(u1) = {u2, u3}, I(u2) = {u1, u3}
and I(u3) = {u1, u2}.

Let us assume that base station b2 can pick at most

one of its two users at any time slot to sample, i.e.,

O(b2) = {{b2}, {b3}}, while O(b1) = {{u1}} trivially. For

simplicity, we let the joint channel state distribution of the

aggregate channel (C1(t), C2(t), C3(t)) take one of four

states s1, . . . , s4 as shown in Table I:

Channel \ State s1 s2 s3 s4
C1(t) 0 0 1 1

C2(t) 1 0 0 1

C3(t) 0 1 0 1

State

probability 1

2

1

4

1

8

1

8

TABLE I
CHANNEL STATE DISTRIBUTION FOR THREE-USER, TWO-BASE-STATION

SYSTEM EXAMPLE

Let us compute the throughput region of the system with

the given channel state statistics, according to Theorem 1.

First, consider the case when base station b2 always picks u2

to sample in the first scheduling step. The set of achievable

long-term throughput rates with just users u1 and u2 is the

shaded region shown in Fig. 4(a). In this figure, the extreme

points (14 , 0) and (0, 5
8 ) are the service rates when users u1

and u2 are always scheduled for service respectively, with the

other user in each case never scheduled. The extreme point

(18 ,
1
2 ) represents the service rates when users u1 and u2 are

scheduled if and only if their respective channel state is 1

(ON ). In this case there is a loss of throughput due to collision

when both channel states are 1.

Remark: The dotted line in Fig. 4(a) represents the addi-

tional throughput obtained when both base stations can see

the channel states of both u1 and u2 before scheduling. This

helps reduce collisions when both the channels have state 1

and hence increases throughput.

Similarly, we can compute the set of service rates when base

station b2 always picks u3. The set of achievable long-term

throughput rates with just users u1 and u3 is the shaded region

shown in Fig. 4(b). Here again, we see three extreme points

on the “northeast” boundary of the region, having similar

interpretations as in the previous figure. Also, the dotted line

represents throughput gained if both base stations know the

joint channel states of u1 and u3 before scheduling.

Theorem 1 now tells us that the stability region of the sys-

tem can be found by taking the convex hull of the two “sub”-

rate regions we found earlier. This is depicted graphically as

the shaded region in Fig. 4(c).
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Fig. 4. (a) Stability region for users u1 and u2, (b) Stability region for
users u1 and u3, (c) Stability region for all three users

V. THROUGHPUT-OPTIMAL SCHEDULING WITH SLOW

GLOBAL COORDINATION

The result of Theorem 1 characterizes the network stability

region as the long-term service rates of static timesharing

scheduling policies. However, observe that

• Any given static timesharing policy is not throughput-

optimal, since the set of arrival rates stabilizable by the

policy is merely the “cube” of points that are dominated

in every coordinate by its long-term service rates, and not

the whole stability region.

• For any arrival rate in the stability region, stabilizing

the queueing system with an appropriate static timeshar-

ing scheduling policy requires knowledge of the arrival

rate. In other words, the static timesharing policies that

stabilize the system for a given arrival rate explicitly

depend on the arrival rate. This motivates the need for

a throughput-optimal scheduling algorithm that, for any

arrival rate in the stability region, keeps all queues stable.

In this section, we focus on developing a throughput-

optimal information exchange and scheduling algorithm in

which base stations share delayed queue length information

among themselves, and use this information to select local

SSS policies.

A. A Throughput-optimal Scheduling Algorithm with Slow

Global Coordination

The scheduling algorithm PT that we describe here uses an

integer parameter T > 0, which represents the time interval

(in slots) between successive communication exchanges be-

tween the base stations. Specifically, the algorithm operates

in successive epochs of T time slots, and requires that all the

queue lengths in the system be shared globally across the base

stations at the beginning of each epoch. Thus, the timescale

at which the base stations exchange queue length information

for coordinating their scheduling actions is once every T time

slots. The scheduling policy PT is as described in Algorithm

1, and essentially operates as follows:

Algorithm 1 Scheduling algorithm PT

Parameter: Integer T > 0.

for t = 1, 2, . . .

1) if t ≡ 1 (mod T )

• Let the global queue length vector at time slot

t − 1 be Q(t − 1) = q ≡ (q1, . . . , qM ). Each

base station bi then solves the following (common)

optimization problem with the decision variables

being (i) one observable subset Sbi per base station

bi, and (ii) a specification of users – represented by

binary vectors zi(rSbi
) – to be scheduled for each

observable subset Sbi and every joint channel state

rSbi
of the subset:

max
Sb1

,...,SbN
z1,...,zN

M
∑

j=1

qj
∑

r1,...,rM

π(r1, . . . , rM ) rj (zi(r1, . . . , rM ))j ×

∏

uk∈I(uj):uk∈U(bh)

(1− (zh(r1, . . . , rm))k) (7)

s.t. Sbi ∈ O(bi), zi : C
M → {0, 1}M , i = 1, . . . , N,

(zi(·))j ≡ 0 ∀j /∈ Sbi ,

zi(r1, . . . , rm) = zi(r
′
1, . . . , r

′
m) if rl = r′l ∀l ∈ Sbi .

• Let (S∗
b1
, . . . , S∗

bN
, z∗1 , . . . , z

∗
N) be a choice of argu-

ments that solves (7).

end if

2) Each base station bi chooses the subset S∗
bi

of its users,

and schedules every user uj in that subset for which

(z∗i (C(t)))j = 1.

end for

1) Each base station accesses the global vector of queue

lengths every T slots.

2) The global vector of queue lengths time slot kT is used

to choose a “temporally local” SSS policy for the next
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T time slots. The subsets and binary decision vectors

for this local SSS policy are chosen in such a way as

to maximize the sum of “local” service rates delivered

to each queue weighted by its corresponding delayed

queue length.

Remark: The constraints in the optimization problem (7)

mainly deal with the structure of the binary decision vectors

zi for BS bi while observing only a subset Sbi of its channel

states. The two nontrivial constraints that a vector zi must

satisfy, expressed by the final two constraints, are: (a) no

user outside the subset Sbi can be scheduled by bi, i.e., any

such user’s binary decision is 0, and (b) for a user within

Sbi , its scheduling decision can depend only on channel states

observed within the subset Sbi , i.e., the user’s binary decision

cannot change if no channel state in Sbi changes.

Note that when the history parameter R is at least T , the

scheduling algorithm PT formally makes the state process

{XT (t)}t=0,1,... a time-inhomogeneous Markov chain, since

within each scheduling epoch, the queue lengths used as

weights in (7) depend on how far into the epoch the algorithm

is operating. To keep the presentation clear, we avoid such

technicalities and deal, instead, with the system state sampled

at the start of every epoch {XT (kT )}k=1,2,..., which is a

homogeneous Markov chain under the algorithm PT .

Our next result – Theorem 2 – establishes two key properties

of the algorithm PT :

1) Throughput-optimality: The scheduling policy PT is

throughput-optimal for any fixed value of T , i.e., it can

support any arrival rate λ in the stability region R.

2) Packet-delays under PT are linear in T : The average

queue lengths in the system, under the scheduling algo-

rithm PT , grow at most linearly with the information lag

T . As a result, by Little’s Law, the average packet delays

are linear in the average queue lengths for fixed arrival

rates, and hence also grow at most linearly in T . Indeed,

the parameter T models the lag or delay incurred by the

base stations in exchanging queue length information,

and with an increasing information lag T , queueing

delays seen by incoming arrivals grow. Theorem 2 result

helps quantify this intuition precisely by giving an O(T )
average queue length bound.

Theorem 2. For a fixed T > 0, if the arrival rate λ ∈ R,

then under the scheduling algorithm PT ,

1) {XT (kT )}k is a positive-recurrent Markov chain,

2) There exists a constant α > 0, not depending on T , such

that under the stationary distribution of {XT (kT )}k,

E
π





M
∑

j=1

Qj(lT )



 ≤ αT ∀l. (8)

(Eπ denotes the expectation under the stationary distri-

bution of {XT (kT )}k.)

We have seen earlier – in Section IV and Theorem 1 – that

scheduling using SSS policies can only achieve finitely many

extreme points of the stability region; additional common

randomness is required to stabilize the entire throughput

region via time-sharing across SSS policies. What Theorem

2 shows is that this crucial role of global, common ran-

domness can be played by delayed/slow-timescale queue-

length information shared among base stations during the

operation of the scheduling algorithm PT . The delayed queue-

length updates help to correctly couple the base stations’ local

SSS scheduling decisions, so as to achieve the right time-

sharing combination and stabilize any valid arrival rate. This is

reminiscent of the manner in which queue length information

is used in a distributed fashion by Ying and Shakkottai [21]

for transmission contention over interfering collision channels

to achieve throughput-optimality. However, their work does

not investigate a two-time-scale information structure (i.e.,

slower, delayed backhaul information and faster, instantaneous

channel states restricted to base stations), whereas our model

addresses both (a) delayed inter-base station coordination and

(b) the issue of choosing subset-based partial channel state

information at each base station.

The proof of Theorem 2 relies on the key observation that

delayed queue length information in the optimization (7) helps

to pick out the “right” set of contending base stations so

that, even when collisions occur within each epoch of T time

slots, the base stations’ decisions are time-shared to ensure

the T -slot negative drift of a quadratic Lyapunov function of

the queue lengths. At the same time, since each base station

can access only partial, subset-based channel state information

from its users, we employ techniques from scheduling with

subset-based CSI [18] to show that the “correct” observable

subsets are picked and time-shared by every base station so

as to locally achieve the right service rates. The results in

the above work [18] solve the problem of choosing partial,

subset-based channel state information at a lone base station

for throughput-optimality; however, in this paper we face and

overcome the novel challenge of simultaneously combining

(a) partial channel state information at every base station with

(b) global delayed queue-length updates across different base

stations, for achieving throughput-optimality in the presence

of inter-cell interference.

We show the negative drift of the quadratic Lyapunov

function under PT by proving that

1) The T -slot drift under PT is of the same form as that

under a static time-sharing scheduling policy, and

2) Because PT solves the optimization (7) at every T -th

time slot, its local T -slot drift is the most negative (and

bounded away from zero) across all static time-sharing

policies.

Finally, the queue-length bound in (8) is obtained from the

negative T -slot Lyapunov drift by using a technique due to

Neely [14]. The reader is referred to Appendix B for the

complete proof of the theorem.

VI. SIMULATION RESULTS: HOW PACKET DELAYS UNDER

PT VARY WITH T

In this section we present simulation results that illustrate

the impact of the coordination delay T and system load (i.e.,

how close the arrival rate vector is to the boundary of the

throughput region) on the average delay experienced by arriv-

ing packets, under the scheduling algorithm PT . We consider
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two example setups involving multiple base stations and users,

interfering channels and subset-constrained scheduling at base

stations and explore the packet delay performance of the

algorithm.

A. 3-User, 2-Base Station Example

The network model we first consider for numerical simula-

tion is the one presented and discussed in Section IV-D, with 3

users and 2 base stations. With regard to the throughput region

of the system, shown in Fig. 4(c), consider the rate vector

λ̂ = ( 1
16 ,

1
4 ,

3
16 ) which is the midpoint of the edge joining the

corner points (18 ,
1
8 , 0) and (0, 0, 38 ), and on the boundary of

the throughput region. For a scaled version λǫ = (1− ǫ)λ̂, we

say that λǫ represents a “load” of 1−ǫ to the system, analogous

to the terminology used in describing load in an M/M/1

queue. Arrivals are generated in an iid Bernoulli fashion and

scheduling is performed using the T -slot throughput-optimal

policies developed in Section V. We examine the average delay

or waiting time experience by packets that enter the network,

in the following two cases:

1) Effect of Coordination Delay: For five different loads to

the system (0.55 to 0.95 in steps of 0.1), the impact of

varying the coordination interval T from 1 to 100 on the

packet delay is as shown in Fig. 5(a). We observe that the

growth in average packet delay is linear with T which

is in accordance with the result of part 2 of Theorem 2,

since by Little’s law the average delay in the network

is proportional to the average queue lengths for a fixed

net arrival rate.

2) Effect of Load: For five different values of coordination

interval (T = 1, T = 10, T = 50, T = 100 and T =
150), we plot the average packet delay in the system

versus load increasing from 0.5 towards 1. The increase

in average packet delay is observed to be particularly

severe as the load approaches 100%.

B. 10-User, 3-Base Station Example

For the second simulation study, we consider a wireless

network comprised of 3 base stations b1, b2 and b3 that serve

a total of 10 users u1, u2, . . . , u10. Users u1, u2 and u3 are

associated with b1, u4, u5 and u6 with b2 and the remaining 4

users are served by base station b3. Figure 6 depicts the user

locations within their respective cells and their interference

pattern. Users {u1, u4} form an interfering or colliding set

of users, as do {u5, u8} and {u3, u6, u9}. This happens, for

instance, when each user in the interfering set is close to its

cell edge and is allotted the same transmission frequency by

its base station (indicated in Figure 3 by a colored ellipse

containing the respective interfering users).

The channel rates for users 1, 5 and 9 are modeled as

Bernoulli(0.7) independent random variables at each time slot,

and the rates for all other users are assumed to be always

ON (i.e., 1 packet per time slot at all times). We assume a

symmetric arrival rate of 0.05 packets per time slot to all

users. Each base station can observe instantaneous NSI for

3 of its users, which means that b3 must pick a subset of 3 of

its 4 users at each time to observe channel state. The packet
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Fig. 5. (a) Average packet delay with lag T for various loads, (b) Average
packet delay with load for various lags T

delay performance of the scheduling algorithm PT is plotted

in Figure 7, for each value of the coordination delay T . This

is in agreement with our result that the average packet delay

increases linearly with the coordination latency between base

stations.

VII. CONCLUSION

In this work, we considered multi-base-station wireless

downlink scheduling with slow, global coordination and lim-

ited, local channel state information. We characterized the

network stability region under this information structure, and

developed a throughput-optimal distributed scheduling algo-

rithm in which it is sufficient for base stations to share

delayed queue lengths on a slow timescale to pick appropriate

subsets of users, and use the locally observed channel states

of these users to make good scheduling decisions. In this way,

coordination between the base stations on a slow timescale –

in the form of delayed queue lengths – helps solve the subset-

selection problem at each base station and, together with the

right rules for scheduling users in those subsets, achieves

throughput-optimality. We also investigated the impact of the
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Fig. 6. Example of a system with 3 base stations and 10 users for
numerical simulation. Interfering user groups, indicated by colored ellipses,
are {u1, u4}, {u3, u6, u9} and {u5, u8}. Channels are Bernoulli(0.7) for
u1, u5 and u9 and constant 1 for all other users. Each base station can
observe channel states for 3 of its users, which means b3 must choose 3 of
its 4 users at each time.
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Fig. 7. Average packet delay of the scheduling algorithm PT for various
values of coordination delay T , for the 10-user 3-base station example.

delay in shared queue length information on the average packet

delay performance of the system.

Future directions of research include: (i) evaluating the

throughput performance of greedy, low-complexity scheduling

strategies, and (ii) refining packet delay estimates using large-

deviations/heavy-traffic analysis.

APPENDIX A

PROOF OF THEOREM 1

For showing necessity, assume that there exists a schedul-

ing policy P which supports the arrival rate vector λ =
(λ1, . . . , λM ). This means that under P , the vector XR(t)
is a positive recurrent discrete time Markov chain. Consider

this Markov chain in its stationary regime (arbitrarily close

approximations to the stationary regime will also suffice).

We will need the following additional notation for the proof:

1) Let O(t)
△
= (Ob1(t), . . . , ObN (t)) be a representation of

the collection of user subsets that each base station picks

to observe at time slot t.
2) For user subsets W1, . . . ,WN , and x in the sup-

port of XR(t), let φW1,...,WN ;x(t)
△
= P[Ob1(t) =

W1, . . . , ObN (t) = WN , XR(t) = x].
3) Recall that the scheduling decision Bj(t) for user

uj ∈ U(bi) is a function of system state XR(t), the

subset Obi(t) chosen by its server (since users outside

this subset are not scheduled), and current channel

states CObi
(t). To indicate this, we explicitly write

Bj(t) = f t
j (XR(t), Obi(t), CObi

(t)), where for every

j = 1, . . . ,M and t = 1, 2, . . ., f t
j is a function

that maps (XR(t), Obi (t), CObi
(t)) into {0, 1}, with

f t
j (XR(t), Obi (t), CObi

(t)) = 0 whenever j /∈ Obi(t).

Let uj ∈ U(bi). To begin, note that at stationarity, E[Qj(t+
1)] = E[Qj(t)] ⇒ E[Aj(t)] = E[Ej(t)], and so

λj = E[Aj(t)] = E[Ej(t)] ≤ E[Fj(t)] (9)

= E



Cj(t)Bj(t)
∏

uk∈I(uj)

(1 −Bk(t))





=
∑

W1,...,WN
x

φW1,...,WN ;x(t)E



Cj(t)Bj(t) ×

∏

uk∈I(uj)

(1−Bk(t))

∣

∣

∣

∣

∣

∣

O(t) = (W1, . . . ,WN ), XR(t) = x



 .

(10)

Evaluating the expectation gives

E



Cj(t)Bj(t)
∏

uk∈I(uj)

(1−Bk(t))

∣

∣

∣

∣

∣

∣

O(t) = (W1, . . . ,WN ),

XR(t) = x





=
∑

r≡(r1,...,rM)

P[C(t) = (r1, . . . , rM )|O(t) = (W1, . . . ,WN )]×

E



Cj(t)Bj(t)
∏

uk∈I(uj)

(1−Bk(t))

∣

∣

∣

∣

∣

∣

O(t) = (W1, . . . ,WN ),

XR(t) = x,C(t) = (r1, . . . , rM )





=
∑

r≡(r1,...,rM)

π(r1, . . . , rM )rjf
t
j(x,Wi, r|Wi

) ×

∏

uk∈I(uj)

(1− f t
k(x,WB(uk), r|WB(uk)

)), (11)

since C(t) is independent of O(t). Using (11), (10) finally
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becomes

λj ≤
∑

W1,...,WN ,x

φW1,...,WN ;x(t) ×





∑

r≡(r1,...,rM )

π(r1, . . . , rM )rjf
t
j (x,Wi, r|Wi

) ×

∏

uk∈I(uj)

(

1− f t
k(x,WB(uk), r|WB(uk)

)



 . (12)

The fact that
∑

W1,...,WN ,x

φW1,...,WN ;x(t) = 1,

together with the fact that (12) has the same form as that of

(6) (relying in turn on (5)) for the long term rates of STS

scheduling policies, shows that the vector λ = (λ1, . . . , λM )
can be dominated by a convex combination of rate vectors

of SSS scheduling policies. This finishes the proof of the

theorem.

APPENDIX B

PROOF OF THEOREM 2

To avoid heavy notation, we prove the theorem assuming

that each base station can pick all its users in the first

scheduling step, viz. Obi = {U(bi)} ∀ i = 1, . . . , N . The

extension to the general case is straightforward.

First, we bound the amount that any queue in the system

can grow in T time slots, using (1):

Lemma 1.

Qj(t+T ) ≤ max

{

Qj(t)−
t+T−1
∑

τ=t

Fj(τ), 0

}

+

t+T−1
∑

τ=t

Aj(τ).

(13)

Proof: Consider two cases:

1) Qj(t) ≥
∑t+T−1

τ=t Fj(τ): In this case, according to (1),

both sides of (13) are equal.

2) Qj(t) <
∑t+T−1

τ=t Fj(τ): For this case, let t′ ∈
{t, . . . , t+T−2} be the first time that Qj(t

′)−Fj(t
′) <

0 (if no such time exists, then Qj(t + T ) = Qj(t) −
∑t+T−1

τ=t Fj(τ)+
∑t+T−1

τ=t Aj(τ) ≤
∑t+T−1

τ=t Aj(τ) and

we are done). We must then have

Qj(t+ T ) ≤
t+T−1
∑

τ=t′

Aj(τ) ≤
t+T−1
∑

τ=t

Aj(τ),

which finishes the proof.

Next, for the Markov chain (XT (t))
∞
t=1, let us introduce the

quadratic Lyapunov function

L(XT (t))
△
=

M
∑

j=1

Q2
j(t).

In what follows, we bound the expected drift in this Lyapunov

function over an interval of T time slots when the system

operates under the policy PT , and show that the expected drift

can be bounded negatively away from zero. Consider

∆L(XT (kT ))
△
= L(XT ((k + 1)T ))− L(XT (kT ))

=

M
∑

j=1

(Q2
j(kT + T )−Q2

j(kT ))

(a)

≤
M
∑

j=1





(

kT+T−1
∑

τ=KT

Fj(τ)

)2

+

(

kT+T−1
∑

τ=KT

Aj(τ)

)2

−

2Qj(kT )

kT+T−1
∑

τ=KT

[Fj(τ)−Aj(τ)]

)

≤
M
∑

j=1



T 2C2
max + T 2A2

max− 2Qj(kT ) ×

kT+T−1
∑

τ=KT

[Fj(τ) −Aj(τ)]

)

= M
(

T 2C2
max + T 2A2

max

)

−

2

M
∑

j=1

Qj(kT )

kT+T−1
∑

τ=KT

[Fj(τ) −Aj(τ)] ,

where (a) follows from the fact that if V, U, µ,A are

nonnegative real numbers with V ≤ max{U − µ, 0} + A,

then V 2 ≤ U2 + µ2 + A2 − 2U(µ − A). Taking conditional

expectations given Q(kT ) = q ≡ (q1, . . . , qM ) yields

E[∆L(XT (kT ))|Q(kT ) = q]

≤ MT 2
(

C2
max +A2

max

)

− 2

M
∑

j=1

qjE

[

kT+T−1
∑

τ=KT

[Fj(τ)−Aj(τ)]

∣

∣

∣

∣

∣

Q(kT ) = q

]

= MT 2
(

C2
max +A2

max

)

+ 2T

M
∑

j=1

qjλj

− 2

M
∑

j=1

qjE

[

kT+T−1
∑

τ=KT

Fj(τ)

∣

∣

∣

∣

∣

Q(kT ) = q

]

= MT 2
(

C2
max +A2

max

)

+ 2T

M
∑

j=1

qjλj

− 2

M
∑

j=1

qjTE [Fj(kT )|Q(kT ) = q] , (14)

where the last line follows because by definition, the schedul-

ing choices of the policy PT from time kT upto kT + T − 1
depend only on the queue lengths Q(kT ) at time kT and

the optimal binary vectors z∗1 , . . . , z
∗
M computed at time slot

kT , and are thus statistically identical from time kT upto

kT + T − 1.

By hypothesis, λ = (λ1, . . . , λM ) ∈ R. Hence, there

exists ǫ > 0 and a static time-sharing scheduling policy

PTS such that µPTS = (1 + ǫ)λ. Let PTS be a time-

sharing (Bernoulli) combination of n SSS policies Pi with

selection probabilities φi respectively, i = 1, . . . , n, where

Pi = (W i
1 , . . . ,W

i
N , zi1, . . . , z

i
N) (the superscript i indexes the
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SSS policy). We have, for 1 ≤ j ≤ M ,

µPTS

j =

n
∑

i=1

φi

∑

r≡(r1,...,rM )
bh=B(uj)

π(r1, . . . , rM ) · rj ·
(

zh(r|W i
h
)
)

j

×
∏

uk∈I(uj)
bl=B(uk)

(

1− (zl(r|Wl
))k
)

. (15)

We add and subtract 2T
∑M

j=1 qjµ
PTS

j to the right hand side

of (14) to get

E[∆L(XT (kT ))|Q(kT ) = q] ≤ MT 2
(

C2
max +A2

max

)

+

2T
M
∑

j=1

qj(λj − µPTS

j ) +

2T





M
∑

j=1

qjµ
PTS

j −
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]



 .

(16)

The crucial observation here is that the scheduling policy

PT is designed such that the last term above, in round brackets,

is always non-positive:

Lemma 2. For the static time-sharing policy PTS , we have





M
∑

j=1

qjµ
PTS

j −
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]



 ≤ 0.

Proof: With the long term rates of the STS policy PTS

satisfying (15), we can write





M
∑

j=1

qjµ
PTS

j −
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]





=









M
∑

j=1

qj

n
∑

i=1

φi

∑

r≡(r1,...,rM )
bh=B(uj)



π(r1, . . . , rM ) · rj ·
(

zh(r|W i
h
)
)

j

×
∏

uk∈I(uj)
bl=B(uk)

(

1− (zl(r|Wl
))k
)









−
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]









≤ max
i=1,...,n









M
∑

j=1

qj
∑

r≡(r1,...,rM)
bh=B(uj)

π(r1, . . . , rM ) · rj ·
(

zh(r|W i
h
)
)

j

×
∏

uk∈I(uj)
bl=B(uk)

(

1− (zl(r|Wl
))k
)

−
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]









.

(17)

We also have, by the definition of our proposed scheduling

policy via (7), that

M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]

=
M
∑

j=1

qj
∑

r≡(r1,...,rM )
bh=B(uj)

π(r1, . . . , rM ) · rj · (z
∗
h(r))j ×

∏

uk∈I(uj)
bl=B(uk)

(1 − (z∗l (r))l)

≥
M
∑

j=1

qj
∑

r≡(r1,...,rM )
bh=B(uj)

π(r1, . . . , rM ) · rj ·
(

zh(r|W i
h
)
)

j
×

∏

uk∈I(uj)
bl=B(uk)

(

1− (zl(r|Wl
))k
)

=

M
∑

j=1

qjµ
PTS

j ,

where the last line is due to the optimal choice of the z∗h,

h = 1, . . . , N . Together with (17), this proves the lemma.

Using Lemma 2, (16) implies

E[∆L(XT (kT ))|Q(kT ) = q]

≤ MT 2
(

C2
max +A2

max

)

+ 2T

M
∑

j=1

qj(λj − µPTS

j )

= MT 2
(

C2
max +A2

max

)

− 2ǫT

M
∑

j=1

qjλj

≤ MT 2
(

C2
max +A2

max

)

− 2ǫT (min
j

λj)
M
∑

j=1

qj . (18)

Without loss of generality, minj λj > 0. For a fixed δ > 0,

outside the finite set of vectors q for which
∑M

j=1 qj <
δ+MT 2(C2

max+A2
max)

2ǫT (minj λj)
, we have E[∆L(XT (kT ))|Q(kT ) = q] ≤

−δ < 0, so by Foster’s theorem [29], {XT (kT )}k is a

positive recurrent Markov chain. This proves the first part of

the theorem.

Turning to the second part, we can take expectations of both

sides of (18) and sum over k = 0, . . . ,K − 1, so that

E[L(XT (KT ))]− E[L(XT (0))]

≤ MKT 2
(

C2
max +A2

max

)

− 2ǫT (min
j

λj)

K−1
∑

k=0

M
∑

j=1

E[Qj(kT )].

Rearranging terms and noting that L(XT (KT )) ≥ 0 gives

1

K

K−1
∑

k=0

M
∑

j=1

E[Qj(kT )] ≤
MT

(

C2
max +A2

max

)

2ǫ(minj λj)

+
E[L(XT (0))]

2ǫKT (minj λj)
.

The positive recurrence of {XT (kT )}k, from the previous

part, implies that

lim
K→∞

1

K

K−1
∑

k=0

M
∑

j=1

E[Qj(kT )] =

M
∑

j=1

E
π[Qj(lT )],
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for any l, and, together with the finiteness of E[L(XT (0))],
we get that

M
∑

j=1

E
π [Qj(lT )] ≤

MT
(

C2
max +A2

max

)

2ǫ(minj λj)
≤ αT

for any α ≥
M(C2

max+A2
max)

2ǫ(minj λj)
. This proves the second part of

the theorem.
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