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Abstract—With increasing data demand, wireless networks
are evolving to a hierarchical architecture where coverage
is provided by both wide-area base-stations (BS) and dense
deployments of short-range access nodes (AN) (e.g., small cells).
The dense scale and mobility of users provide new challenges
for scheduling: (i) High flux in mobile-to-AN associations, where
mobile nodes quickly change associations with access nodes
(time-scale of seconds) due to their small footprint, and (ii)
multi-point connectivity, where mobile nodes are simultane-
ously connected to several access nodes at any time.

We study such a densified scenario with multi-channel
wireless links (e.g., multi-channel OFDM) between nodes
(BS/AN/mobile). We first show that traditional algorithms that
forward each packet at most once, either to a single access
node or a mobile user, do not have good delay performance. We
argue that the fast association dynamics between access nodes
and mobile users necessitate a multi-point relaying strategy,
where multiple access nodes have duplicate copies of the data,
and coordinate to deliver data to the mobile user. Surprisingly,
despite data replication and no coordination between ANs, we
show that our algorithm (a distributed scheduler — DIST) can
approximately stabilize the system in large-scale instantiations
of this setting, and further, performs well from a queue-
length/delay perspective (shown via large deviation bounds).

Index Terms—Wireless Scheduling, Dense Networks, Multi-
point Connectivity.

I. INTRODUCTION

The wireless industry is undergoing a sea change in
cellular deployment. From a well-planned macro-cellular
setting, the network is evolving to a hierarchical setting with
cellular base-stations provide macro coverage (footprint of 1
km or more) and a dense deployment of access nodes (e.g.,
small cells [31] or femto cells [2], [1]) whose coverage range
may be as little as 50 — 100 meters, provides short-range
coverage. This combination — macro + dense short-range
coverage — popularly referred to as network densification,
leads to new challenges in network resource allocation.'

First, the access nodes’ small footprints imply that mo-
bile nodes associate and disassociate with them at a much
higher rate than previously seen. A car moving at just 30
mph results in hand-offs between ANs at the time-scale of
seconds. This will likely worsen with emerging technologies
for 5G systems such as millimeter wave (mmWave) Broad-
band [27], where the radio propagation environment results
in highly non-isotropic and direction-dependent short-range
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coverage?. Thus, to ensure universal coverage, operators have
no recourse but to provide a very dense deployment of
ANs (especially in locations with high data demand). This
leads to second challenge: mobile nodes have the opportunity
to associate with several possible ANs at any given time
(however, this set changes rapidly over time due to mobility
and coverage directionality).

In this paper, we argue that operating these dense networks
in a traditional manner, where mobile nodes associate with
one AN at any time, and then hands-off to a new one as
the environment/location changes, can be inefficient. Instead,
we study an approach where data packets are replicated at
a collection of ANs whose footprints most-likely cover the
mobile node, and these ANs deliver packets to the mobile
user by making decisions in a decentralized manner using
local information. We communicate directly between the
base-station and the mobile node only as a last resort when
the ANs are unable to reach the mobile node (e.g., due to
uncertainty in tracking the mobile node, poor location, poor
channel rates due to fading). We propose a formal model to
capture this setting and analytically show the performance
benefits.

Coordination in wireless communication has been studied
in various contexts like Distributed/Virtual MIMO [26], [25],
Network Coding [20], [18] etc. Importantly, these techniques
require coordination at the packet or time-slot level. As
discussed in [12], backhaul delays could be much larger
than the duration of a time-slot; further with densification,
heterogeneity in backhaul delays will likely worsen. Thus,
the key differentiating aspect from the above literature is that
we consider the setting with delayed or sloppy coordination
among the various access nodes. In our setting, access
nodes do not have current knowledge of nearby nodes’
instantaneous states, or indeed, even knowledge of which
mobile nodes are connected to them.

A. Contributions

We study scheduling algorithms for networks with a base-
station (BS) and multiple densified access nodes (AN) and
multiple mobile users. We assume that the ANs are dense

2For instance, in a mmWave Broadband system, the human body com-
pletely blocks radio propagation [19], [28]. Thus even slight movement
(e.g., rotation of the human with the phone) can completely block the
mmWave access node from communicating with a mobile node, thus leading
to association changes that can occur within fractions of a second.



enough to support multi-point connectivity, i.e., each user
can associate with multiple ANs at any given time. We
propose an algorithm (DIST) for scheduling and evaluate
its performance as detailed below.

1) Algorithm DIST: We propose a distributed algorithm
called DIST where the BS and the ANs make their
scheduling decisions independently, based only on
local channel and queue-length information. Under
the DIST algorithm, the BS forwards each packet to
an AN that is currently connected to the intended
user. If an AN cannot forward a received packet to
the corresponding user because the user is no longer
connected to it, unlike traditional algorithms, under the
DIST algorithm, the AN forwards copies of packets to
multiple ANs around it. In addition, if the ANs fail to
deliver a packet to the user within a fixed number of
time-slots, it is forwarded directly from the BS to the
mobile user.

2) Stability: Under general arrival and bounded channel
processes, we show that if the system scale is large
enough, the DIST algorithm keeps the system stable
(i.e., Markovian assumptions imply positive recurrence
of the queues).

3) Performance: We have two performance results: (i)
We first show that traditional algorithms like the
BackPressure algorithm [32] in which the base-station
forwards each packet at most once, either to a single
access node or a mobile user, do not have good
delay performance for mobile users, i.e., the delay
rate functions are zero. (ii) For the proposed DIST
algorithm, we show that for bounded i.i.d. arrivals and
channels, the maximum queue-length rate function is
strictly positive and therefore, the queue-length tails
decay exponentially. Further, via simulations, we show
that the DIST algorithm significantly outperforms the
BackPressure algorithm in terms of the delay perfor-
mance.

B. Related Work

Since the work by Tassiulas and Ephremides [32], there
has been great interest in queue-length based scheduling
in wireless networks (see [10] for a survey). In the many
users/channels context (as in this paper), there has been
recent activity to characterize stability, queue-length and
delay performance, with and without relays (however without
user mobility) [5], [6], [7], [30], [24], [16]. A key insight
in these works has been the use of iterative allocations,
where queues are updated to account for (partial) channel
allocations even within a time-slot.

This paper focuses on the benefits of data replication and
multi-point connectivity in a mobile cellular setting (i.e.,
multiple access nodes maintaining active communications
with a mobile user). Such access has had a long history,
starting from CDMA soft-handoff (to enable make-before-
break voice connections) [33], [34]. More recently, in the
setting of COordinated Multi-Point (COMP) [22], there has

been much work at the physical layer to develop coop-
erative communication strategies between a collection of
base-stations and a mobile user. This is especially useful
in densified settings, with increased opportunities (many
base-stations/access points for coordination) and challenges
(more complex interference management). These issues have
been studied in various ways including simulations [8],
field trials [15], [3], and information-theoretic techniques
[11] (see [22] for a survey). In this paper, we focus on
network level attributes — queue-lengths and delays — and
show that even local scheduling algorithms that replicate
data can significantly outperform more traditional scheduling
algorithms.

Finally, as discussed in the introduction, coordination in
wireless networks has a rich history and has been studied
in various contexts like Network Coding, Multi-homing, vir-
tual/distributed MIMO etc. See [35] for a detailed discussion
of network challenges due to coordination. In this paper, we
propose an algorithm which uses only local information, thus
obviating the need for coordination between different ANs.

II. SYSTEM MODEL

We consider a two-tiered downlink communication system
with a base-station, a large number of ANs and mobile users
as shown in Figure 1. We study a multi-channel (e.g. OFDM)
setting with a large number of orthogonal channels that
can be used for communication simultaneously. This multi-
channel setting, but without user mobility, was the focus
in [24]. However, the fact that users are mobile and that
the network is densified implies that the set of ANs that a
mobile node is associated with is not time-invariant; further,
a classical time-scale decomposition assumption between
mobile-AN association and channel scheduling cannot be
easily justified.

From a channel (average) rate perspective, our setting is
one where the BS-AN, AN-AN and the AN-user links have
higher data-rates than the BS-user links. Again, this is a
natural setting to consider because the ANs are expected
to be mounted in more suitable locations, as well as have
superior hardware in terms of the number of antennas, as
compared to the mobile users. Moreover, the ANs that a
user is associated with are typically much closer to the user
than the central BS.

Formally, the system consists of a base-station and M (n)
ANs, where n is the number of users in the system.
We assume that the ANs have two RF chains, one to
communicate with the BS and the other to communicate
with the users and other ANs. As recommended in [1],
the BS-AN communication happens at a different spectrum
than the BS-user and AN-user communication. To keep the
notation simple, we assume that the number of orthogonal
frequency channels for BS-AN communication and AN-user
communication are n each. This setting was also considered
in [24]. Our results can easily be extended for other linear
scalings.
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Fig. 1. A wireless network with a base-station, densely deployed ANs and
mobile users. The users more in and out of the coverage area of the ANs due
to mobility, but are always in the coverage area of the base-station. BS/AN
image courtesy: http://intersales.com.au/GPSNetwork.aspx; see also [14].
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Fig. 2. Association graph between the ANs and mobile users in the network
in Figure 1. Each AN is associated with all user that are currently in its
coverage range, represented by an edge between the AN and the mobile
user. AN image courtesy: http:/intersales.com.au/GPSNetwork.aspx

A. User Mobility

We use a general notion of mobility which allows both fast
moving users that move in every time-slot as well as users
which move rarely. Formally, we assume that the probability
that a user moves from its current position between two
consecutive time-slots is (1 /poly(n)) (at least of the order
of 1/poly(n)). This assumption allows the expected time
spent at a location to be anything between one and a
polynomial function of n. For example, the probability that
a user moves between two consecutive time-slots can be
a constant independent of n as is the case for the Levy-
walk process, which is known to be a good model for
human mobility in various outdoor settings including college
campuses and theme parks [29]. Other popular models, for
instance, (discretized versions of) the Random Waypoint
Mobility model (RWM) [17] and its variants that have been
shown to be more appropriate for user mobility in cellular
networks [21], also satifsy this condition.

B. User-AN Connectivity

Since we consider a setting where the ANs are densely
deployed, the user is very likely to be connected to multiple
ANSs. However, we also include the possibility that, in some
time-slots, the system fails to obtain the location information
of a user. This could happen for various reasons: (i) when
a user goes out of the coverage area of the ANs, (ii) when
the user is within the communication range of some ANs,
but fails to communicate its position to those ANs, or
(iii) when a user tracking/position learning algorithm fails.

Specifically, we assume that, at the beginning of each time-
slot, the location of the user is known with probability at least
1—¢€(n), i.i.d across users. When the user location is known,
it is connected to at least C'(n) ANs. The density of the
ANs in the network can be non-uniform, and therefore, C'(n)
imposes a lower bound on it. In this paper we work in the
setting where C'(n) is at least O(log n). We also assume that
the base-station can always communicate with all users albeit
at lower (average) rates than the ANs. Figure 2 illustrates the
user-AN association graph for the system shown in Figure
1.

1) Unpredictability of user-AN associations: Since the
users are mobile, the set of ANs a user is connected to can
change between two consecutive time-slots. Let M, (t) be
the set of AN that user u is connected to in time-slot . We
assume that,

- Between two consecutive time-slots, the probability that

a connected mobile user, © moves to a new location
such that it is no longer associated with a previously
connected AN, m is not negligible. Formally, for every
tand m € M,(t — 1),

P(m ¢ My(t)) = pa(n),

where 1 (n) = Q(1/poly(n)).

- Further, the motion of the mobile user cannot be pre-
dicted with very high accuracy, i.e., for every ¢ and
m ¢ M,(t —1),

P(im € M,(t)) <1— ua(n),

where ps(n) = Q(1/poly(n)).
These two conditions are fairly general and are satisfied both
by users moving at a very fast time-scale (every time-slot)
to users that move rarely (poly(n) time-slots in expectation).
These conditions are also satisfied by the Levy walk process
and the RWM model.

2) User-AN associations in consecutive time-slots: We
consider the setting where the mobility of users is such that
there is some overlap between the ANs a user is connected
to in two consecutive time-slots. This imposes a restriction
on the maximum velocity of the mobile users. Formally, we
assume that, for a user u connected to the ANs in time-slots
tand t + 1, |My(t) N M, (t + 1)| = Q(logn).

3) Concentration of users around an AN: In dense net-
works where each AN has a small footprint, it is unlikely
that a large number of users will be connected to any one
particular AN. Therefore, we can assume that, with high
probability, not more than a constant fraction of the total
number of users are connected to a particular AN at the same
time. Specifically, if Uy, (t) is the set of users connected to
AN m in time-slot ¢, then

P< max  |Up(t)| > n”) <e tm
1<m<M(n)

for a positive constant ¥ < 1 — 3 and a constant b > 0. This
condition is satisfied, for example, if the users are executing
a lazy random walk on the network of ANs independent of
other users in the system.



C. Communication between Access Nodes

We consider the setting where each AN can communicate
with O(logn) other ANs located close to it. We assume that
the set of ANs that a given AN m can communicate with
is large enough so that even if a mobile user connected to
AN m in time-slot ¢ moves in the next two time-slots (£ + 1
and ¢+ 2), AN m can communicate with at least one AN in
M, (t+2).

D. Interference between Access Nodes

Although the dense deployment of ANs enables multi-
point connectivity, it can cause interference at the mobile
user due to simultaneous transmissions on the same channel.
Let I,,, be the set of ANs which interfere with an AN m,
i.e., no AN in [, can successfully transmit on the same
channel as m. We assume that the interference set for every
AN satisfies the following: For all m,

|Im| S nﬂa

for some constant 8 < 1. Note that this condition is
quite general, and allows for interference sets that grow
polynomially in the network size. As a point of reference,
spatial stochastic models (where ANs are randomly scattered
over the plane), and connectivity as suggested in the Gupta-
Kumar model [13] have interference sets that scale only
logarithmically in network size, and thus is allowed by our
model.

E. Notation

We add to the notation previously used in [24] and [5], [6],
[7] to incorporate mobility of users which leads to time-
varying user-AN associations. There are n queues at the
base-station and ANs (one per user). Our system evolves
in discrete time {¢t = 0,1,2,...}, where arrivals happen at
the beginning of time-slots, and queues are updated at the
end of a time-slot.

- Qi, Ry = Queue of mobile user ¢ at the BS and at AN
m respectively.

- Qi(t) = BS queue-length of mobile user ¢ at the end of
time-slot ¢.

- Q(t) = {Q;(t) : 1 < i < n}: BS queue-length vector
(across all mobile users)

- A;(t), A7 (t) = Number of packet arrivals for mobile
user ¢ at the BS and AN m respectively at the beginning
of time-slot ¢.

- A(t) = {4;(t) : 1 <i < n}: Arrival vector (across all
mobile users).

- M;(t) = The set of ANs connected to mobile user 7 in
time-slot t.

- C(n) = min. a1y |M;(t)| is the minimum number
of ANs connected to mobile users whose locations are
known.

- Upn(t) = The set of mobile users connected to AN m
in time-slot £.

- X, ;(t) = Channel rate (number of packets) for the j-th
channel from the BS to mobile user .

- X;-B’m(t) = Channel rate for the j-th channel from the
BS to AN m.

- X[ (t) = Channel rate for the j-th channel from AN
m to mobile user ;.

- X ;’m(t) = Channel rate for the j-th channel from AN
[ to AN m.

In each time-slot, channels are allocated to service appro-
priate queues; this is captured via the decision variables
Yiﬁ’m(t), Y (t), Yi;(t) and le’m(t) for users 1 < i < n,
channels 1 < j < n and ANs 1 < m,l < M(n) (each
of the variables takes the value ‘1’ if it corresponds to an
allocation, and ‘O’ otherwise).

Finally, T; ;(t) corresponds to the number of packets
transmitted from user ¢’s queue at the base-station on channel

J-
III. MAIN RESULTS AND DISCUSSION

A. Algorithm: DIST

In a system implementing this algorithm, the ANs do not

cache packets for more than a fixed number of time-slots
(say L). Any packet which arrives to an AN at the beginning
of time-slot ¢ is deleted by the AN at the end of time-slot
t+ L — 1. The base-station stores all packets which have not
reached their destination (user).
For each packet p € A;(t) we introduce an indicator variable
Z, which is 1 if the packet reaches the user 7 by the end
of time-slot ¢ + L. The queue-length evolution is now given
by:

n +
Q) = (@xt—1>+Fi<t>—ZXi,j<tmj<t>) ,

Jj=1

where

Fi(t) = Ai(t - L—1) -

Yo 7

pEAi(thfl)

are the packets which arrived at the BS at the beginning of
time-slot ¢ — L, but, could not be sent to user ¢ by the end
of time-slot ¢ — 1.

We now describe the DIST algorithm (both at the BS and
AN).
Base-Station Algorithm: The base-station algorithm pro-
ceeds in an iterative manner (see [6] for a detailed discussion
of iterative algorithms), allocating one channel at a time.
Queue-lengths are updated after each round of allocation.
Channel £ is allocated in iteration k.

1: Forward New Arrivals to ANs

argmax
1<i<n,meM,(t)

Find {i*,m*} € AR x ),

where Agkfl) (t) is the updated (accounting for packets

scheduled for transmission on channels from 1 to k—1)
number of arrivals to user ¢ in time-slot ¢ and M;(t)
is the set of ANs that user ¢ is currently connected
to. Packets for user ¢* are scheduled for transmission
from the base-station to the AN m* on channel k.



2: Direct Forwarding to Users
If channel & is not used by the base-station to forward
new arrivals to the ANs, search for the queue index

i* € argmax ng_l)(t - 1)X; x(¢),
1<i<n

breaking ties in the favor of the smaller user index.
Allocate channel k to transmit X;~ j(t) from the queue
for user 7* at the base-station directly to user ¢*.

3: Update Queue-lengths
Update all queue-lengths before allocating the next
channel.

Remarks. The salient features of DIST (at the Base-station
level) are:

i. Step 1 — Local Information + Greedy: Unlike the
BackPressure algorithm, the DIST algorithm does not
use differential backlogs to make its routing decisions
and therefore does not try to balance the load at the
ANs. Instead, the algorithm tries to push packets to the
ANs in a greedy manner whenever it sees high channel
rates.

ii. Step 2 — Direct Forwarding over Free Channels: Unused
channels (i.e., unused by BS-to-AN transmissions) are
used by the base-station to route packets which are
queued at the base-station directly to the users. These
packets may have previously been successfully received
by one or more ANs, but which failed to forward it
to the intended user. The base-station transmits these
packets directly to the users.

Access Node Algorithm: We now describe how each AN
carries out the task of channel allocation.
For each AN m, we define two sets:

- V,, = the set of ANs that AN m can communicate
with.

- Dp(t):={u:me M,(t—1)\ M,(t)} be the set of
users which were connected to AN m in the previous
time-slot, but are not connected to AN m in this time-
slot.

Remarks. Before we formally describe the algorithm, the
key features of DIST (at the AN level) are:

i. Local Information: Each AN makes its decisions using
local queue-length and channel information (channel
rates to from m to ANs in V,, and users connected to
AN m).

ii. Forwarding Strategy: For users that are connected to
the AN, the AN forwards packets directly to the users.
Packets for users that were connected to the AN in the
previous time-slot, but are no longer connected to the
AN in the current time-slot (users in the set D,,(t)), are
forwarded to neighboring ANs (ANs in the set V).

iii. Channel Randomization: Each AN chooses the channel
it transmits on uniformly at random from the set of
channels which have the highest channel rate. This can
lead to collisions, but, since we work in the large scale
multi-channel setting, the expected number of collisions
are a vanishing fraction of the supportable load.

Formally, each AN implements the following steps:
1: Initialize J = {1,2,..n} and BXV(t) = A™(t) for
u € Dy, (t) and | € V.
2: Forward Packets to Connected Users
If max;eq,, (1) Ar 1 20, k=1 and goto step 4.
Else,

{i*,77} € argmax A;n(kfl)X;’Z-(t),
i€Um (t),5€J
breaking ties uniformly at random. Allocate channel j*
to serve the queue for user ¢* and update J = J \ j*.
3 AT = (gD — X7 .(t)", k= k+1, and goto
Step 2.
4: Forward Packets to Neighboring ANs
{l*7 u*’ .7*} 6

argmax Bi(k*l)X;-"’l(t)7

lEVm,ueDm(t):jEJ
breaking ties uniformly at random. Allocate channel
j* to forward packets for user u* € D,,(t) to AN [*
and update J = J \ j*.
50 B = BTV - X ()t k =k + 1, and

goto Step 4.
B. Stability

The DIST algorithm allows the base-station to retransmit
packets which have already been received by one or more
ANs. Retransmission can lead to the instability of queues
in the system, but we show that under some reasonable
assumptions on the channel and arrival processes, the DIST
algorithm stabilizes the queues in the system. These assump-
tions are analogous to those in [24] (see also [9], [6]), with
the natural additions to account for user mobility.

Assumption (1.1). (Bounded Channel Processes)

- The channel processes are i.i.d. across time-slots (and
independent of the arrival process).
B,
- X;™(t) < Crax < 0.
- Xi””j(t) < Choar < 00.
- XMl < O < 00.
- X’L,j(t) < szw < Chaze < 0.
- For every j and user 1 in time-slot t,

Cd
P(X;5(t) = Cop) = i) > 0,
- For every j, t and user i connected to AN m in time-slot
t, .
P(XP5(t) = Cmaz) > g5 > 0.

- For every j, t and every AN | which can communicate
with AN m,

P(X]() = Cinae) 2 0577 > 0.

Assumption (1.2). (Arrival Process)

- We assume that A(t) (arrival vector per time-slot) is an
aperiodic, irreducible, finite state Discrete Time Markov
Chain.

- Ai(t) < k(n) such that k(n)e(n) =
k(n)n"nP = o(n®) for some a < 1.

o(1) and
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- We define the load A = —F {Z [C(O)—H Then,

n

i=1 max
(40007 (1
(X [gua]=r0+)=(5)
for any 6 > 0.

Recall that e(n) is the probability that a user cannot be
located by the ANs in a time-slot; thus requiring the BS
to use a (lower rate) channel to directly transmit packets
to the mobile. Clearly, as e(n) increases, x(n) has to
decrease to maintain stability of the system. The assumption
k(n)e(n) = o(l) quantitatively captures this effect. For
example if e(n) = 1/y/n, users can have up to o(y/n)
arrivals in a time-slot.

Recall that w.h.p., the number of users connected to an
AN in a time-slot is less than n” and the size of the
interference set for each AN is at most n”. Therefore, r(n)
has to be small enough to ensure that using n channels, it is
possible for each AN to forward all incoming packets to the
corresponding users or other ANs without coordinating with
other ANs, yet the number of collisions in each time-slot is
a vanishing fraction of the total load on the system.

Assumption (1.3). (Base-station to AN Channel Process)

Consider the event Iy that for channel j, X JB ™ < Craz
for all ANs user 1 is connected to in time-slot t. This is
equivalent to saying that in time-slot t, channel j cannot be
used at rate C\q, by the base-station to forward packets for
user i to the ANs. Then,

e -of 1)

Assumption (1.4). (AN to Users Channel Process)
For an AN m and user i connected to AN m, consider the

(Cmax
event Fy5 that there exist at least nL

that X", (t) = Cnax for each channel. Then,

e o %)

Assumption (1.5). (AN to AN Channel Process)
For an AN m which can communicate with AN [, consider

max

channels such

the event Fs that there exist at least n->——— channels such

that X]m’l(t) = Cyaz for each channel. Then,

purg) o ).

Assumption (1.6). (Base-station to Users Channel Process)

o Let I be a set of users such that that |I| > kn, for
some constant k < 1. Consider the event Fy that for a
channel j and for every user i € I, X; ;(t) < 1, Vi.

Then,
1

o Let I be a set of user such that that |I| = kn for some
constant k < 1 and let J be a set of channels such that

|| = (?g” 5, where

Consider the event F5 that for every relay in I there
exist kn channels in J such that X; ;(t) = 1. Then,

(i)

For instance, these assumptions (1.3 — 1.6) are satisfied by
i.i.d. Bernoulli(q) channels, or more generally, by correlated
(across users) channels that have a spatial correlation decay
property (modeled via the a-mixing condition [4]).

g
=
[

Theorem (1). If the load A > 1, no algorithm can stabilize
the queues (i.e., render the queue to be positive recurrent).

Theorem (2). Under Assumption 1, for a given load A < 1,
there exists ng(X\) such that for all n > ng(\), the Markov
Chain corresponding to the queue-lengths at the base-station
and access nodes is positive recurrent.

Thus, for n large enough, the DIST algorithm stabilizes
the system for all loads A < 1. Further, this is tight in the
sense that beyond A = 1, we cannot stabilize the queues by
any means. This result is interesting because user mobility
and collisions at the second hop (AN-user links) lead to
retransmissions of those packets by the base-station and
yet in the large-scale setting, the DIST algorithm keeps the
system stable.

The proof leverages the fact that as the system scale
increases, even if a user moves, at least 1 AN that the user
is currently connected to has a copy of all the packets which
arrived at the base-station less than L time-slots before the
currently time-slot. Therefore, even if the user changes its
position, it can receive packets from the ANs it is currently
connected to. Moreover, as the number of channels increases,
there are sufficient degrees of freedom in the system to
ensure that the number of collisions is a vanishing fraction
of the supportable load. Therefore, for a given load, as the
system scale increases, there is sufficient additional capacity
in the system to retransmit packets which are lost due to
collisions and directly forward packets from the base-station
to those users whose location information is not known.
Therefore, we conclude that, in large scale systems, the
benefits of multi-point connectivity can be achieved without
the overhead of coordination.

C. Performance

1) Single Transmission Algorithms: We first characterize
the performance of a class which we refer to as Single
Transmission algorithms. An algorithm belongs to this class
if it satisfies the following two conditions:

i. Each packet is transmitted successfully by the base-
station at most once i.e. once the intended receiver
(AN/user) of a packet receives it successfully, the base-
station deletes that packet from its queue.

ii. Each AN forwards a received packet only to the
corresponding user.



This class of algorithms includes the BackPressure algorithm
[32] which is known to be throughput optimal for multihop
systems. Iterative versions of the BackPressure algorithm and
the MaxWeight algorithm were proposed for multi-channel
systems in [24] and were shown to have good buffer-usage
or delay performance for system in which users are not
mobile. These algorithms too belong to the ST class of
algorithms. The next theorem characterizes the performance
of algorithms belonging to the ST class for mobile users.

Theorem (3). For a mobile user in a system implementing
an ST algorithm, the delay for a packet that is routed to an
AN by the base-station is such that

-1
d := lim sup — log P(Delay > b) = 0,
n

n—oo

for any b < 0.

We thus conclude that traditional algorithms like Back-
Pressure/MaxWeight [32] do not have good delay perfor-
mance for mobile users.

2) DIST: We study the buffer overflow probability for the
largest queue at the base-station:

r = lim inf
n— o0

S Q:(0) > b).

This value of r is a bound on the rate of decay of the longest
queue (large deviations rate function). Note that the queues
at the access nodes delete packets within a small number of
time-slots; thus stability or performance of these access node
queues is not the focus here.

If an algorithm results in a positive value of r, then we
have that (neglecting constants outside the exponent)

P00 >0) ~e

Therefore, the probability that the system has any back-
logged packets goes to zero very quickly which means
that all packets that enter the system as served almost
immediately, thus leading to low delay.

We analyze the performance of DIST for a restricted set of
arrival and channel processes.

Assumption (2). (Multi-level Bounded Arrivals and Chan-
nels)
- Ai(t) =k wp. pr for 0 < k < K and 0 otherwise
- ij’m(t) = ¢ wp. q§°) for 0 < ¢ < Chae and 0
otherwise.
- Xz";(t) = ¢ wp. qéc) for 0 < ¢ < Ciae If user i is
connected to AN m and 0 otherwise.
- X;-"’l(t) =c wp. q:(,,c) for 0 < ¢ < Craw if AM m can
communicate with AN | and 0 otherwise.
- X, () =1 wp. q4 and 0 otherwise.
- €(n) =o(1).
The arrival and channel processes are ii.d. across users,
ANs and time-slots. In addition we assume that C(n) >
2logn.

Theorem (4). Under Assumption 2, for the DIST algorithm,
for any integer b > 0,

o1
r= hnnl};f 7 logP<11£1ia<Xn Q.:(0) > b) > 0.

From this theorem we conclude that under Assumption
2, using multi-point connectivity, good buffer-usage perfor-
mance can be achieved without the overhead of multi-point
coordination.

Like the proof of Theorem 2, this proof too leverages
the fact that as the system scale increases, multi-point
connectivity and the large number of channels ensure that
the number of collisions is small and direct retransmission
of packets from the base-station to users ensures that no
packets stays in the system for too long.

IV. PROOF OUTLINES

In this section, we provide proof outline for Theorem 2.
For the detailed proof of Theorem 2 and other proofs, please
refer to [23].

A. Stability of DIST (Theorem 2)

Stability of multihop systems has been studied in literature
in numerous settings, [24] being closest to the setting in the
paper. In [24], stability of a static multihop system (no user
mobility) for an iterative version of the MaxWeight algorithm
was proved in a sequential manner by first showing the
stability of base-station queues followed by showing that the
relay queues are also stable. The reason why such a decou-
pling is possible in [24] is that the MaxWeight algorithm is
an ST algorithm and therefore, once a packet is forwarded
by the base-station to a relay/user, it is deleted from the
queue at the base-station. The queue process at the base-
station is therefore independent of the packet transmissions
at the second hop (relay-user links). However, for the DIST
algorithm, every packet in the system which has not reached
its final destination (user) is queued the base-station even if
it has been forwarded to the ANs. This couples the queue
processes at the base-station with the channel allocation at
the second hop (AN-user links).

Therefore, unlike [24], where stability was proved in a
sequential manner, we have to analyze the entire system at
once which requires a different proof structure. Moreover in
our setting, since all packets which have not reached their
destination (user) are queued at the base-station, it suffices
to show that the base-station queues are stable in order to
show stability of the system.

Apart from this key difference, the analysis of DIST has
three other new aspects.

1) Dealing with missing user location information: Un-
like settings considered previously, we deal with users
whose location is sometimes unknown. We show that
there is sufficient unused capacity for DIST to directly
forward packets to such users (see also (3) below).

2) Decentralized nature of DIST: The ANs forward
packets received to connected users and scheduling
decisions are made in a distributed manner. This can



3)

lead to two bad events: (i) there are packets which
no AN forwards to a user, and (ii) due to collisions,
packets are not received successfully by the users. We
show that for the DIST algorithm, the number of such
bad events in the second hop (AN-user links) is o(n)
with probability > 1 — o(e™™).

Splitting packets at the BS into new and old packets:
The base-station forwards new arrivals to the ANs and
old packets (packets that arrived more than L time-
slots before the current time-slot) directly to the users.
We show that all new arrivals for users whose location
is known are forwarded to the ANs by the BS in a
given time-slot with probability (> 1 — o(1/n)). We
then show that there is sufficient additional capacity
in the system (channels unused by the BS-AN links)
to ensure that all packets that arrived L slots before
the current time-slot ¢, and which could not be for-
warded by the ANs either due to collisions due to the
decentralized nature of DIST or because the location
of those users was not known can be sent directly from
the base-station to the users in time-slot ¢.

Using these properties of the DIST algorithm, we show

that

on average, the base-station queues can serve more

packets than they receive in a time-slot (accounting for both

new

arrivals and old packets that re-enter the base-station

queues because the ANs fail to forward them to the users).
We then use the standard Foster’s Lyapunov technique for
Markov Chains (with a quadratic Lyapunov function) to
show stability. In other words, for a given load ), there exists
a constant ng such that the DIST algorithm ensures that the

base

-station queues in a system with n > ngy channels are

positive recurrent.

(1
[2]

(3]

[4]
[3]

(6]

(71

(8]

(91

[10]

REFERENCES

J. Andrews. Seven ways that hetnets are a cellular paradigm shift.
IEEE Communications Magazine, 51(3), 2013.

J. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. Reed. Fem-
tocells: Past, present, and future. Selected Areas in Communications,
IEEE Journal on, 30(3):497-508, 2012.

A. Barbieri, P. Gaal, S. Geirhofer, T. Ji, D. Malladi, Y. Wei, and F. Xue.
Coordinated downlink multi-point communications in heterogeneous
cellular networks. In Information Theory and Applications Workshop
(ITA), 2012, pages 7-16. IEEE, 2012.

P. Billingsley. Probability and Measure. Wiley,, 1995.

S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Scheduling in
multichannel wireless netowrks: Rate function optimality in the small
buffer regime. In Proceedings of SIGMETRICS/performance Conf.,
20009.

S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Low-complexity
scheduling algorithms for multi-channel downlink wireless networks.
In Proceedings of IEEE Infocom, 2010.

S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Scheduling for small
delay in multi-rate multi-channel wireless networks. In Proceedings
of IEEE Infocom, 2011.

W. Cheung, T. Quek, and M. Kountouris. Throughput optimization,
spectrum allocation, and access control in two-tier femtocell networks.
Selected Areas in Communications, IEEE Journal on, 30(3):561-574,
2012.

A. Eryilmaz, R. Srikant, and J. Perkins. Stable scheduling policies for
fading wireless channels. IEEE/ACM Trans. Network., 13:411-424,
April 2005.

L. Georgiadis, M.J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, 1(1):1-144, 2006.

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu.
Multi-cell mimo cooperative networks: A new look at interference.
Selected Areas in Communications, IEEE Journal on, 28(9):1380-
1408, 2010.

A. Gopalan, C. Caramanis, and S. Shakkottai. On the value of coor-
dination and delayed queue information in multicellular scheduling.
Automatic Control, IEEE Transactions on, 58(6):1443-1456, 2013.
P. Gupta and P. R. Kumar. The capacity of wireless networks. [EEE
Transactions on Information Theory, 46(2), Mar. 2000.
http://www.ericsson.com/news/120223_it_comes_back_to_backhaul
_244159020_c.

R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck,
H. Mayer, L. Thiele, and V. Jungnickel. Coordinated multipoint: Con-
cepts, performance, and field trial results. Communications Magazine,
IEEE, 49(2):102-111, 2011.

B. Ji, G. R. Gupta, X. Lin, and N. B. Shroff. Performance of
low-complexity greedy scheduling policies in multi-channel wireless
networks: Optimal throughput and near-optimal delay. In Proceedings
of IEEE INFOCOM, 2013.

D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless
networks. Kluwer International Series in Engineering and Computer
Science, pages 153-179, 1996.

S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interfer-
ence: Analog network coding. SIGCOMM Comput. Commun. Rev.,
37(4):397-408, August 2007.

F . Khan, Z . Pi, and S. Rajagopal. Millimeter-wave mobile broadband
with large scale spatial processing for 5g mobile communication.
In Communication, Control, and Computing (Allerton), 2012 50th
Annual Allerton Conference on, pages 1517-1523. IEEE, 2012.

J. Laneman and G. Wornell. Distributed space-time-coded protocols
for exploiting cooperative diversity in wireless networks. Information
Theory, IEEE Transactions on, 49(10):2415-2425, 2003.

X. Lin, R. Ganti, P. Fleming, and J. Andrews. Towards understanding
the fundamentals of mobility in cellular networks. 2012.

A. Lozano, R. Heath Jr, and J. Andrews. Fundamental limits of
cooperation. Arxiv: CoRR abs/1204.0011, 2012.

S. Moharir, S. Krishnasamy, and S. Shakkottai. Scheduling in densified
networks: Algorithms and performance, technical report. Technical
report, 2014.

S. Moharir and S. Shakkottai. Maxweight vs backpressure: Routing
and scheduling for multi-channel relay networks. In Proceedings of
IEEE Infocom, Turin, Italy, April 2013.

A. Nosratinia, T. Hunter, and A. Hedayat. Cooperative communication
in wireless networks. Communications Magazine, IEEE, 42(10):74—
80, 2004.

A. Ozgur, O. Leveque, and D. Tse. Hierarchical cooperation achieves
optimal capacity scaling in ad hoc networks. Information Theory,
1IEEE Transactions on, 53(10):3549-3572, 2007.

Z. Pi and F. Khan. An introduction to millimeter-wave mobile
broadband systems. Communications Magazine, IEEE, 49(6):101—
107, 2011.

S. Rajagopal, S. Abu-Surra, Z. Pi, and F. Khan. Antenna array
design for multi-gbps mmwave mobile broadband communication. In
Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, pages 1-6. IEEE, 2011.

I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong. On
the levy-walk nature of human mobility. [EEE/ACM Transactions
on Networking (TON), 19(3):630-643, 2011.

M. Sharma and X. Lin. Ofdm downlink scheduling for delay-
optimality: Many-channel many-source asymptotics with general ar-
rival processes. In Proceedings of ITA, 2011.

LTE Small Cells, http://http://en.wikipedia.org/wiki/Small_cell.

L. Tassiulas and A. Ephermides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Trans. Automat. Contr., 37(12):1936—
1948, 1992.

A. Viterbi, A. Viterbi, K. Gilhousen, and E. Zehavi. Soft handoff
extends cdma cell coverage and increases reverse link capacity.
Selected Areas in Communications, IEEE Journal on, 12(8):1281—
1288, 1994.

D. Wong and T. Lim. Soft handoffs in cdma mobile systems. Personal
Communications, IEEE, 4(6):6-17, 1997.

W. Zhuang and M. Ismail. Cooperation in wireless communication
networks. Wireless Communications, IEEE, 19(2):10-20, 2012.



