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Abstract—In small-cell wireless networks where users are
connected to multiple base stations (BSs), it is often advantageous
to opportunistically switch off a subset of BSs to minimize energy
costs. We consider two types of energy cost: (i) the cost of
maintaining a BS in the active state, and (ii) the cost of switching
a BS from the active state to inactive state. The problem is to
operate the network at the lowest possible energy cost (sum of
activation and switching costs) subject to queue stability. In this
setting, the traditional approach – a Max-Weight algorithm along
with a Lyapunov-based stability argument – does not suffice to
show queue stability, essentially due to the temporal co-evolution
between channel scheduling and the BS activation decisions
induced by the switching cost. Instead, we develop a learning
and BS activation algorithm with slow temporal dynamics, and
a Max-Weight based channel scheduler that has fast temporal
dynamics. We show using convergence of time-inhomogeneous
Markov chains, that the co-evolving dynamics of learning, BS
activation and queue lengths lead to near optimal average energy
costs along with queue stability.

Index Terms—wireless scheduling, base-station activation, en-
ergy minimization

I. INTRODUCTION

Due to tremendous increase in demand for data traffic,
modern cellular networks have taken the densification route to
support peak traffic demand [1]. While increasing the density
of base-stations gives greater spectral efficiency, it also results
in increased costs of operating and maintaining the deployed
base-stations. Rising energy cost is a cause for concern, not
only from an environmental perspective, but also from an
economic perspective for network operators as it constitutes a
significant portion of the operational expenditure. To address
this challenge, latest research aims to design energy efficient
networks that balance the trade-off between spectral efficiency,
energy efficiency and user QoS requirements [2], [3].

Studies reveal that base-stations contribute to more than
half of the energy consumption in cellular networks [4], [5].
Although dense deployment of base-stations are useful in
meeting demand in peak traffic hours, they regularly have
excess capacity during off-peak hours [3], [6]. A fruitful way
to conserve power is, therefore, to dynamically switch off
under-utilized base-stations. For this purpose, modern cellular
standards incorporate protocols that include sleep and active
modes for base-stations. The sleep mode allows for selec-
tively switching under-utilized base-stations to low energy

consumption modes. This includes completely switching off
base-stations or switching off only certain components.

Consider a time-slotted multi base-station (BS) cellular
network where subsets of BSs can be dynamically activated.
Since turning off BSs could adversely impact the performance
perceived by users, it is important to consider the underlying
energy vs. performance trade-off in designing BS activation
policies. In this paper, we study the joint problem of dynam-
ically selecting the BS activation sets and user rate allocation
depending on the network load. We take into account two types
of overheads involved in implementing different activation
modes in the BSs.
(i) Activation cost occurs due to maintaining a BS in the active
state. This includes energy spent on main power supply, air
conditioning, transceivers and signal processing [6]. Surveys
show that a dominant part of the energy consumption of an
active base-station is due to static factors that do not have
dependencies with traffic load intensities [3], [7]. Therefore,
an active BS consumes almost the same energy irrespective of
the amount of traffic it serves. Typically, the operation cost
(including energy consumption) in the sleep state is much
lower than that in the active state since it requires only minimal
maintenance signaling [5].
(ii) Switching cost is the penalty due to switching a BS
from active state to sleep state or vice-versa. This factors in
the signaling overhead (control signaling to users, signaling
over the backhaul to other BSs and/or the BS controller),
state-migration processing, and switching energy consumption
associated with dynamically changing the BS modes [6].

Further, switching between these states typically cannot
occur instantaneously. Due to the hysteresis time involved in
migrating between the active and sleep states, BS switching
can be done only at a slower time-scale than that of channel
scheduling [8], [9].

Main Contributions

We formulate the problem in a (stochastic) network cost
minimization framework. The task is to select the set of active
BSs in every time-slot, and then based on the instantaneous
channel state for the activated BSs, choose a feasible allocation
of rates to users. Our aim is to minimize the total network cost



(sum of activation and switching costs) subject to stability of
the user queues at the BSs.

Insufficiency of the standard Lyapunov technique: Such
stochastic network resource allocation problems typically
adopt greedy primal dual algorithms along with virtual-queues
to accommodate resource constraints [10], [11], [12]. To
ensure stability, this technique crucially relies on achieving
negative Lyapunov drift in every time-slot (or within some
finite number of time-slots). This is feasible in the traditional
setting because the channel state in every time-slot is inde-
pendent of the controller’s actions, and therefore, provides an
average (potential) service rate that is strictly higher than the
average arrival rate.

In our problem, unlike in the traditional setting, one-step
greedy Lyapunov based algorithms cannot be directly used.
Recall that the cost at each time-slot has two components:
(a) activation cost, and (b) switching cost. Further, effective
channel state in each time-slot (consisting of feasible rates
for the activated BS set) is determined by the BS activation
decision in that time-slot. Since switching cost depends on
the change in activation state in consecutive time-slots, tra-
ditional virtual-queue based algorithms introduce coupling of
activation decisions across time. Thus, the evolution of the
effective channel rates are dependent across time through the
scheduling decisions, and this results in co-evolution of packet
queues and the channel state distribution.

To circumvent difficulties introduced through this co-
evolution, we propose an approach that uses queue-lengths
for channel scheduling at a fast time-scale, but explicitly uses
arrival and channel statistics (using learning via an explore-
exploit learning policy) for activation set scheduling at a
slower time-scale. Our main contributions are as follows.

1) Static-split Activation + Max-Weight Channel
Scheduling: We propose a solution that explicitly
controls the time-scale separation between BS activation
and rate allocation decisions. At BS switching instants
(which occurs at a slow time-scale), the strategy uses
a static-split rule (time-sharing) which is pre-computed
using the explicit knowledge of the arrival and channel
statistics for selecting the activation state. This activation
algorithm is combined with a queue-length based
Max-Weight algorithm for rate allocation (applied at
the fast time-scale of channel variability). We show
that the joint dynamics of these two algorithms leads
to stability; further, the choice of parameters for the
activation algorithm enables us to achieve an average
network cost that can be made arbitrarily close to the
optimal cost.

2) Learning algorithm with provable guarantees: In
the setting where the arrival and channel statistics are
not known, we propose an explore-exploit policy that
estimates arrival and channel statistics in the explore
phase, and uses the estimated statistics for activation
decisions in the exploit phase (this phase includes BS
switching at a slow time-scale). This is combined with
a Max-Weight based rate allocation rule restricted to

the activated BSs (at a fast time-scale). We prove that
this joint learning-cum-scheduling algorithm can ensure
queue stability while achieving close to optimal network
cost.

3) Convergence bounds for time-inhomogeneous Markov
chains: In the course of proving the theoretical guar-
antees for our algorithm, we derive useful technical
results on convergence of time-inhomogeneous Markov
chains. More specifically, we derive explicit convergence
bounds for the marginal distribution of a finite-state time-
inhomogeneous Markov chain whose transition probabil-
ity matrices at each time-step are arbitrary (but small)
perturbations of a given stochastic matrix. We believe that
these bounds are useful not only in this specific problem,
but are of independent interest.

To summarize then, our approach can be viewed as an
algorithmically engineered separation of time-scales for only
the activation set dynamics, while adapting to the channel
variability for the queue dynamics. Such an engineering of
time-scales leads to coupled fast-slow dynamics, the ‘fast’ due
to opportunistic channel allocation and packet queue evolution
with Max-Weight, and the ‘slow’ due to infrequent base-
station switching using learned statistics. Through a novel Lya-
punov technique for convergent time-inhomogeneous Markov
chains, we show that we can achieve queue stability while
operating at a near-optimal network cost.

Related Work

While mobile networks have been traditionally designed
with the objective of optimizing spectral efficiency, design of
energy efficient networks has been of recent interest. A survey
of various techniques proposed to reduce operational costs and
carbon footprint can be found in [3], [13], [2], [5]. The survey
in [5] specially focuses on sleep mode techniques in BSs.

Various techniques have been proposed to exploit BS sleep
mode to reduce energy consumption in different settings.
Most of them aim to minimize energy consumption while
guaranteeing minimum user QoS requirements. For example,
[14], [6], [15] consider inelastic traffic and consider outage
probability or blocking probability as metrics for measuring
QoS. In [8], the problem is formulated as a utility optimization
problem with the constraint that the minimum rate demand
should be satisfied. But they do not explicitly evaluate the
performance of their algorithm with respect to user QoS. The
authors in [16], [17] model a single BS scenario with elastic
traffic as an M/G/1 vacation queue and characterize the impact
of sleeping on mean user delay and energy consumption. In
[9], the authors consider the multi BS setting with Poisson
arrivals and delay constraint at each BS.

Most papers that study BS switching use models that ignore
switching cost. Nonetheless, a few papers acknowledge the
importance of avoiding frequent switching. For example, Oh
et al. [18] implement a hysteresis time for switching in their
algorithm although they do not consider it in their theoretical
analysis. Gou et al. [17] also study hysteresis sleeping schemes
which enforce a minimum sleeping time. In [8] and [9], it



is ensured that interval between switching times are large
enough to avoid overhead due to transient network states.
Finally Jie et al. [6] consider BS sleeping strategies which
explicitly incorporate switching cost in the model (but they
do not consider packet queue dynamics). They emphasize that
frequent switching should be avoided considering its effect
on signaling overhead, device lifetime and switching energy
consumption, and also note that incorporating switching cost
introduces time correlation in the system dynamics.

Notation: Important notation for the problem setting can
be found in Table I. Boldface letters are used to denote vectors
or matrices and the corresponding non-bold letters to denote
their individual components. Also, the notation 1 {·} is used
to denote the indicator function. For any two vectors v1, v2

and scalar a, v1 ·v2 denotes the dot product between the two
vectors and v1 + a = v1 + a1.

II. SYSTEM MODEL

We consider a time-slotted cellular network with n users
and M base-stations (BS) indexed by u = 1, . . . , n and
m = 1, . . . ,M respectively. Users can possibly be connected
to multiple BSs. It is assumed that the user-BS association
does not vary with time.

A. Arrival and Channel Model

Data packets destined for a user u arrive at a connected
BS m as a bounded (at most Ā packets in any time-slot),
i.i.d. process {Am,u(t)}t≥1 with rate E [Am,u(t)] = λm,u.
Arrivals get queued if they are not immediately transmitted.
Let Qm,u(t) represent the queue-length of user u at BS m at
the beginning of time-slot t.

The channel between the BSs and their associated users is
also time-varying and i.i.d across time (but can be correlated
across links), which we represent by the network channel-state
process {H(t)}t>0. At any time t, H(t) can take values from
a finite set H with probability mass function given by µ. Let
R̄ be the maximum number of packets that can be transmitted
over any link in a single time-slot. We consider an abstract
model for interference by defining the set R(1, h) as the set
of all possible rate vectors when the channel state is h.

B. Resource Allocation

At any time-slot t, the scheduler has to make two types of
allocation decisions:
BS Activation: Each BS can be scheduled to be in one of the
two states, ON (active mode) and OFF (sleep mode). Packet
transmissions can be scheduled only from BSs in the ON state.
The cost of switching a BS from ON in the previous time-slot
to OFF in the current time-slot is given by C0 and the cost of
maintaining a BS in the ON state in the current time-slot is
given by C1. The activation state at time t is denoted by J(t) =
(Jm(t))m∈[M ], where Jm(t) := 1{BS m is ON at time t}.
We also denote the set of all possible activation states by J .
The total cost of operation, which we refer to as the network

TABLE I
GENERAL NOTATION

Symbol Description
n Number of users
M Number of BSs

Am,u(t) Arrival for user u at BS m at time t
Ā Maximum number of arrivals

to any queue in a time-slot
λ Average arrival rate vector

H(t) Channel state at time t
H Set of all possible channel states
µ Probability mass function of channel state
R̄ Maximum service rate

to any queue in a time-slot
h|j Channel state h restricted to the activated BSs in j

R(j, h) ⊆ RM×n Set of all possible rate vectors for
activation vector j and channel state h

J(t) = (Jm(t)) Activation vector at time t
J Set of all possible activation states

S(t) = (Sm,u(t)) Rate allocation at time t
C1 Cost of operating a BS in ON state
C0 Cost of switching a BS from ON to OFF state
C(t) Network cost at time t

Qm,u(t) Queue of user u at BS m
at the beginning of time-slot t

Pl Set of all probability (row) vectors in Rl

P2
l Set of all stochastic matrices in Rl×l

Wl Set of all stochastic matrices in
Rl×l with a single ergodic class

1l All 1’s Column vector of size l
Il Identity matrix of size l

cost, at time t is the sum of switching and activation cost and
is given by

C(t) := C0‖(J(t− 1)− J(t))
+‖1 + C1‖J(t)‖1. (1)

It is assumed that the current network channel-state H(t) is
unavailable to the scheduler at the time of making activation
decisions.
Rate Allocation: The network channel-state is observed after
the BSs are switched ON and before the packets are scheduled
for transmission. Moreover, only the part of the channel state
restricted to the activated BSs, which we denote by H(t)|J(t),
can be observed. For any j ∈ J , h ∈ H, let R(j, h) ⊂ RM×n
be the set of all possible service rate vectors that can be
allocated when the activation set is j and the channel state
is h. Given the channel observation H(t)|J(t), the scheduler
allocates a rate vector S(t) = (Sm,u(t))m∈[M ],u∈[n] from the
set R(J(t), H(t)) for packet transmission. This allows for
draining of Sm,u(t) packets from user u’s queue at BS m
for all u ∈ [n] and m ∈ [M ].

Thus the resource allocation decision in any time-slot t is
given by the tuple (J(t),S(t)). The sequence of operations in
any time-slot can, thus, be summarized as follows: (i) Arrivals,
(ii) BS Activation-Deactivation, (iii) Channel Observation, (iv)
Rate Allocation, and (v) Packet Transmissions.

C. Model Extensions

Some of the assumptions in the model above are made for
ease of exposition and can be extended in the following ways
without affecting the results in the paper:



(i) Network Cost: We assume that the cost of operating a BS
in the OFF state (sleep mode) is zero. However, it is easy
to include an additional parameter, say C′1, which denotes the
cost of a BS in the OFF state. Similarly, for switching cost,
although we consider only the cost of switching a BS from
ON to OFF state, we can also include the cost of switching
from OFF to ON state (say C′0). The analysis in this paper
can then be extended by defining the network cost as

C(t) = C0‖(J(t− 1)− J(t))
+‖1 + C1‖J(t)‖1

+ C′0‖(J(t)− J(t− 1))
+‖1 + C′1 (M − ‖J(t)‖1)

instead of (1).
(ii) Switching Hysteresis Time: While our system allows
switching decisions in every time-slot, we will see that the
key to our approach is a slowing of activation set switching
dynamics. Specifically, on average our algorithm switches
activation states once every 1/εs timeslots, where εs is a
tunable parameter. Additionally, it is easy to incorporate “hard
constraints” on the hysteresis time by restricting the frequency
of switching decisions to, say once in every L time-slots
(for some constant L). This avoids the problem of switching
too frequently and gives a method to implement time-scale
separation between the channel allocation decisions and BS
activation decisions. While our current algorithm has inter-
switching times i.i.d. geometric with mean 1/εs, it is easy to
allow other distributions that have bounded means with some
independence conditions (independent of each other and also
the arrivals and the channel). We skip details in the proofs for
notational clarity.

III. OPTIMIZATION FRAMEWORK

A policy is given by a (possibly random) sequence
of resource allocation decisions (J(t),S(t))t>0. Let
(J(t− 1),Q(t)) be the network state at time t.

Notation: We use Pϕ [·] and Eϕ [·] to denote probabilities
and expectation under policy ϕ. We skip the subscript when
the policy is clear from the context.

A. Stability, Network Cost, and the Optimization Problem

Definition 1 (Stability). A network is said to be stable under
a policy ϕ if there exist constants Q̄, ρ > 0 such that for any
initial condition (J(0),Q(1)),

lim
T→∞

1

T

T∑
t=1

Pϕ

 ∑
m∈[m],u∈[n]

Qm,u(t) ≤ Q̄

∣∣∣∣∣ J(0),Q(1)

 > ρ.

This definition is motivated by Foster’s theorem: indeed,
for an aperiodic and irreducible DTMC, Definition 1 implies
positive recurrence. Consider the set of all ergodic Markov
policies M, including those that know the arrival and channel
statistics. A policy ϕ ∈M makes allocation decisions at time t
based only on the current state (J(t− 1),Q(t)) (and possibly
the arrival and channel statistical parameters). We now define
the support region of a policy and the capacity region.

Definition 2 (Support Region of a Policy ϕ). The support
region Λϕ(µ) of a policy ϕ is the set of all arrival rate vectors
for which the network is stable under the policy ϕ.

Definition 3 (Capacity Region). The capacity region Λ(µ) is
the set of all arrival rate vectors for which the network is
stable under some policy in M, i.e., Λ(µ) :=

⋃
ϕ∈M Λϕ(µ).

Definition 4 (Network Cost of a Policy ϕ). The network cost
Cϕ(µ,λ) under a policy ϕ is the long term average network
cost (BS switching and activation costs) per time-slot, i.e.,

Cϕ(µ,λ) := lim sup
T→∞

1

T

T∑
t=1

Eϕ
[
C(t)

∣∣ J(0),Q(1)
]
.

We formulate the resource allocation problem in a network
cost minimization framework. Consider the problem of net-
work cost minimization under Markov policies M subject to
stability. The optimal network cost is given by

CM(µ,λ) := inf
{ϕ∈M:λ∈Λϕ(µ)}

Cϕ(µ,λ). (2)

B. Markov-Static-Split Rules

The capacity region Λ(µ) will naturally be characterized by
only those Markov policies that maintain all the BSs active in
all the time-slots, i.e., J(t) = 1∀t. In the traditional schedul-
ing problem without BS switching, it is well-known that the
capacity region can be characterized by the class of static-split
policies [19] that allocate rates in a random i.i.d. fashion given
the current channel state. An arrival rate vector λ ∈ Λ(µ) iff
there exists convex combinations

{
α(1, h) ∈ P|R(1,h)|

}
h∈H

such that

λ <
∑
h∈H

µ(h)
∑

r∈R(1,h)

αr(1, h)r.

But note that static-split rules in the above class, in which BSs
are not switched OFF, do not optimize the network cost.

We now describe a class of activation policies called the
Markov-static-split + static-split rules which are useful in
handling the network cost. A policy is a Markov-static-split +
static-split rule if it uses a time-homogeneous Markov rule for
BS activation in every time-slot and an i.i.d. static-split rule
for rate allocations. For any l ∈ N, let Wl denote the set of
all stochastic matrices of size l with a single ergodic class. A
Markov-static-split + static-split rule is characterized by

1) a stochastic matrix P ∈ W|J | with a single ergodic class,
2) convex combinations

{
α(j, h) ∈ P|R(j,h)|

}
j∈J ,h∈H.

Here P represents the transition probability matrix that speci-
fies the jump probabilities from one activation state to another
in successive time-slots. {α(j, h)}j∈J ,h∈H specify the static-
split rate allocation policy given the activation state and the
network channel-state.

Let MS denote the class of all Markov-static-split + static-
split rules. For a rule

(
P,α = {α(j, h)}j∈J ,h∈H

)
∈MS, let

σ denote the invariant probability distribution corresponding
to the stochastic matrix P. Then the expected switching and
activation costs are given by C0

∑
j′,j∈J σj′Pj′,j‖(j′ − j)

+‖1



and C1

∑
j∈J σj‖j‖1 respectively. We prove in the following

theorem that the class MS can achieve the same performance
as M, the class of all ergodic Markov policies.

Theorem 1. For any λ, µ and ϕ ∈M such that λ ∈ Λϕ(µ),
there exists a ϕ′ ∈ MS such that λ ∈ Λϕ

′
(µ) and

Cϕ
′
(µ,λ) = Cϕ(µ,λ). Therefore,

CM(µ,λ) = inf
ϕ′∈MS,λ∈Λϕ′ (µ)

Cϕ
′
(µ,λ).

Proof Outline. The proof of this theorem is similar to the
proof of characterization of the stability region using the
class of static-split policies. It maps the time-averages of BS
activation transitions and rate allocations of the policy ϕ ∈M
to a Markov-static-split rule ϕ′ ∈MS that mimics the same
time-averages. The complete proof is available in [20].

From the characterization of the class MS, Theorem 1
shows that CM(µ,λ) is equal to the optimal value, V (µ, λ),
of the optimization problem (2), given by

inf
P,α

C0

∑
j′,j∈J

σj′Pj′,j‖(j′ − j)
+‖1 + C1

∑
j∈J

σj‖j‖1

such that P ∈ W|J | with unique invariant distribution σ ∈
P|J |, and α(j, h) ∈ P|R(j,h)| ∀j ∈ J , h ∈ H with

λ <
∑
j∈J

σj
∑
h∈H

µ(h)
∑

r∈R(j,h)

αr(j, h)r. (3)

C. A Modified Optimization Problem

Now, consider the linear program given by

min
σ,β

C1

∑
j∈J

σj‖j‖1, such that

σ ∈ P|J |
βj,h,r ≥ 0 ∀r ∈ R(j, h),∀j ∈ J , h ∈ H,

σj =
∑

r∈R(j,h)

βj,h,r ∀j ∈ J , h ∈ H,

λ ≤
∑

j∈J ,h∈H,
r∈R(j,h)

βj,h,rµ(h)r. (4)

Let d := |J | +
∑
j∈J ,h∈H|R(j, h)| be the number of

variables in the above linear program. We denote by Lc(µ,λ),
a linear program with constraints as above and with c ∈ Rd
as the vector of weights in the objective function. Thus, the
feasible set of the linear program Lc(µ,λ) is specified by the
parameters µ,λ and the objective function is specified by the
vector c. Let C∗c (µ,λ) denote the optimal value of Lc(µ,λ)
and O∗c(µ,λ) denote the optimal solution set. Also, let

S := {(µ,λ) : λ ∈ Λ(µ)} ,

Uc := {(µ,λ) ∈ S : Lc(µ,λ) has a unique solution} .

Note that Lc0(µ,λ), with

c0 := ((C1‖j‖1)j∈J ,0) (5)

is a relaxation of the original optimization problem V (µ,λ),
and therefore

C∗c (µ,λ) ≤ CM(µ,λ). (6)

We use results from [21], [22] to show (in the Lemma below)
that the solution set and the optimal value of the linear program
are continuous functions of the input parameters.

Lemma 1. (I) As a function of the weight vector c and the
parameters µ,λ, the optimal value C∗(·)(·) is continuous
at any (c, (µ,λ)) ∈ Rd × S .

(II) For any weight vector c, the optimal solution set O∗c(·),
as a function of the parameters (µ,λ), is continuous at
any (µ,λ) ∈ Uc.

Remark 1. Since O∗c(µ,λ) is a singleton if (µ,λ) ∈ Uc, the
definition of continuity in this context is unambiguous.

D. A Feasible Solution: Static-Split + Max-Weight

We now discuss how we can use the linear program L to
obtain a feasible solution for the original optimization problem
(2). We need to deal with two modified constraints:
(i) Single Ergodic Class – Spectral Gap: For any σ ∈ P|J |
and εs ∈ (0, 1), the stochastic matrix

P(σ, εs) := εs1|J |σ + (1− εs)I|J | (7)

is aperiodic and has a single ergodic class given by {j :
σj > 0}. Therefore, given any optimal solution (σ,β) for the
relaxed problem Lc(µ,λ), we can construct a feasible solution
(P(σ, εs),α) for the original optimization problem V (µ,λ)
such that the network cost for this solution is at most εsMC0

more than the optimal cost. Note that εs is the spectral gap of
the matrix P(σ, εs).
(ii) Stability – Capacity Gap: To ensure stability, it is
necessary that the arrival rate is strictly less than the service
rate (inequality (3)). It can be shown that an optimal solution
to the linear program satisfies the constraint (4) with equality,
and therefore cannot guarantee stability. An easy solution to
this problem is to solve a modified linear program with a
fixed small gap εg between the arrival rate and the offered
service rate. We refer to the parameter εg as the capacity gap.
Continuity of the optimal cost of the linear program L (from
part (I) of Lemma 1) ensures that the optimal cost of the
modified linear program is close to the optimal cost of the
original optimization problem for sufficiently small εg .

To summarize, if the statistical parameters µ,λ were
known, one could adopt the following scheduling policy:
(a) BS activation: At every time-slot, with probability 1− εs,
maintain the BSs in the same state as the previous time-slot,
i.e., no switching. With probability εs, compute an optimal
solution (σ∗,β∗) for the linear program Lc0(µ,λ + εg) and
schedule BS activation according to the static-split rule given
by σ∗. The network can be operated at a cost close to the
optimal by choosing εs, εg sufficiently small.
(b) Rate allocation: To ensure stability, use a queue-based



rule such as the Max-Weight rule to allocate rates given the
observed channel state:

S(t) = arg max
r∈R(J(t),H(t))

Q(t) · r. (8)

We denote the above static-split + Max-Weight rule with
parameters εs, εg by ϕ(µ,λ + εg, εs). The theorem below
shows that the static-split + Max-Weight policy achieves close
to optimal cost while ensuring queue stability.

Theorem 2. For any µ,λ such that (µ,λ + 2εg) ∈ S , and
for any εs ∈ (0, 1), under the static-split + Max-Weight rule
ϕ(µ,λ + εg, εs),

1) the network cost satisfies

Cϕ(µ,λ+εg,εs)(µ,λ) ≤ CM(µ,λ) + κεs + γ(εg),

for some constant κ that depends on the network size and
C0, C1, and for some increasing function γ(·) such that
limεg→0 γ(εg) = 0, and

2) the network is stable, i.e.,

λ ∈ Λϕ(µ,λ+εg,εs)(µ).

Proof Outline. Since P(σ∗, εs) has a single ergodic class,
the marginal distribution of the activation state (J(t))t>0

converges to σ∗. Part 1 of the theorem then follows from (6)
and the continuity of the optimal value of L (Lemma 1(I)).
Part 2 relies on the strict inequality gap enforced by εg in (3).
Therefore, it is possible to serve all the arrivals in the long-
term. We use a standard Lyapunov argument which shows that
the T -step quadratic Lyapunov drift for the queues is strictly
negative outside a finite set for some T > 0. The complete
proof is available in [20].

One can also achieve the above guarantees with a static-
split + static-split rule which has BS activations as above
but channel allocation through a static-split rule with convex
combinations given by α∗ such that

α∗r(j, h) =
β∗j,h,r
σ∗j

∀r ∈ R(j, h),∀j ∈ J , h ∈ H. (9)

E. Effect of Parameter Choice on Performance

εs and εg can be used as a control parameters to trade-off
between two desirable but conflicting features – small queue
lengths and low network cost.
(i) Spectral gap, εs: εs is the spectral gap of the transition
probability matrix P(σ∗, εs) and, therefore, impacts the mix-
ing time of the activation state (J(t))t>0. Since the average
available service rate is dependent on the distribution of the
activation state, the time taken for the queues to stabilize
depends on the mixing time, and consequently, on the choice
of εs. With εs = 1, we are effectively ignoring switching
costs as this corresponds to a rule that chooses the activation
sets in an i.i.d. manner according to the distribution σ∗.
Thus, stability is ensured but at a penalty of larger average
costs. At the other extreme, when εs = 0, the transition
probability matrix I|J | corresponds to an activation rule that

never switches the BSs from their initial activation state. This
extreme naturally achieves zero switching cost, but at the cost
of queue stability as the activation set is frozen for all times.
(ii) Capacity gap, εg: Recall that εg is the gap enforced
between the arrival rate and the allocated service rate in the
linear program Lc0(µ,λ + εg). Since the mean queue-length
is known to vary inversely as the capacity gap, the parameter
εg can be used to control queue-lengths. A small εg results in
low network cost and large mean queue-lengths.

IV. POLICY WITH UNKNOWN STATISTICS

In the setting where arrival and channel statistics are un-
known, our interest is in designing policies that learn the
arrival and channel statistics to make rate allocation and BS
activation decisions. As described in Section II-B, channel
rates are observed in every time-slot after activation of the
BSs. Since only channel rates of activated BSs can be obtained
in any time-slot, the problem naturally involves a trade-off
between activating more BSs to get better channel estimates
versus maintaining low network cost. Our objective is to
design policies that achieve network cost close to CM while
learning the statistics well enough to stabilize the queues.

A. An Explore-Exploit Policy
Algorithm 1 gives a policy φ(εp, εs, εg), which is an explore-

exploit strategy similar to the ε-greedy policy in the multi-
armed bandit problem. Here, εp, εs, εg are fixed parameters of
the policy.

1) Initial Perturbation of the Cost Vector: Given the orig-
inal cost vector c0 (given by (5)), the policy first generates a
slightly perturbed cost vector cεp by adding to c0, a random
perturbation uniformly distributed on the εp-ball. It is easily
verified that, for any (µ,λ) ∈ S,

|C∗cεp (µ,λ)− C∗c0(µ,λ)| ≤
√
|H|+ 1C1εp.

In addition, the following lemma shows that the perturbed
linear program has a unique solution with probability 1.

Lemma 2. For any (µ,λ) ∈ S,

P [(µ,λ) ∈ Ucεp | J(0),Q(1)] = 1.

2) BS Activation: At any time t the policy randomly
chooses to explore or exploit. The probability that it explores,
εl(t) = 2 log t

t , decreases with time.
Exploration. In the explore phase, the policy activates all

the BSs and observes the channel. It maintains µ̂, λ̂, the
empirical distribution of the channel and the empirical mean
of the arrival vector respectively, obtained from samples in the
explore phase.

Exploitation. In the exploit phase, with probability 1− εs,
the policy chooses to keep the same activation set as the
previous time-slot (i.e., no switching). With probability εs, it
solves the linear program Lcεp

(
µ̂, λ̂ + εg

)
with the perturbed

cost vector cεp and parameters µ̂, λ̂+εg given by the empirical
distribution. From an optimal solution

(
σ̂(t), β̂(t)

)
of the

linear program, it chooses the BS activation vector J(t)
according to the distribution σ̂(t).



Algorithm 1 Policy φ(εp, εs, εg) with parameters εp, εs, εg
1: Generate a uniformly distributed random direction υ ∈

Rd.
2: Construct a perturbed weight vector

cεp ← c0 + εpυ.

3: Initialize µ̂← 0, λ̂← 0.
4: for all t > 0 do
5: Generate El(t), an independent Bernoulli sample of

mean εl(t) = 2 log t
t .

6: if El(t) = 1 then . Explore
7: J(t)← 1 (Activate all the BSs).
8: Observe the channel state H(t).
9: Update empirical distributions µ̂, λ̂.

10: else . Exploit
11: Generate Es(t), an independent Bernoulli sample

of mean εs.
12: if Es(t) = 0 then . No Switching
13: J(t)← J(t− 1).
14: else
15: Solve Lcεp

(
µ̂, λ̂ + εg

)
and select an optimal

solution
(
σ̂(t), β̂(t)

)
.

16: Select J(t) according to the distribution σ̂(t).
17: end if
18: Observe the channel state H(t)|J(t).
19: end if
20: Allocate channels according to the Max-Weight Rule,

S(t)← arg max
r∈R(J(t),H(t))

Q(t) · r.

21: end for

3) Rate Allocation: The policy uses the Max-Weight Rule
given by (8) for channel allocation.

B. Performance Guarantees

In Theorem 3, we give stability and network cost guarantees
for the proposed learning-cum-scheduling rule φ(εp, εs, εg).

Theorem 3. For any µ,λ such that (µ,λ + 2εg) ∈ S , and
for any εp, εs ∈ (0, 1), under the policy φ(εp, εs, εg),

1) the network cost satisfies

Cφ(εp,εs,εg)(µ,λ) ≤ CM(µ,λ) + κ(εp + εs) + γ(εg),

for some constant κ that depends on the network size and
C0, C1, and for some increasing function γ(·) such that
limεg→0 γ(εg) = 0, and

2) the network is stable, i.e.,

λ ∈ Λφ(εp,εs,εg)(µ).

Proof Outline. As opposed to known statistical parameters for
the arrivals and the channel in the Markov-static-split rule,
the policy uses empirical statistics that change dynamically
with time. Thus, the activation state process (J(t))t>0, in this
case, is not a time-homogeneous Markov chain. However, we

note that J(t) along with the empirical statistics forms a time-
inhomogeneous Markov chain with the empirical statistics
converging to the true statistics almost surely. Specifically,
we show that the time taken by the algorithm to learn the
parameters within a small error has a finite second moment.

We then use convergence results for time-inhomogeneous
Markov chains (derived in Lemma 3 in Section V) to show
convergence of the marginal distribution of the activation state
(J(t))t>0. As in Theorem 2, Part 1 then follows from (6) and
the continuity of the optimal value of L (Lemma 1(I)).

Part 2 requires further arguments. The queues have a neg-
ative Lyapunov drift only after the empirical estimates have
converged to the true parameters within a small error. To bound
the Lyapunov drift before this time, we use boundedness of
the arrivals along with the existence of second moment for
the convergence time of the estimated parameters. By using
a telescoping argument as in Foster’s theorem, we show that
this implies stability as per Definition 1. The complete proof
is available in [20].

C. Discussion: Other Potential Approaches

Recall that our system consists of two distinct time-scales:
(a) exogenous fast dynamics due the channel variability, that
occurs on a per-time-slot basis, and (b) endogenous slow
dynamics of learning and activation due to base-station active-
sleep state dynamics. By ‘exogenous’, we mean that the
time-scale is controlled by nature (channel process), and by
‘endogenous’, we mean that the time-scale is controlled by the
learning-cum-activation algorithm (slowed dynamics where
activation states change only infrequently). To place this in
perspective, consider the following alternate approaches, each
of which has defects.

1. Virtual queues + MaxWeight: As is now standard [10],
[12], suppose that we encode the various costs through vir-
tual queues (or variants there-of), and apply a MaxWeight
algorithm to this collection of queues. Due to the switching
cost, effective channel – the vector of channel rates on the
active collection of base-stations – has dependence across
time (coupled dynamics of channel and queues) through the
activation set scheduling, and voids the standard Lyapunov
proof approach for showing stability. Specifically, we cannot
guarantee that the time average of various activation sets
chosen by this (virtual + actual queue) MaxWeight algorithm
equals the corresponding optimal fractions computed using a
linear program with known channel and arrival parameters.

2. Ignoring Switching Costs with Fast Dynamics: Suppose
we use virtual queues to capture only the activation costs. In
this case, a MaxWeight approach (selecting a new activation
set and channel allocation in each time-slot) will ensure
stability, but will not provide any guarantees on cost optimality
as there will be frequent switching of the activation set.

3. Ignoring Switching Costs with Slowed Dynamics: Again,
we use virtual queues for encoding only activation costs, and
use block scheduling. In other words, re-compute an activation
+ channel schedule once every R time-slots, and use this fixed
schedule for this block of time (pick-and-compare, periodic,



frame-based algorithms [23], [24], [25], [26]). While this
approach minimizes switching costs (as activation changes
occur infrequently), stability properties are lost as we are not
making use of opportunism arising from the wireless channel
variability (the schedule is fixed for a block of time and does
not adapt to instantaneous channel variations).

Our approach avoids the difficulties in each of these ap-
proaches by explicitly slowing down the time-scale of the
activation set dynamics (an engineered slow time-scale), thus
minimizing switching costs. However, it allows channels to
be opportunistically re-allocated in each time-slot based on
the instantaneous channel state (the fast time-scale of nature).
This fast-slow co-evolution of learning, activation sets and
queue lengths requires a new proof approach. We combine
new results (see Section V) on convergence of inhomogeneous
Markov chains with Lyapunov analysis to show both stability
and cost (near) optimality.

V. CONVERGENCE OF A TIME-INHOMOGENEOUS MARKOV
PROCESS

We now derive some convergence bounds for perturbed
time-inhomogeneous Markov chains which are useful in prov-
ing stability and cost optimality. Let P := {Pδ, δ ∈ ∆} be a
collection of stochastic matrices in RN×N , with {σδ, δ ∈ ∆}
denoting the corresponding invariant probability distributions.
Also, let P∗ be an N × N aperiodic stochastic matrix with
a single ergodic class and invariant probability distribution
σ∗. Recall that for a stochastic matrix P the coefficient of
ergodicity [27] τ1(P) is defined by

τ1(P) := max
zT1N=0 , ‖z‖1=1

‖PTz‖1. (10)

It has the following basic properties [27]:
1) τ1(P1P2) ≤ τ1(P1)τ1(P2),
2) |τ1(P1)− τ1(P2)| ≤ ‖P1 −P2‖∞,
3) ‖xP− yP‖1 ≤ τ1(P) ‖x− y‖1 ∀x,y ∈ PN , and
4) τ1(P) < 1 if and only if P has no pair of orthogonal

rows (i.e., if it is a scrambling matrix).
From [28], if P∗ is aperiodic and has a single ergodic class

then there exists an integer m̂ such that Pk∗ is scrambling for
all k ≥ m̂. Therefore, τ1(Pk∗) < 1 ∀k ≥ m̂. Define

ε := sup
δ∈∆
‖Pδ −P∗‖1. (11)

Now, consider a time-inhomogeneous Markov chain
(X(t))t≥0 with initial distribution y(0), and transition prob-
ability matrix at time t given by Pδt ∈ P ∀t > 0. Let
{y(t)}t≥0 be the resulting sequence of marginal distributions.
The following lemma gives a bound on the convergence of the
limiting distribution of such a time-inhomogeneous DTMC to
σ∗. Additional results are available in the technical report [20].

Lemma 3. For any y(0),
(a) the marginal distribution satisfies

‖y(n)− σ∗‖1 ≤ τ1(Pn∗ )‖y(0)− σ∗‖1 + ε

n−1∑
`=0

τ1(P`∗) ,

(12)

(b) and the limiting distribution satisfies

lim sup
n→∞

‖y(n)− σ∗‖1 ≤ εΥ(P∗)

where Υ(P∗) :=
∑∞
`=0 τ1(P`∗) ≤ m̂

1−τ1(Pm̂∗ )
.

Proof. The trajectory (y(n))n>0 satisfies ∀n ≥ 1,

y(n) = y(n− 1)P∗ + y(n− 1)(Pδn−1
−P∗). (13)

Using (13) recursively, we have

y(n) = y(0)Pn∗ +

n∑
k=1

y(n− k)(Pδn−k −P∗)P
k−1
∗ ,

which gives us

y(n)− σ∗ = (y(0)− σ∗)P
n
∗

+

n∑
k=1

y(n− k)(Pδn−k −P∗)P
k−1
∗ . (14)

Now, taking norms and using the definitions in (10) and (11),
we obtain

‖y(n)− σ∗‖1 ≤ τ1(Pn∗ )‖y(0)− σ∗‖1 + ε

n−1∑
`=0

τ1(P`∗) .

This proves part (a) of the lemma. Now, note that

τ1(Pk∗) ≤
(
τ1(Pm∗ )

)bk/mc
(15)

for any positive integers k, m. Since τ1(Pm̂∗ ) < 1, it follows
that limn→∞ τ1(Pn∗ ) = 0, and

Υ(P∗) =

∞∑
`=0

τ1(P`∗) ≤
m̂

1− τ1(Pm̂∗ )
.

Using this in (12), we have part (b).

VI. SIMULATION RESULTS

We present simulations that corroborate the results of this
paper. The setting is as follows. There are five users and three
BSs in the system. BS 1 can service users 1, 2, and 5. BS 2 can
service users 1, 2, 3, and 4. BS 3 can service users 3, 4, and
5. The Bernoulli arrival rates on each queue (which have to be
learned by the algorithm) is 0.1 packets/slot on each mobile-
BS service connection. The total arrival rate to the system is
thus 0.1 packet/slot × 10 connections, or 1 packet/slot. A good
channel yields a service of 2 packets/slot while a bad channel
yields 1 packet/slot. In our correlated fading model, either all
channels are bad, or all connections to exactly one BS are
good while the others bad. This yields four correlated channel
states and all four are equiprobable (the probabilities being
unknown to the algorithm). The fading process is independent
and identically distributed over time. The activation constraint
is that each BS can service at most one mobile per slot. The per
BS switching cost C0 and activation cost C1 are both taken to
be 1. Figure 1 provides the average queue sizes (first two plots)
and average costs (third plot) for two values of εs, namely,
0.2 (first plot) and 0.05 (second plot). The plots show that a
smaller εs yields a lower average cost and stabilizes the queue,
but has higher average queue size.
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Fig. 1. The top two plots show the total queue size as a function of time
when εs = 0.2 and εs = 0.05, respectively. The bottom plot shows the
corresponding average costs (with the solid curve for εs = 0.05). A smaller
εs yields a lower average cost but has higher average queue size.

VII. CONCLUSION

We study the problem of jointly activating base-stations
along with channel allocation, with the objective of minimiz-
ing energy costs (activation + switching) subject to packet
queue stability. Our approach is based on timescale decom-
position, consisting of fast-slow co-evolution of user queues
(fast) and base-station activation sets (slow). We develop a
learning-cum-scheduling algorithm that can achieve an average
cost that is arbitrarily close to optimal, and simultaneously
stabilize the user queues.
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