Fast Matching Algorithms for Repetitive
Optimization: An Application to Switch Scheduling

Supratim Deb Devavrat Shah Sanjay Shakkottai
Bell Labs Research India Massachusetts Inst. of Technology The Univ. of Texas at Austin
Bangalore-560017, INDIA Cambridge, MA-02139, USA Austin, TX-78712 USA
Email: supratim@Iucent.com Email: devavrat@mit.edu E-mail: shakkott@ece.utexas.edu
Abstract— Scheduling in an input buffered switch can be Input 1 kl | Mweme
viewed as repeated mgtching (corFr)esponding to once everynie —><: ,A‘[ -wmmgmbm%
slot) in a bipartite graph. It has been shown that scheduling N I |

algorithms based on maximum weight matching (MWM) with [ |

queue-lengths as the weights, leads to excellent performea in [ |

terms of throughput and delay. However, computing MWM using nputN | | Output
Lanc ! : 9 : . o[ Oupuy

a strongly polynomial time algorithm requires O(n®) operations ! [

in an n x n switch.

1
N

The main motivation for this paper comes from the following
two observations: (1) The weights of edges (packets in buffe
change only alittle between successive time slots, thus changing Fig. 1. Logical structure of an input-queued cell switch

the weight of the MWM only by a small amount; (2) Under
MWM algorithm, the average queue-sizes aresmall. The main
difficulty in utilizing these properties comes from the fact that
small changes in weights can change the matching arbitrami . o . _ .
thus making it hard for current popular algorithms to comput e @ Crossbar fabric. When switching unicast t_ra]fflmls fabric
an MWM quickly using the information from past (or memory).  imposes the following constraint: in each time slot, at most
In this paper, we develop an algorithm based on the algorithm one packet may be removed from each input and at most one
of Cunningham and Marsh [1] that uses the above two propertis  packet may be transferred to each output.

in order to to find the new MWM quickly. Specifically, for an : . . :
n port input-queued switch, i.e. a switch with n inputs and n To perform well, ann x n input-queued switch requires

outputs, our algorithm finds MWM in  O(n?) operations using & 900d packet scheduling algorithm for determining which
past information. We believe that the incremental nature ofour  inputs to connect with which outputs in each time slot. It

algorithm may be useful in the context of other applications is well-known that the crossbar constraint makes the switch
scheduling problem a matching problem inan n weighted
I. INTRODUCTION bipartite graph. The weight of the edge connecting inptat
Sudy the past if you would divine the future. outputj is often .chosen to be some quantity that indicates the
level of congestion; for example, queue-lengths or the afes

- Confucius (c. 551-c. 479 BC) packets

A matching for this bipartite graph is a valid schedule
r the switch. Note that a valid matching can be seen as
Sa'?nermutation of they outputs. In this paper we will use the
rdsschedule, matching and permutation interchangeably. A

rﬁ‘atching of particular importance for this paper is the maxi

) . ; : mum weight matching algorithm (MWM). Given a weighted
an outpl_Jt-buffered archnecture requires a switch fabntb_ a bipartite graph, the MWM finds that matching whose weight is
processing speed of times the line-rate, whereas an inputy, highest. For example, Figure 2 shows a weighted bipartit
buffered switch requires a fabric with a processing speed &saph and one valid schedule (or matching). We shallg(gg

mugh as trr]]e Imer-]ra':e. ical ; . q to denote the schedule used by the switch at timEhere are
Fig. 1 shows the logical structure for an input-queue 03 0 main quantities for measuring the performance of a $witc

switch. _Suppose tha.‘t time_ is S'O“‘?d so that at most one pac eduling algorithm: throughput and delay. In the pap&}s [
can arrlveda;eaz_:h |dn|?ut In one t|mebsl?ft. ch_kets ‘f';\r_rlvmlg @«t] authors showed that under Bernoulli IID packet arrival
input 7 and destined for outpuf are buitered In a “virtual ,,-e55e5 the MWM is stable so long as no input or output is

output queue” (VOQ), denoted here BJOQ;;. The use of a5 bscribedl Further, MWM (with weights as function of
virtual output queues avoids performance degradation dueqtueue-size), is known to perform optimally in terms of delay
the head-of-line blocking phenomenon [2]. Let the averadle ¢

arrival rate at input for output;j be X;;. The incoming traffic Iwe do not consider multicast traffic in this paper.

is calledadmissible if Zi:l /\ij_ <1, andZ =1 )‘ij < 1. We 2The weights were taken to be the length@f; originally and later work
assume that packets are switched from Inputs to outputs [Bytook the weights to be the age of the oldest packefip.

Over the past few years the input-buffered switch archfic—)
tecture has become dominant in high speed switching. Thi
mainly due to the fact that the memory bandwidth of its pac
buffers is very low compared to that of an output-queued or
shared-memory architecture. Furthermore, fonann switch,



Matching M to MWM and are stable, they do not compute the MWM.

. 1 Furthermore, none of the algorithms for switching take into
i account the dynamics of the queueing behavior in a switch.
2 In this paper, we are motivated by the following questions:
3 (1) Isit possible to improve the computational complex-

ity of the MWM provided the information of MWM
from the previous time is utilized?
(2)  If yes, how much improvement can be obtained?

We answer questions (1) in affirmative and quantify the
improvement in the complexity using the observation that
switch state (in terms of queue-size) changes “very little”
in successive time-slots. We find that complexity improves
[6]. significantly in various scenarios. The exact details amnso

In addition to IQ switches, there are many other examples tof follow.
scheduling in various problems arising in networks, thatcha _
throughput optimal policies as “maximum weight matchingA‘ Switch model
type algorithms. For example, Max-pressure policy for net- Let time be indexed byn and we will denote by queue
work of queues [7], scheduling in Radio hop network [4](4,7) the queue for outpuf at inputi. Initially, m = 0. Let
Generalized MWM [8] and scheduling in network of switchethen x n integer valued matrix)(m) = [Q;;(m)] denote the
[9]. In summary, MWM type algorithms are the heart of goo@ueue-sizes of the switch at the beginning of time-siot 0.
scheduling solutions in many network applications. We assume that the switch starts empty, ¢0) = [0].

However, MWM is too complicated for implementation in The arrival process to queug, j) at time m, denoted by
its full generality in any of these applications. In partamiin  Ai;(m) °, is exogenous while the service process depends
case ofn x n IQ switch, the best known strongly polynoniial on the scheduling algorithm. The arrival process is statipn
time algorithm requiresD(n®) operations. There are otherand ergodic. We assume that line-rates are normalized to one
known MWM algorithms that are not strongly polynomiaRs well as packets are of unit-size. Hence, at most one packet
but have better time-complexity when the weights small. can arrive at each input. i§.7_, A;; € {0,1}. Let the arrival
The best known among such algorithms (to the best of oi@te-matrix be = [A;;], where
knowledge) is by Gabow and Tarjan [10] that has performs E[A5(0)] = X 1)
as follows: Let weights of each edge be an integer between I kN
{1,..., M}, V be number of nodes in the graph add Under Bernoulli [ID distribution,4;;(-) are IID random vari-
be number of edges in the graph. Then the algorithm takaisles withPr(4;;(0) = 1) = )\;; (note that IID refers to IID
O(y/VlogVa(E,V)Elog(MV)) time, wherea(-,-) is the intime). We will use this specific distribution to obtain tan
inverse Acremann’s functidn This algorithm, while more results. Due to constraints on arrivals and departures,alle ¢
efficient, is quite complicated for the purpose of implemeran arrival rate-matrix\ as admissible if it is strictly doubly
tation. These implementation related considerations ede sub-stochastic, i.e.
to proposal of a number of practicable scheduling algorghm o
notably, iSLIP [11], iLQF [11], RPA [12], MUCS [13] and Ai <15 Aj <1, Vi, j. )
WFA [14]; very IitFIe atten_tion hgs b_een given to the ComP_le)iNhere)\i. =3, Ak and A = 3, M. We also define the
ity of MWM algorlthm Whl|§ taking into account the speC|f|cs|oad, p, as the quantity '
of the application, e.g. switch dynamics.

Recently, [15] and [16], exploited the following obser- pémaX{)\i.,A.j}.
vation to obtain simple-to-implement stable approxinragio “J
of MWM: In each time slot, at most one packet arriveset D,;(m) denote the number of departures fraf;(-)
(departs) per input (output). This means that queue-lengtbnder the scheduling algorit¥mSince schedule at each time
taken to be the weights by MWM, change very little duringhas to be of matching form, by definition
successive time slots. Thus, a heavy matching will conttoue
be heavy over a few time slots, suggesting that carrying some_ Dix(m) € {0,1}, Vi; > Dyj(m) € {0,1}, Vj.
information, or retaining memory, between iterations gtiou k
help simplify the implementation while maintaining a highrhus, each,;(-) changes by at most between successive
level of performance. time-slots. Further, there are at mastqueues that can change

While the algorithms of [15], [16] are good approximationgetween successive time-slots. This is the crucial prgpleat

we shall use to obtain lower-complexity MWM algorithms.
3The algorithm’s complexity scales only as a function »f and is Now, the departures at time-slot, (Dij (m)), are decided

independent of the precise value wkights as long as each arithmetic - . o .
operation can be performed over the weight in unit time. by the schedullng algorlthm. Let= (IU) denote a matChmg'

4Ackremann’s function is one of the fastest growing functioand its ) )
inverse is an extremely slowing growing function. It is safe replace  °We assume that packets always arrive at the end of a time-slot
log(V + E) as an upper bound fax(E, V). 6We assume that packets always depart in the middle of a fiote-s

Fig. 2. Example of weighted bipartite graph and its maximuright
matching.



For ann x n switch, there arex! possible such matchings. Let

W (z,m) denote the weight of at timem, defined as

W(,T, m) = Z xijQij (m)

Then, MWM algorithm chooses;*(m) as the schedule at

time-slotm, where

¥ (m) = argmax W (z, m).

For a scheduling algorithm4, denote the weight of the

matching served at timen by W4(m). Thus, for MWM

algorithm, weight of matching served at time is denoted

by Wasw a (m). We will also denote byr; (m) the input port
1 is mapped to at timen.

B. Main Results

We state our main results in this section. The correspondiﬁr

algorithms are described in the later sections in detail.

Our results. Before describing our results, we first state
critical structural property of MWM that will be useful in

describing our results.

(P1) In an MWM based scheduling in a switch, i is the
number of non-empty edges out of the possihfe edges,

Delay v/s Switch-Size

160

140
120

S 100
Load=0.75
= L0ad=0.9
g Load=0.99
3 60

3
]
S 80
°

40

20

0

0 10 20 30 40 50 60 70
Switch-Size (N)

Fig. 3. Linearity of delay with respect to switch size for icars loads

While a computational complexity aP(n?) is provably true
for p < 0.5, we reiterate that, there are indications that prop-
y P1is true for arbitraryp < 1 rendering a computational
complexity of O(n?) for arbitrary p.

gomparison with [10]. The algorithm of Gabow and Tarjan

[10], under property1 takesO(n' log® n) operations. The
weaker bound of)(n?) on the net average queue-size under
MWM suggests that the algorithm of Gabow and Tarjan should
take O(n? log® n).

The algorithm of [10], though has better analytical perfor-

then E = O(n) in expectation. The constant in the order cafance, is too complicated to implement and requires sophis-

depend on the load in the switch. O

We will refer to the above as properfl. Note that, if
{(,7) : Mij # 0} = O(n), then trivially P1 is satisfied. In
general, we state the following result.

Theorem 1.1: With MWM based scheduling,

E ZQ” ZO(TL),

whenp < 0.5. As a consequence, the propeRy holds for
load p < 0.5. O

Based on extensive simulations (see Figure 3 for illustrgti
we strongly believe the following.

Conjecture 1: The propertyP1 holds for anyp < 1.

Here we note that, a bound on net average queue-size

O(n?/(1 — p)) is known, for example see [6].

ticated data-structures. In contrast, as it will be cleath®
reader, our algorithm requires simple operations and uvses v
light-weight data structures. These are attractive prigser
for implementation. Finally, we remark that our algorithe i
by designincremental. For example, it takes onl@(E + n)
operations to update MWM upon single arrivals. It is not clea
if algorithm of [10] (or any other algorithm) can be simpldie
to make itincremental.

Il. INCREMENTAL ALGORITHM FOR COMPUTING MWM

This section presents an algorithm to compute MWM using
information from previous time. This is based on Cunningham
Marsh algorithm [1], here we extend it for the specific ins&n
of switch scheduling. We first present a linear programming
formulation of the maximum weight matching. Then, we
present algorithm and finally present proof of Theorem 1.2.

Ac.)fLi near Program: MWM

We now state the main result on repetitive Computation of We present linear programming formulation for maximum

MWM.

Theorem 1.2: Given an MWM for timem, a new MWM

weight matching. Let, j € {1,...,n} be generic indices for

input and output ports of the switch respectively. L) =
[Q:;(m)] denote the queue-size matrix of a switch at time

can be computed wittO(nE + n*) operations under the Then, the problem of finding the maximum weight matching

Switch model, whereE = |{(i,j) : Q;;(m) # 0} Thus,
under propertyP1, we can compute a new MWM if)(n?)
operations. O

can be described as the following integer program.

IP-MWM.




In addition to Lemma 2.1, it can be shown that there exists
r,p such that they are always integers when queue-size are

max Z Qij(m)ai; integral (see [1]).
)
Subjectto Y mi =1, Y =1 B. Algorithm
k k The Lemma 2.1 suggests that one way to find MWM
zi; € {0,1} V1 <4, j <n. is to obtain {z;;,;,p;} that satisfy CS and F conditions

simultaneously withe;; € {0,1}. This is precisely what our

The above optimization problem is an integer prograrﬁ\_lgorithm does using informatio.n from previo_us schedula in
However, it is well known that it is the linear programmin lever manner. Next, we describe our algorithm, denoted by
(LP) relaxation of the problem LP-MWM, obtained by/Nc-Alg. o . .
dropping the integrality constraints ofw,;} as described _Before formally describing Inc-Alg, we provide some intu-
below automatically forces the solution to be integrallfats tion on its operation. Let us consider consider the caserevhe
from the fact that the vertices of the polytope generatéd arrival (i.e,Q1, changes by *+1") occurs @), at time
by the constraint set are integral). Hence, it is enough t (the new queue length i®1, + 1) and that we have a
solve the LP Thus, it is enough to solve the following prohleninatching and the associated dual variables from time 1

given by {x;;,7:,p;}. Also suppose that edgéd, 1) was not

in the matching in the previous time slot — 1 (if 21, = 1,
LP-MWM. clearly it will be in the matching for time slotn as well).
Now, one of two cases can occyi) (1,1) is not in the new
MWM for time slot m, or (ii) (1,1) is in the new MWM for
time slotm.

max ZQU(m)IU Case (i): We first refer the reader to Figure 5. If edge
i (1,1) is not in the new MWM, the dual variables need to
Subject to ink =1, Zajk]— -1 be updated so that the CS and F conditions are satisfied.
& & Due to the increased queue length, the Feasibility conditio
25 € 10,1] V1 <i,5 < n. r1 +p1 — (@1 +1) > 0 could be violated. If so, we

adopt the procedure where we add ‘+1’ it in this case

. . to “repair” the feasibility condition. This fix, however, i
We will denote the above LP-MWM as Primal LP (P-LP) o516 Cs at the correspondingatched output portoy, i.e.

Next, we consider the dual of the above problem which wi A

b ful for describing the alaorith he How we have(ry 4+ 1) 4+ po, — Q10, < 0. Thus, to repair this,

de LljseL.J bcl)r escr mgdt_ € agcr)]rlt m. Denote t?hea_s € \ve need to changg,, by ‘-1'. This in turn could (but not
ual variable corresponding to the cons_tra{@k zip, = 1} necessarily) cause a Feasibility violation at some input, po

and p; as the dual variable corresponding to the constrainf, - ¥ Py, — Qu,0, < 0 could occur for one (or more than

ey D 01 1202

{2, @x; = 1}. Then, the dual is as follows. one) input ports. Thus, we need to chamgeby ‘+1’ to repair

this. This process now alternates between input and output
ports, and growing dree in the process with alternate levels

in the tree corresponding to input and output ports respegti
Alternate edges in the tree correspond to matched edges from

Dual-LP (D-LP).

min Z” + ij the edges in the MWM from timen — 1 (see Figure 4 and
i j Fig. 5). Since we are considerir@ase (i) where the(1,1)
Subject to 7; + p; > Q;(m), V1 <i,j <mn. is not in the new matching, the tree will terminatéthout
B B — visiting p1.

. . . On the other-hand, irCase (ii) (see Figure 4, the tree
Let {=7;} and{r, pj} be solutions to the above P-LP andqnstryction will lead to the case where at some levekyill
D-LP. Then, due to the well-known fact that there is no dyalityeeq to be decremented. This clearly is feasibility viokati

gap for the above convex optimization problem, the follayvinThis is pecause we originally had + p1 — (Q11 + 1) < 0
conditions are satisfied. (which is why we repaired the dual variables in the above
1) Complementary slackness (CS)z;; = 1 = 7 + discussion). We had repaired this by updatingo (r; + 1).

p; — Qij(m) =0 _ _ Now, changingy — 1 by ‘-1’ will again lead to a violation, i.e,
2) Feasibility (F): The {z};,r;,p;} satisfy constraints of (r; +1)4(p;—1)—(Q11+1) < 0. Thus, the conclusion is that
P-LP and D-LP. the matching has changed and we shawtihave repaired all

The above discussion immediately implies the following kethe dual variables, but instead, added edgd ) to the new
result that is the heart of our algorithm (as well as thmatching and simply change by ‘+1’ from the value in
algorithm of [1]). the previous slot. Further, the new MWM corresponds to the
Lemma 2.1: Let {=z;;,r;,p;} be any tuple that satisfies‘alternate’ edges in the tree construction that led to a loop
conditions CS and F with:;; € {0,1},V4,5. Then, {z;;} in the procedure described above (see Figure 4 and Fig. 5).
is a maximum weight matching. The above procedure is formally described in the algorithm



below, both in the context of increase and decrease of the compute newz,#,p} using the{z,r,p} that will satisfy

gueue length.

Algorithm Inc-Alg.
matching from previous time)

o Setup.

— Let z(m) [zij(m)] be the MWM at time
m based on queue-siz&)(m) and r(m)

[ri(m)],p(m) = [p;(m)] be solutions to D-LP such

that {x(m), r(m), p(m)} satisfy CS and F.

(computes a new matching using the °

— The departures happen from non-empty queues ac-
cording toz(m) and new arrival happens to at most

n queues. Le®)(m+1) be queue-size at tima+1.

— Let £ < 2n be the total queues that have changed in

their sizes by+1 or —1 at timem + 1 compared to
time m. Let they be denoted b1, j1), .. ., (i¢, je)-
— Let Q° (m). Obtain Q*,1 < k < (¢ by

adding thef/ changes in the queue-sizes one by one.

By construction,Q* and Q*+! differ in only one
gueue being different by-1 or —1. As per notation,

Q' =Q(m+1).

— Let {2* r* p*} be tuple satisfying CS and F for P-

LP and D-LP for weight given b@*, for0 < k < /.
Note that,{z%, 7%, p°} = {x(m), r(m), p(m)}.
o Compute x(m+1).

— Fork =1,...,¢, compute{z*,r* p*} using ONE-
STEP with inputg[z*~1, =1 p*=1} where routine
ONE-STEP is described below.

— Thez(m + 1) = z* by definition.

Now, we describe the ONE-STEP routine that computes

the solution when only one queue changes+thyor —1.

Algorithm ONE-STEP (computes a new matching when a
single queue changes by +1/ — 1)

SETUP:

e Input {z,r, p} satisfy CS and F for P-LP and D-LP for

MWM with weight as queue-size matrig.
« Let one of the queues changes-by or —1 in @ to give

Q. Without loss of generality, let the queue that changes

be Qlln that iS,Qll = Qll + 1.
« Let the set of non-empty edgeS,= {(4, ) : Q:; # 0}.
o DefineO(i) ={j:m +pj — Qi = 0} andZ(j) = {i:
ri+p; — Qij =0}
CASE-1: Q11 = Qq1 + 1.

e If 211 = 1, then setr; = r; + 1. Return this modified
{z,r,p} as the output.

o Else, ifz1; =0 andr; +p; — @11 > 1. Return the same

{z,r,p} as the output.
e Else,z;; = 0 andr; + p1 — Q11 = 0. In this case,
the F condition for D-LP is violate fofl1, 1). We need to

the CS and F conditions fap). We do so by growing
appropriate "tree” structure described below.
Initialize 7; = r; andp; = p; forall 1 < 4,5 < n. Set
71 =71 + 1. The {#,p} are intermediate variables.
Create a tred| that contains input and outputl and
edge (1,1). Set input as leaf of the tree and outpltas
root of the tree.
ITER. Fork > 0, do the following till one can not grow
tree any more or required to go to AUGMENT step.
— Whenk is even: let v be any of the leaf of tre&,.
By construction, each leaf df}, is input vertex for
evenk. For each suchy, do the following steps:
1) Letw be such thate,, = 1, that is(v,u) is an
edge in MWM according to old:.
2) If w is outputl, then go to AUGMENT. Else,
setp, = p, — 1. This satisfies the CS for edge
(v, u).
3) Add u and edggv, u) to the treeTy.
— Set modified tred, asT+1; andk =k + 1. Go to
the step ITER.
— Whenk is odd: let u be any of the leaf of tre@),. By
construction, each leaf df; is output vertex for odd
k. For each such, do the following steps (1)-(2).
(1) Consider any € Z(u). If v is already in theT},
ignore it.
(2) Else ifv is not in Ty, then the F condition for
D-LP is not satisfied fo(z, 7, p). Add v and (u, v)
to the T}, and set?, = 7, + 1.
— Set modified tred, asT,; andk =k + 1. Go to
the step ITER.
Setz =z, 7 = # andp = p. Return{z,7,p} as the
output.
AUGMENT. Let at stagek (even), an input vertex be
such thatr,; = 1.

— Let the path in tred, starting from inputl to vertex
v be (vo =1, u1,v2,u3,...,ux—1, V% = V).

— Now, consider a cycle, which is extension of this
path, (vo = 1,u1,...,up—1,vr = v, (Outpudl, vy).
In this cycle, the alternate edges belong to matching
according tar, that isz,, y,,,, = 1,0 < s < k/2—
landz,, 1 =1.

— Now, create a new matchingas follows. Sef,,; =
1 and Z,,,4,._, = 1. For all other(i, j) such that
x;; = 1, setZ;; = 1 while set all remaining;; = 0.

— Setr =r andp = p for all ¢, j but setr; = r; + 1.

— Return{z,7,p} as output.

CASE-2: Q11 = Q11 — 1.

If £11 = 0 then return this modifiedz,r,p} as the
output.

Else, if z11; = 1 then by definitionr; + p; — Q11 = 0.
Thus, the F condition for D-LP is violate fol, 1) as
Q11 = Q11 — 1. We need to compute ney&, 7, p} using

the {z,r, p} that will satisfy the CS and F conditions for
Q. This is done in exactly the same manner as done for
the case whe)),; = Q11 + 1. We describe the first few



output 1

j
I
'
I
Input 1
ul L -

vi§ +1 vz @

output 1 I*\

Input 1 +1 N ememmemen

Augment
—_—

ur @

Execution New Matching

Fig. 4. Example of procedure ONE-STEP whén increases byi. Here
the AUGMENT step is invoked and MWM changes as shown.

Further, it can be implemented such that the total number of
operations performed by algorithm@(nE+n?), whereE =

|€|, the number of non-empty edges with respecton).

Due to space constraints, we skip the proof details.

IIl. CONCLUSION

In this paper, we have demonstrated that, inmarx n
switch, MWM can be computed usin@(n?) operations if the
MWM from the previous time slot is taken into account, and
with suitable assumptions on system load. As the best known
algorithm for ab-initio computing MWM has a complexity
of O(n?), our work shows that there can substantial gains in
complexity if we take the dynamics of the system into account
We believe that the average complexity results in this paper
can be extended to a “high probability” kind of complexity.

output 1 Output

Input

®

Input 1 +1
ul l\ -1
AN

[1
(2]

(31
(4]

Execution

Fig. 5. Example of procedure ONE-STEP whén; increases byi. Here
the matching remains the same however dual variables amagds shown.

(5]

steps as follows. [6]

o Initialize 7#; = r; andp; = p; for all 1 < ¢,5 < n. Set
p1 = p1 — 1. The {7, p} are intermediate variables.

« Create a tred? that contains inpui and outputl and
edge (1,1). Set input as root of the tree and outputas
leaf of the tree. Now this is the same’Bsof the previous
case. The only difference is we will AUGMENT when ]
there is an edge between some output vertex and ihput
that needs to be added to the tree. We skip further details.

(7]

(8]

The description of the algorithm seems rather complicatélcg’]
due to notation based description. It is better understoad v
an example with help of a figure. Consider case whgn = [11]
@11 + 1. There are mainly two cases in algorithm: (a) Thﬁz
MWM is changed when AUGMENT step is invoked and only
r1 increases by, or (b) the MWM remains the same but many
dual variablesy, p change by+1 and —1 in an appropriate [13]
manner. The Figure 4 describes the case (a), while the Figure
5 describes the case (b).

C. Analysis of Algorithm (14]

We state the following result about algorithm Inc-Alg. Thgl
Theorem 2.1, as stated below, immediately implies Theor R
1.2.

Theorem 2.1: Algorithm Inc-Alg produces solutiofiz(m+
1),7(m + 1),p(m + 1)} that satisfies CS and F fap(m +
1) given {z(m),r(m),p(m)} satisfying CS and F fo€(m).

[16]

ACKNOWLEDGMENTS

This research was partially supported by NSF Grants ACI-
0305644, CNS-0325788, CNS-0347400 and CNS-0519401.

REFERENCES

W. H. Cunningham and A. B. Marsh, “A primal algorithm foptimum
matching,” Mathematical Programming, pp. 50-72, 1978.

M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versositput
queueing on a space-division packet switctEEE Transactions on
Communications, vol. 35, pp. 1347-1356, Dec 1987.

N. McKeown, V. Anantharan, and J. Walrand, “Achieving Olifput-
queued switch,” inProceedings of |EEE INFOCOM, 1996.

L. Tassiulas and A. Ephremides, “Stability propertiefs constrained
queueing systems and scheduling for maximum throughputuitimop
radio networks,”|EEE Transactions on Automatic Control, vol. 37,
no. 12, pp. 19361949, 1992.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrdn“Achiev-
ing 100% throughput in an input-queued switchEEE Transactions on
Communications, vol. 47, no. 8, August 1999.

D. Shah, “Randomization and heavy traffic: new approadoe switch
algorithms,” Ph.D. dissertation, Computer Science Depant, Stanford
University, 2004.

L. Tassiulas, “Adaptive back-pressure congestion mariiased on local
information,” |[EEE Transactions on Automatic Control, vol. 40, no. x2,
pp. 236-250, 1995.

A. Stolyar, “Maxweight scheduling in a generalized shit State space
collapse and workload minimization in heavy traffiéhnals of Applied
Probability, vol. 14, no. 1, pp. 1-53, 2004.

M. Marsan, P. Giaccone, E. Leonardi, and F. Neri, “On thab#ity
of local scheduling policies in networks of packet switchéth input
queues,”|EEE Journal on Selected Areas in Communications, vol. 21,
no. 4, pp. 642-655, May 2003.

H. N. Gablow and R. E. Tarjan, “Faster scaling algorithfor general
graph matching problemsJournal of the ACM, vol. 38, no. 4, pp. 815
— 853, 1991.

N. McKeown, “Scheduling algorithms for input-queuedlit€hes,” Ph.D.
dissertation, Department of EECS, UC Berkeley, 1995.

] M. Marsan, M. Ajmone, A. Bianco, E. Leonardi, and L. Mili“Rpa:

A flexible scheduling algorithm for input buffered switcliesEEE
Transactions on Communications, vol. 47, pp. 1921-1933, December
1999.

H. Duan, J. W. Lockwood, S. M. Kang, and J. D. Will, “A high
performance ocl2/oc48 queue design prototype for inpuetad atm
switches,” inProceedings of |IEEE INFOCOM97, vol. 1, 1997, pp. 20—
28.

Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters fdsi com-
munication switches,1TEEE Transactions on Parallel and Distributed
Systems, vol. 4, pp. 13-27, Jan 1993.

L. Tassiulas, “Linear complexity algorithms for maxiam throughput
in radio networks and input queued switches,”Hroceedings of |IEEE
INFOCOM, 1998.

P. Giaccone, B. Prabhakar, and D. Shah, “Towards simpigh-
performance schedulers for high-aggregate bandwidthPrateedings
of IEEE INFOCOM, 2002.



