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Abstract—We consider the problem of broadcasting a large
file over a wireless network (e.g., students in a campus). If each
user who wants the file must download it from the carrier’s
WAN, dissemination time scales linearly. Two often-occurring
facts suggest we can do better: (a) the demand for the file often
spreads via a social network (e.g., Facebook); and (b) the devices
predominantly used are GPS enabled, and equipped with a peer-
to-peer (ad hoc) transmission mode. The premise of this paper is
that (a) and (b) are often the case. Starting from here, we consider
this coupled-network problem (demand on the social network;
bandwidth on the wireless network) and taking advantage of the
fact that the two networks have different topologies, we propose
a file dissemination algorithm. In our scheme, users query their
social network to find geographically nearby friends that have
the desired file, and utilize the underlying ad hoc network to
route the data via multi-hop transmissions. We show that for
many popular models for social networks, the file dissemination
time scales sublinearly with the number of users.

I. INTRODUCTION

The proliferation of mobile devices that can stream video
(laptops, smartphones, tablets) has marked a dramatic increase
in demand for streaming video. At the same time, content
generation and dissemination has become dramatically easier –
most phones have installed video-cameras, and knowledge of a
video can spread extremely rapidly to vast numbers of people,
through social networks including e-mail, Facebook, Twitter,
and the like. As deployed capacity approaches saturation, we
need new transmission architectures to guarantee our wireless
networks continue to deliver traffic effectively and efficiently.

This paper addresses precisely this problem. More specif-
ically: we consider the simple, yet increasingly common
setting, where a user (e.g., a student on a college campus)
generates a large file (a short video, for example) and wants
to spread it to her social network – her friends, their friends,
and so on. In the current paradigm, the file creator uploads the
file to a central server (e.g., YouTube) and then spreads word
of its existence through Facebook, Twitter, etc. Upon learning
of the file’s existence, interested (we call them “eager”) users
then download the file from the server, using their provider’s
wide area network (WAN). Since the WAN has bounded
bandwidth, the file dissemination time will necessarily scale
linearly in the number of users who ultimately receive the
file. Particularly in a dense setting like a college campus, this
inherently limited centralized scheme for file dissemination
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may be highly suboptimal. The central question in this paper
is: how much better can we do?

Increasingly, smartphones and similar technology, are
equipped with both GPS and peer-to-peer transmission modes.
In dense environments, this opens the possibility of forming
a wireless ad hoc network in which users communicate with
each other through several hops of short distance transmis-
sions. As shown in Gupta and Kumar’s seminal work [1], the
spatial capacity of a wireless ad hoc network scales as

√
n –

a sharp contrast to the fixed capacity of a WAN. While this
scaling spatial capacity of ad hoc networks provides a potential
way forward, naive implementation presents severe problems
that may leave us worse off than the currently implemented
WAN solution. We may have severe congestion caused by
subsets of users getting a high number of requests, hence
resulting in hot-spots in the network. This will occur, for
instance, if users request the file from neighbors on their social
network, as most social networks exhibit the presence of super-
nodes with very high degree. This is particularly true in the
broadcast setting we have here, when we expect there to be
such hot spots, which can potentially reduce network capacity
by a significant factor [2].

A. Main contributions

In this paper we propose a simple and distributed file dis-
semination algorithm that works by passing messages through
the social network, and requires limited communication and
computation overhead. In particular, we verify our algorithm
through analysis on popular models for social networks (power
law graphs). The main features of our algorithm are as follows:

1) Load balancing: users receiving a large amount of re-
quests distribute them to nearby users on the social
network, in such a way that we can guarantee no user
has to serve more than six other users. Our algorithm
achieves

√
n-scaling with the number of users receiving

the file – sublinear, in sharp contrast to the linear scaling
required in the WAN file dissemination architecture.

2) Exploiting geographic proximity: We extend our load-
balancing algorithm to exploit geographic proximity.
Because of the structure of the social network, we show
that by searching a few hops deeper in their social
network, most users are able to download the file from
another user at close range. This idea allows us to further
reduce the scaling below

√
n, depending on the depth

of the social-network a user may search.



B. Related work

Analyzing the capacity of an ad hoc network has drawn
much attention since Gupta and Kumar’s work [1]. Since
then, much literature, e.g. [3]-[9], has studied this issue for
more general settings. Indeed, [3][4] have studied the multicast
capacity, [5][6] have considered mobility models, and [7]-[9]
have worked on different attenuation regions and/or different
topologies. Different from the above, our paper focuses on
the effect of the social network on the scaling of the file
dissemination time in wireless ad hoc networks.

Exploiting characteristics of social networks to enhance
system performance has been suggested for resource scarce
networks such as delay-tolerant networks which often suffer
intermittent connectivity and long delays. Papers in this field,
e.g., [10]-[12], show that social-aware algorithms are efficient
to solve broad problems including routing and information
propagation. However, most papers in this field only provide
simulation based verification. In contrast, our results are sup-
ported by quantitative analysis, and our algorithm has provable
guarantees in a scaling-law sense.

II. SYSTEM DESCRIPTION

In this section we describe the basic system model, includ-
ing the model for the wireless network and the placement of
the nodes, and the model for the social network.

A. Random wireless network and Gaussian channel model

We model our network as n static nodes, placed indepen-
dently and uniformly on a square of width

√
n. Thus the

(expected) density of the network stays constant. Each node
has a transmitter and a receiver. All nodes can communicate
with each other with fixed power P . The interference model
is described by a Gaussian channel model defined below [7].

Definition 1: (Gaussian channel model [7]) Index nodes by
1, 2, . . . , n. Let xi be the location of node i. Let A be the
set of active transmitters at this time instant. The transmission
rate R(xi, xj) from node i to node j is

R(xi, xj) = log

(
1 +

Pℓ(xi, xj)

N0 +
∑

k∈A\{i} Pℓ(xk, xj)

)
. (1)

Here, ℓ(x, y) represents the power attenuation function be-
tween points x and y on the square, and is given by

ℓ(xi, xj) = min

{
1,

e−γ||xi−xj ||

||xi − xj ||α

}
(2)

where as usual, ||x− y|| is the Euclidean distance between x
and y.
In this paper, as in [7], we consider either γ > 0 or γ = 0
and α > 2.

B. Model for social networks

As we identify users with their devices (e.g. cell phones/
PDA), the n nodes in the wireless network also form a social
network. A social network is described as a graph G = (V,E)
where V is the set of nodes with cardinality n and E is the
set of edges. Two nodes are joined by an edge if (and only

if) the corresponding users are friends in the social network.
The distance between two nodes x and y on the social-graph
G is the minimum number of hops between x and y in the
social network. Thus a node’s neighbors are the nodes one
hop away on the social graph, and its k-neighborhood are
the nodes within k hops on the social graph. A key property
we exploit is that distance between two nodes on the social
network is generally unrelated to geographic distance between
the corresponding users in the wireless network.

We consider social networks generated by random power
law graphs [14]. A graph G is called a power law graph
with parameter β if the number of nodes with degree k is
proportional to k−β . Empirical studies of many social (and
other) networks have shown them to satisfy so-called power
law graph structure (see e.g. [15] [16]). These random graphs
satisfy an important property: with overwhelming probability,
each node has only a small number of neighbors, i.e., small
degree, (small relative to the size of the overall network) and
the diameter of the random graph (the maximum number of
hops between the vast majority of the nodes) is also small. This
property is consistent with properties of most social networks,
and in particular, with the famous observation known as the
small world phenomenon, first discussed in [13].

Following standard practice, we generate random graphs
and in particular random power law graphs, according to
expected degree sequences [14].

Definition 2: ([14]) Let w = (w1, w2, . . . , wn) be an ex-
pected degree sequence satisfying max{w2

k} ≤
∑

1≤k≤n wk.
We say G = (V,E) is a random graph generated by the degree
sequence w if edge (i, j) ∈ E is present with probability
wiwj/

∑
1≤k≤n wk. Given a subset S ⊆ V , following [14],

we define the volume of S to be vol(S) =
∑

i∈S wi,
i.e., the sum of weights of nodes in S. Similarly, define
volk(S) =

∑
i∈S wk

i and d̃ = vol2(G)/vol(G).
Definition 3: ([14]) A random graph generated by Defini-

tion 2 is a random power law graph with parameter β, average
degree d̄ and maximum expected degree M if wi is chosen
by

wi = c(io + i)−1/(β−1), (3)

where c = β−2
β−1 d̄n

1/(β−1) and i0 = n
(

d̄(β−2)
M(β−1)

)β−1

.

C. Assumptions on system parameters

In this paper, we consider social networks with the prop-
erties of a random power law graph with β > 3 (many
graphs have this property, see, e.g., the collaboration graphs
in [16]). We assume that the minimum expected degree is
m = K log(n) where K is a constant greater than 10, and the
maximum expected degree is M , satisfying log2(n) ≪ M ≪√
n. Thus, almost all nodes are in the largest component and

the diameter of the graph is D ≈ logd̃(n) [14].
The transmission time consists of two parts: propagation

delay and file receiving time. The propagation delay is the
time required to receive the first bit since the start of the
transmission. The file receiving time is the time required to
finish the transmission since then. For simplicity, we assume



the file length F is large, and we ignore the propagation delay
in the analysis.

III. ALGORITHM

At some initial time, the file generator (the source) creates
the file, and advertises it on her social network. At any given
time, a node either has the file (active node), knows about
the file and wants it because a social-network neighbor has it
(eager node), or is oblivious to its existence (inactive node).

The algorithm proceeds in three phases. In the Requesting
Phase, eager nodes use their social network to request the file
from active nodes – if knowledge of geographic location is
available, nodes favor (geographically) nearby active nodes.
In the Scheduling Phase, again the social network is used
to schedule a sequence of transmissions whereby each eager
node is assigned a transmission node from which it will obtain
the file. In the Transmission Phase, nodes transmit the file
to their appointed requestors, employing established routing
techniques [7]. This final third phase is conceptually distinct
from the first two phases, and it is important to emphasize
this point here. The routing techniques used are independent
of the social network structure, and follow the multi-hop ad
hoc network protocols described in [7].

A. Algorithm

Our algorithm takes the input as the diameter of the social
network, D, as well as two parameters which we specify: ϵ,
and L, whose roles are as follows. Nodes are allowed to search
for another node in the social network from which to download
the file, at a distance of at most 2ϵD + 1 hops away. Thus
if ϵ = 0, they cannot look beyond a single hop away, and if
ϵ = 0.5, they have access to the entire social network. Thus the
parameter ϵ controls the search depth. The parameter L is used
to exploit geographic proximity: most nodes will download the
file from nodes that are at a geographic distance of at most L.
If nodes have no notion of geography, we set L = ∞, hence
all nodes are within L. Otherwise, we set L to a smaller value.

Given parameters (ϵ,L, D) as described above, the algo-
rithm finds active nodes from which eager nodes can download
the file. This is accomplished through coordination through the
social network. The main idea is the following: eager nodes
send requests to one of their social-network neighbors with
the file. Since a single node may get many such requests, it
does not serve all of them, but rather finds other active nodes
nearby in the social network to serve them, and also enlists
the receiving nodes themselves to forward along the file.

When L is set to a non-infinite value, it may not always
be possible for nodes to obtain the file from geographically
proximate neighbors – for instance, suppose the generator has
no neighbors in her geographic proximity. In such cases, we
allow file transfers that exceed geographic distance L, and
these happen from two or one-hop neighbors on the social
network. We call transfers within geographic distance L, L-
transfers, and all other transfers S-transfers, since they are
near in the social-network distance. Similarly we refer to L-
requests and S-requests.

ALGORITHM 1:
Input: parameter ϵ, distance threshold L, and the diameter

of the social network D.
Requesting Phase: Consider an eager node, x, at time t.
Step 1: Let Nx(t) denote node x’s 2ϵD + 1-neighborhood

in the social-graph at time t. Let NL
x (t) ⊆ Nx(t) be the set

of nodes in Nx(t) that have the file and whose Euclidean
(geographic) distance to x does not exceed L.

Step 2: If NL
x (t) is not empty, x sends an L-request to a

randomly picked node in NL
x (t).

Step 3: If NL
x (t) is empty and the distance from x to the

source on the social-graph is smaller than ϵD+1, then x sends
an S-request to a one-hop neighbor in the social-graph which
has the file.

Step 4: Otherwise, x waits and goes back to step 1 at time
t+ 1.

Scheduling Phase: Consider an active node y. It maintains
two balanced binary trees, an L-tree and an S-tree, constructed
from its L-requests and S-requests, respectively. It builds these
trees by adding requesting nodes sequentially, as the requests
arrive.

When node y receives an L-request, node y adds the eager
node to the L-tree and asks its parent on the tree to deliver
the file, and similarly for S-requests.

Transmission Phase: An eager node waits until the node
designated as its transmitting node in the Scheduling Phase
has the file. It then sets up a wireless transmission, and routes
data through a highway system described in [7]. Note that the
transmitter will have to serve at most 6 nodes: 2 from its own
L-tree, 2 from its own S-tree, and 2 from the tree it joins
when it is an eager node (which could be either an L-tree
or an S-tree). Thus, we divide a time slot into six and each
transmitter serves all nodes in a round robin fashion.

IV. PERFORMANCE ANALYSIS

In this section, we assume nodes can search for an active
node in their 2ϵ logd̃(n) + 1-neighborhood. Here, we set
ϵ < 1/10, thus allowing nodes to search a neighborhood that is
large, but nevertheless a vanishing fraction of the size of the
entire network. Increasing the size of neighborhoods should
allow nodes to find geographically proximate active nodes
more easily. Accordingly, we set L = 8

√
n1−ϵ′ log(n)/σπ

for any ϵ′ < ϵ. Setting ϵ = 0 reduces to the case where
nodes ignore, or are oblivious to, social network geography.
For ϵ > 0, nodes take advantage of knowledge of the social
network.

In the following two theorems, we provide upper and lower
bounds on the file dissemination time, as a function of ϵ.
Even for ϵ = 0, we show that our algorithm’s load-balancing
is enough to achieve dissemination time that scales as

√
n.

Allowing ϵ > 0 enables us to further reduce dissemination
time by an additional factor of nϵ/2, by exploiting geography.
The sketches of the proofs are presented in Section VI, and
the detailed proofs can be found in [17].

Theorem 4: Suppose the source is chosen uniformly at
random from the nodes in the largest component, and the



file length is F . Suppose the parameter L is set as described
above. Then the file dissemination time under Algorithm 1
with parameter 0 ≤ ϵ < 0.1 is

O(
√
n1−ϵ′ log2.5(n)F ), (4)

for any ϵ′ < ϵ with high probability.
Remark 5: Significantly, our algorithm can be applied to

more general social network structures as long as we set an
appropriate parameter L. For example, given a graph G with
diameter ℓmax and maximum degree dmax. If nodes are only
allowed to search for the file from one-hop neighbors, i.e.,
nodes can not exploit geography, we can set L = ∞. Thus,
the file dissemination time is O(

√
n log(dmax)ℓmaxF ) with a

proof following immediately from the proof of Theorem 4.
We next give an algorithm independent lower bound in the

following theorem. To prove the lower bound, we place no re-
strictions on computation or communication overhead. More-
over, we make (overly) optimistic assumptions throughout in
order to guarantee a bound. For instance, we assume nodes
only download from their nearest social-network neighbors.
We show in the next theorem that our results are comparable
to the lower bound.

Theorem 6: Consider the file dissemination problem under
the setting described above. Let F be the file length. Then,
for any algorithm that only allows nodes to download the file
from their 4ϵ logd̃(n)+2-neighborhoods, the file dissemination
time is lower bounded by

Ω(n1/2−2ϵ−ξF ), (5)

with high probability for any ξ > 0.

V. CONCLUSIONS

In this paper, we consider a simple, low-overhead file
dissemination algorithm that exploits peer-to-peer capabilities
of many smartphones and similar devices, and, critically,
exploits the social network that spreads knowledge of the
file. We give a load-balancing algorithm that uses the social
network to schedule transmissions so that spatial-capacity of
the ad hoc network is exploited without creating congestion
or hot spots. We show that dissemination time scales like

√
n

– significantly slower than the linear time for WAN. Then, we
show that if nodes have knowledge of geographic position, this
can be exploited to further decrease file dissemination time.
Finally, we show in both cases that our algorithm performs
close to an algorithm-independent lower bound.

VI. SKETCH OF PROOFS

A. Proof for Theorem 4

To show Theorem 4, we need the next two lemmas which
characterize the local behavior of random power law graphs.
Specifically, we are interested in how the size of neighbor-
hoods of nodes in the largest component grows. We show that
for any node in the largest component, the number of nodes
in a small neighborhood grows like a factor d̃ if we explore
one more step. We prove this by providing upper and lower
bounds that only differ by a factor of nξ for any ξ > 0. The

detailed proofs can be found in [17] which are based on some
results in [14].

Lemma 7: Consider a random power law graph satisfying
the assumptions in Section II-C. Then, there are at least σnϵ′

nodes in a node’s ϵ logd̃(n)-neighborhood with probability 1−
o(n−1), for any ϵ′ < ϵ < 0.4 where σ is a constant depending
on β and K.

Lemma 8: Consider a random power law graph satisfying
the assumptions in Section II-C, and suppose we have ϵ < 0.4.
Consider a node either picked randomly or with weight smaller
than W . Then, with probability at least 1 − O(log−1(n)),
for any ϵ′ > ϵ and any fixed constant λ, there are at
most 2Wd̃λnϵ′/ log(n) nodes in this node’s ϵ logd̃(n) + λ-
neighborhood, where

W =

{
logβ/β−3(n) if 3 < β ≤ 4

max{log5/β−4(n), log2(n)} if 4 < β
(6)

Remark 9: 1) These two lemmas show that the size of a
node’s neighborhood increases by a factor roughly equal
to d̃ if we explore the neighborhood one more step. To
understand the intuition, we can look at the expected
increasing factor. Consider a small set S. Let Xi be the
indicator function that node i is a neighbor of the set
S. Then, the expected sum weight of neighbors of S is
roughly

∑
i wiP(Xi = 1). Thus, we have∑

i

wiP(Xi = 1) =
∑
i

wi
wivol(S)

vol(G)

= vol(S)
vol2(G)

vol(G)
= vol(S)d̃.

This shows that the sum of weights of neighbors of S
increases by a factor d̃ in expectation.

2) Notice that the result in Lemma 8 is weaker as the
failure probability is O(log−1(n)) compared to O(n−1)
in Lemma 7. The result is reasonable, because there exist
super nodes (nodes with large expected degree) in power
law graphs. Therefore, one can see the neighborhoods of
nodes close to super nodes are expected to grow much
faster than a factor of d̃.

With the above lemmas of local behavior of random power
law graphs, we provide a sketch of the proof of Theorem 4.
The full details of the proof can be found in [17].
Sketch of the proof of Theorem 4: The proof consists of
three parts. In the first part, we analyze the transmission rates
when all nodes can find a proper active node as described in
Algorithm 1. We next identify a set of potential active nodes
for each node. Finally, we show the theorem by induction.

We first find a lower bound on the transmission rates when
all nodes follow Algorithm 1. Instead of determining the
transmission rates, we estimate an upper bound on the number
of flows through each relaying node. Since each relaying
node adopts TDM to serve all flows, the transmission rates
are lower bounded by the inverse of that upper bound. As
described in Algorithm 1, flows through a relaying node can be
classified into L-transmissions and S-transmissions. Note that



the distance between a transmitter and a receiver of an L-flow
is smaller than 2L. This implies any L-flow passing through
the relaying node must have either a transmitter or a receiver in
a strip of area Θ(L) which is the responsible service rectangle
described in [7] for the relaying node. Therefore, at most O(L)
L-flows pass through the relaying node. On the other hand,
the number of S-transmissions through any relaying node is
roughly O(nϵ), since the receivers of S-transmissions must be
within ϵ logd̃(n) hops from the source on the social network,
and there are at most O(nϵ) such receivers by Lemma 8.
Hence, the total number of flows through any relaying node
is O(L), and the transmission rate is greater than 1/cL for
some constant c.

Now, we have to show that each node can find an active
node satisfying the conditions in Algorithm 1. In fact, we
show that any node x with distance to the source greater than
ϵ logd̃(n) can request to a node y which is both close in the
social-graph and the wireless-square. Specifically, we require
that node y satisfies the following

1) y is in the 2ϵ logd̃(n)+1-neighborhood of x in the social-
graph.

2) The distance from y to the source on the social network
is smaller than that from x to the source.

3) The Euclidean distance from x to y on the wireless-
square is smaller than L.

This holds with high probability, because by Lemma 7 there
are roughly Θ(nϵ) nodes satisfying 1) and 2) above. Since
all nodes satisfying 1) and 2) are placed uniformly on the
wireless-square, we can find a node y satisfying the above
three. An important consequence of the existence of node y is
that nodes at distance k from the source can request to valid
active nodes when all nodes at distance at most k − 1 from
the source have the file.

We now show the theorem by induction on k: the distance
from a node to the source on the social network. Specifically,
let tk be the time all nodes at distance at most k from the
source can receive the file. We show that tk ≤ ck log(n)LF .
Note that the base case clearly holds. We can assume this
is true for tk−1. At time tk−1 all nodes at distance k from
the source are eager and can request to valid active nodes.
Therefore, these nodes have to wait at most log(n) − 1
successful transmissions before starting to receive the file,
because the depth of a binary tree is smaller than log(n).
Hence, tk ≤ tk−1 + c log(n)LF as the transmission rates are
greater than 1/cL, and the theorem follows as the diameter
of the social network is O(log(n)).

B. Proof for Theorem 6

In the following, we provide a sketch of the proof of the
lower bound of file dissemination time (Theorem 6).
Sketch of the proof of Theorem 6: The main idea of the
proof is to show a fraction of the nodes cannot find neighbors
which are close both in the social-graph and the wireless-
square. We show this holds for nodes with expected degree
smaller than 2K log(n). More specifically, for these nodes, we

can conclude that almost all of them have small 4ϵ logd̃(n)+2-
neighborhoods, which leads to the claim. Indeed, by Lemma
8, the size of the neighborhoods is roughly bounded by
2Wd̃2n4ϵ/ log(n). Moreover, by the fact that nodes are placed
uniformly on the wireless-square, with high probability the
distance from a node to its closest neighbor should be greater

than
√

n/2πWd̃2n4ϵ. We finally show that the above claim
holds for almost all nodes simultaneously, by using Cheby-
shev’s inequality to eliminate the dependency between them.

The above analysis suggests that the total sum of bit-meter
products required to finish the file dissemination is roughly
bounded by Ω(n3/2−2ϵF ), since the number of nodes with
expected degree smaller than 2K log(n) is Θ(n). Thus, the
theorem follows by observing that the transport capacity (the
sum of all bit-meter products the system can transmit in a
unit of time) is Θ(n).
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