Towards a Queueing-Based Framework for
In-Network Function Computation

Siddhartha Banerjee
Department of ECE
The University of Texas at Austin
Email: sbanerjee @mail.utexas.edu

Abstract—We seek to develop joint aggregation, routing, and
scheduling algorithms that, for any graph topology and a
large class of functions, have analytically provable performance
benefits due to in-network computation as compared to simple
data forwarding. To this end, we define a class of functions, the
Fully-Multiplexible functions, which includes several functions
such as parity, k-th order statistic and range, and for which we
can exactly characterize the maximum achievable refresh rate
of the network in terms of an underlying graph primitive, the
min-mincut. In wireline networks, we show that the maximum
refresh rate is achievable by a simple algorithm that is dynamic,
distributed, and only dependent on local information. In the case
of wireless networks, we provide a MaxWeight-like algorithm
with dynamic flow splitting that is shown to be throughput-
optimal.

I. INTRODUCTION

In-network function computation is a fundamental paradigm
that increases the efficiency of sensor networks vis-a-vis con-
ventional data networks. Sensor nodes, in addition to sensing
and communication capabilities, are often equipped with basic
computational capabilities. Depending on the task for which
they are deployed, a sensor network can be viewed as a
distributed platform for computing a specific function of the
sensor data. For example, a sensor network for environment
monitoring may be concerned with keeping track of the aver-
age temperature and humidity in a region. Similarly ‘alarm’
networks, such as those for detecting forest fires, care only for
the maximum temperature. The baseline approach for perform-
ing such tasks is to aggregate all the data at a central node
and then perform off-line computations; the premise of in-
network computation is that distributed computation schemes
can greatly increase the performance of the network. However,
from the perspective of designing network algorithms, in-
network function computation poses a greater challenge than
data networks: the freedom to combine and compress packets,
as long as the desired information is preserved, destroys the
flow conservation laws central to data networks.

Our focus here is to develop a queue-based framework for
function computation in sensor networks, and use it to design
and analyze network algorithms. By network algorithms, we
refer to cross layer algorithms that jointly perform:

1) Aggregating data at nodes via in-network computation.

2) Routing packets between nodes.

3) Scheduling links between nodes for packet transmission.

Piyush Gupta
Mathematics of Networks and Communications
Bell Labs, Alcatel-Lucent
Email: pgupta@research.bell-labs.com

Sanjay Shakkottai
Department of ECE
The University of Texas at Austin
Email: shakkott@mail.utexas.edu

Cross-layer algorithms for data networks are concerned only
with the scheduling and routing aspects. In order to incorporate
aggregation, there is a need for a new framework and algo-
rithms for in-network function computation. Keeping in mind
the lessons learnt from the success of data networks, our aim
is to design algorithms that are dynamic (i.e., the algorithm
should not assume static network parameters, but rather, use
the network state to adaptively learn the network parameters),
robust (i.e., the algorithm adapts to temporal changes in traffic
and network topology), capable of dealing with a large class
of functions (i.e. if the function being computed by the network
changes, then one should only need to make minor changes to
the scheduling and routing algorithms) and applicable to all
network topologies.

Due to the wide range of applications, there are many
existing models for such networks. The pioneering work of
Giridhar and Kumar [1] considers the function computation
problem from the point of view of the capacity scaling for
certain classes of functions. Other papers consider the function
computation problem from the point of view of information
theory [2], [3], communication complexity [4] and capacity for
wired networks [5], characterizing various metrics for func-
tions in terms of properties of the graph, function, etc. These
works take a ‘bottom-up’ approach to the problem and are very
sensitive to system assumptions; in particular, they consider
wireline networks, and focus mainly on obtaining bounds on
the capacity rather than designing network algorithms [4],
[5]. In contrast, Krishnamachari et al. [6] adopt a more ‘top-
down’ approach whereby they formulate models that abstract
out some of the complexity while allowing quantification of
performance gains. Their model does not however allow for
the design of dynamic algorithms.

For data networks, queue-based models have proved to
be an essential tool in developing intuition and designing
algorithms for such systems. Such models have provided
a common framework for understanding various aspects of
network performance such as throughput [7], [8], delay, flow
utility maximization, network utility maximization, etc. (for
an overview, refer to [9]). In addition, these algorithms have
been implemented in real systems [10], including in sensor
networks [11], with good results. However, these algorithms
are designed for data networks, and can not exploit any
potential benefit from in-network computation. In a recent

work, Zhao et al. [12] extend this framework to study fork-and-
join processing networks. However their focus is on resource
partitioning, and they assume fixed routing.

Using fixed routing in a network usually leads to suboptimal
operations as the routes may not be designed to optimize the
network performance; in general, even choosing the single best
fixed route can perform abritrarily worse than with dynamic
routing (see example in Section III). Further, static routing is
not robust to temporal changes in the network. However, intro-
ducing dynamic routing with in-network computation destroys
the flow conservation equations that exist in data networks and
networks with fixed flows, as the flow out of a node depends
both on inflow as well as (dynamic) packet aggregation at
that node. There is a need to come up with new queue-based
frameworks and algorithms for function computation in sensor
networks, and our paper is a step in this direction.

A. Main Contributions

o We identify a class of functions, the Fully-Multiplexible
or FMux functions, for which we provide a tight charac-
terization of the maximum refresh rate with in-network
computation.

o Leveraging the results of Massoulié et al. [13], we outline
a decentralized, throughput-optimal algorithm for FMux
function computation in a wireline network.

o For wireless networks, we develop an alternate algorithm
based on dynamic allocation of routes and MaxWeight-
type scheduling, and show that this is throughput-optimal
for FMux functions.

Note on notation: Throughout the paper, we use calligraphic
fonts (Q, A, etc.) to denote sets and the corresponding capital
letter (@, A, etc.) to denote their cardinality.We also use the
shorthand notation [N] £ {1,2,..., N}.

II. SYSTEM MODEL

At a high level, the system consists of a network of N nodes,
one of which is an aggregator, and the rest sensors. Sensor
nodes are capable of three tasks: sensing the environment,
transmitting to and receiving data from other nodes, and
performing computations on the data. Each sensor periodically
records the state of its local environment, which is assumed
to take values in a finite set. Furthermore, all sensors record
values in a synchronous manner, and the overall purpose of
the system is to repeatedly compute a specific function of
the synchronously generated sensor data, and forward it to
the aggregator. The metric used to quantify the efficacy of
an algorithm is the maximum synchronous rate at which the
sensors can record data such that the required function of the
data can be forwarded to the aggregator in a stable manner!.
This rate is henceforth referred to as the maximum refresh rate
of the network.

Communication Graph: We model the topology of the sensor
network as a directed graph G(N, £) with N nodes with a
designated aggregator a, and L directed links which determine

IBy stability, we refer to the standard queueing notion of finite average
queue backlogs [8], [9]

the connectivity between nodes. Directed link (u,v) € L
represents a communication channel from node v to node v
(in wireline this corresponds to a physical channel, while in
wireless it represents that the nodes are in radio range).
Transmission Model: Following the convention in literature
[8], [13], we consider a continuous time model for wireline
systems, whereas in the case of wireless networks, we assume
that time is slotted?. In wireline networks, we define a vector
of link rates & = {Cm)}(u,v) <> one bit is assumed to traverse
a link (u,v) € £ with a random transit time with distribution
Exponential(cy,). The transit times are independent across
links and across packets crossing the same link.

In the case of wireless networks, in addition to capacity
constraints, there are interference constraints. Z C 2 is
defined to be the set of independent sets, i.e., valid schedules
that obey the interference constraints. Given an independent
set I, c(I) = {cww()}(uv)er is said to be admissible
if the link-rates can be achieved simultaneously in a time
slot. T is the set of all such admissible rate vectors and
is assumed to be time invariant. Further, we assume that
Cuv(I) < Cmax V (u,v) € L,I € Z. Finally, & is said
to be obtainable if & € CH(T'), the convex hull of T'. An
obtainable link-rate vector can be achieved by time-sharing
over admissible link-rate vectors. For details, refer to [14].

Up to this point, the system is identical to one considered
for data networks. Now in order to highlight the unique
features of the model and its connections to a physical sensor
network performing function computation, we consider the
following example. In the process, we also indicate the gains
achievable via in-network computation versus data download
and processing at the aggregator.

Example: Consider a wireline grid of N temperature sen-
sors, with a single aggregator at the center, engaged in
recording the maximum temperature in the area. Each node is
connected to its four immediate neighbors in the grid via links
with a fixed capacity c. Every node senses the temperature
synchronously, and the aggregator desires the MAX of these
synchronous measurements. Suppose the network operates by
transferring all the data to the aggregator, and then calculating
the MAX offline; the maximum rate at which the measure-
ments can be made is then @(%), as all the packets must
pass through one of the 4 links entering the aggregator. On
the other hand, if we allow in-network computation, wherein
nodes on receiving multiple packets can discard all but the
one with highest value, then the network can operate at a
rate of ©(1), as the bottleneck is now the minimum-cut of the
graph (again the 4 links entering the aggregator). In subsequent
sections, we show that for certain functions like MAX, and any
network, the maximum possible refresh rate can be related thus
to minimum-cuts in the network. Further, there are dynamic
algorithms that support rates up to the maximum refresh rate.

2These assumptions are made so that the results presented here align with
existing work, and are not crucial to the analysis. It is possible to convert
either to discrete or continuous time

With this example in mind, we outline the rest of our system

model.
Traffic Model: We consider a symmetric arrival rate, where
each sensor node senses the environment synchronously at a
rate \ (the refresh rate of the network). The aim of network
algorithm design is to support the maximum possible \ while
ensuring that the network is stable.

Suppose the sensor readings take values in a finite set
X (stored by the sensor in a packet of size log, |X|). In
case of wireline networks, sensing is performed (and hence,
packets are generated) synchronously at all nodes following a
Poisson process with rate A. In case of wireless networks, the
arrival process of packets (due to sensing) A;[t] in time slot
t consists of a number of packets per time slot generated in
a synchronous manner , i.e., A;[t] = A;[t] = A[t]Vi,j e N,
and further A[¢] is i.i.d across time. In this case, we define the
refresh rate as A = E[A[t]], and also define Ay,.x to be the
maximum allowed value of Alt].

We associate a set of simultaneously generated packets with
a unique identifier called the round number, which represents
the time when the packet was generated. The arrival of round
r is equivalent to the generation at each node i € [N] of a
packet containing the sensor reading x} € X'. Thus {7 };c(n]
is the collection of variables corresponding to measurements
at all the sensors for round r, and the aim of the network is to
compute a function f({z] };c[n]) and relay it to the aggregator.

Now in order to develop a queueing model, we need a

framework to capture data aggregation operations. As men-
tioned before, our primary goal is to explore the benefits of
in-network computation versus data-download. To this end, we
restrict our attention to a specific class of functions, the FMux
functions, for which we can exactly quantify the gains from
in-network computation. The intuition behind the FMux class
is that these functions support maximum compression upon
aggregation; when two (or more) packets combine at a node,
the resultant packet has the same size as the original packets.
We now define it formally.
Computation Model: We assume that the function f is
divisible [1] (intuitively, this means that for any partition of the
nodes, f can be computed by performing a local computation
over each set in the partition, and then aggregating them
together), and use fj to denote the function operating on k
inputs, i.e., fp : X* — R(f, k), where R(f, k) denotes the
range of function when it takes k inputs.

A function f is said to be Fully-Multiplexible or FMux
if R(f, k) = R(f,7) = R(f) for all j,k € [n]. In other
words, the output of a FMux function lies in the same
set independent of the number of inputs. Some important
examples of FMux functions are range, k-th order statistics,
parity, etc.. As mentioned before, in this work we will focus
on FMux functions as they most clearly exhibit the effects of
in-network computation (in that we have tight bounds for their
refresh rate). However this framework can be extended to a
more general class of functions (Refer to [14] for details).

As a representative example of FMux functions for defining
the queueing model and algorithms, consider the parity func-

tion; X = {0,1}, f({z1,22,...,aN}) =1 B 22D ... DN,
where @ represents the binary XOR operator. Upon sensing,
node 7 stores the value z; as a packet of size log, | X| = 1 bit.
Next, when two or more packets of the same round arrive at
a node, they are combined using the XOR operation. Finally,
the aggregator obtains the parity by taking XOR of all the
packets of a given round that it receives. We now develop a
queueing model for FMux functions.

Queueing Model: Each node maintains a single queue, with
packets corresponding to different rounds (recall this means
that each packet in the queue has a unique time-stamp repre-
senting when it was generated). When a packet corresponding
to round 7 arrives at node ¢ from any other neighboring node, it
is combined with node ¢’s own packet corresponding to round
r to result in a single packet of the same size (using the FMux
property in general, e.g. by taking XOR for parity). In the case
where node ¢ does not have a packet of round 7 in queue, it
needs to store the new packet (see [14] for details).

III. MAXIMUM REFRESH RATE AND TREE PACKING

Given the above system, it is unclear what routing structures
are required for efficient in-network computation. Existing
works assume that routing is done on a single aggregation
tree, where each node aggregates data from its children before
relaying it to its parent. However it’s not a priori evident that
a single optimal tree, or a collection of optimal trees exists (or
indeed that acyclic aggregation structures are sufficient), and
if it does, how it can be found dynamically.

In this section, we derive an algorithm-independent upper
bound on the refresh rate for FMux computation. By focusing
on the flow of information from sensor nodes to the aggregator,
we are able to express the bound in terms of an underly-
ing graph primitive- the min-mincut of the graph. Next we
construct a class of throughput-optimal randomized policies,
thereby obtaining a tight characterization of the maximum
refresh rate. In the process, we show the existence of an
optimal collection of aggregation trees. To understand the
import of this result, consider the following example.

Example: Let G be the complete graph on N nodes, with
every edge having capacity 1. If we use a single aggregation
tree for routing, then the maximum possible refresh rate is 1,
as every edge is a bottleneck. However, by using a collection
of aggregation trees (in fact, it can be shown that a particular
set of V — 1 trees are sufficient), one can achieve a refresh
rate of NV — 1, which matches the min-mincut of the graph.

Given a rate vector ¢ € CH(I') and any node i € N, we
define the min-cut between the node ¢ and the aggregator a as
6;(€) £ mingscnries,ags) > ues,ves Cuv- Further, we define
the min-mincut of the network under rate vector € € CH(T)
as 0*(€) = min;en 0;(€). It can be shown (for details, see
[14]) that for stability, a necessary condition on the refresh
rate 1s:

3> (105 [R(P) ™! max 4 (2). 1)

Now we can use a classical theorem of Edmonds [15] to
derive an algorithm to achieve this rate®. Let 7 be the set
of all directed spanning trees of G aggregating at a (i.e., a
set of directed, acyclic subgraphs such that each node has
a unique directed path to a). The max-spanning-tree-packing
number, A*(G) is defined to be the solution to the following
optimization problem:

Maximize Yorer Ars
subject to YreT (uver Ar < Cuw V(4]) € E,
and Ar >0V 7T,

For such a system, Edmonds’ theorem [15] states that
0*(G) = A*(G), i.e., there exists a tree packing which has the
same weight as the min-mincut of the graph. Using this and
the techniques of Andrews et al. [8], we can construct a static,
randomized throughput-optimal scheme as follows: given the
optimal rate point ¢* from equation 1, we can use Edmonds’
theorem to construct a tree packing, and split the incoming
flow according to that packing to obtain a stable routing (i.e.,
associate each round with an aggregation tree) and scheduling
(using ¢*) algorithm (refer to [14] for details). Combined with
equation 1, this gives the following tight characterization of the
maximum refresh rate of the network. We state this theorem
for wireless networks, as an equivalent theorem for wireline
networks can be obtained as a special case.*

Theorem 1. Consider a network performing in-network com-

putation for an FMux function f. The maximum refresh rate
is defined as:

A* = (logy [R(f)))™" max 6*(&). 2

(logz [R(F))™" max 4"(¢) (2)

Then a refresh rate of A can not be stabilized by any algorithm

if A > X*, and there exists a static, randomized algorithm to
stabilize it if X < *.

The problem with a static algorithm is that it needs prior
calculation of the min-mincut and associated optimal rate
point (to find the optimal aggregation tree packing). A better
alternative is to use queues as proxy for learning these through
dynamic algorithms based on the current system state (similar
to the Backpressure algorithm [7], [8] for data networks). The
rest of the paper deals with developing such algorithms.

IV. SCHEDULING WITH RANDOM PACKET FORWARDING
IN WIRELINE NETWORKS

In this section we give a routing algorithm for wireline
networks based on random packet forwarding with aggre-
gation. This algorithm is based on a remarkable algorithm
for one-to-all network broadcast in wireline networks by
Massoulié et al. [13], which demonstrates that performing
random ‘useful’ packet forwarding by the nodes achieves the
min-mincut bound. We come up with an analogous notion of a
useful packet for in-network aggregation, and thereby obtain a

3 Although Edmonds’ theorem is originally for broadcast, we can modify it
for aggregation by reversing the directions of all edges.

4A similar framework has been studied in [5] for a network-coding based
formulation in wireline networks. There, similar bounds on the refresh rates
have been obtained but no explicit algorithms have been developed.

‘dual’ version of their algorithm applicable to FMux function
computation in wireline networks.

A critical aspect of the broadcast algorithm is that the trace
of a round always follows a spanning tree. For a similar
property to hold in aggregation, one needs to ensure that a
transmitted packet is always aggregated (i.e., combined with
another packet from the same round, e.g., using XOR for
parity), and more importantly, does not isolate’ any other
neighbor’s packet. To this end, we define a packet in node
1 to be useful to neighbor j if (a) j has a packet of the same
round (hence ensuring aggregation); and (b) transferring the
packet to j does not result in an isolated neighbor %k of ¢ (for
details, refer to [14]). The routing algorithm now performs
random useful packet forwarding with aggregation in a work
conserving manner (i.e., whenever a link is idle). Formally we
have:

Input: An idle link (u,v), i.e., a link with no packet
transmitting on it currently.

Step 1: If # useful packets across (u,v), leave link idle.

Step 2: Otherwise, pick a useful packet uniformly at

random and start transmitting.

Algorithm 1: Random useful packet forwarding.

And finally we have the main theorem for the stability of
the algorithm. For the proof, refer to [14].

Theorem 2. Under algorithm 1, the network is sta-
ble if A < (logy |R(f))"16*, where min-mincut 6* =
minges ZUES ZuQS Cuy-

V. SCHEDULING WITH AGGREGATION-TREE ROUTING IN
WIRELESS NETWORKS

The presence of interference in wireless networks necessi-
tates efficient scheduling of independent sets in addition to
routing. Dynamic scheduling in order to achieve the optimal
refresh rate now requires an alternate routing approach, which
we outline here. Unlike the previous section where routing
(over the wireline network) was performed via random packet
forwarding, this algorithm is based on allocating the route to
be followed by the packets of each round, and then scheduling
under these routing constraints. Building on the intuition of
Section III, the routes we use here are aggregation trees. The
algorithm thus consists of two components:

o The routing component maps incoming rounds of packets
to aggregation trees. Once a round is loaded on a tree,
all packets of that round follow the edges of the tree to
reach the aggregator.

e The scheduling component uses the routing information
(aggregation tree) of each packet to determine an optimal
independent set for transmission.

Let 7 be the set of aggregation trees used for routing. The

routing algorithm allocates each incoming packet to a tree, and
we define A7[t] to be the resultant arrivals on tree 7. Before

5 A packet is said to be isolated if none of its neighbors have a packet from
the same round, thus preventing aggregation of this packet.

specifying the general algorithm, we first define the queueing
dynamics for a single aggregation tree. Given an aggregation
tree and a round of packets constrained to be routed along it,
we impose that a node only transmits a packet belonging to
that round after aggregating all the packets from its children
on that tree (analogous to non-isolation in random packet for-
warding). Each node ¢ on an aggregation tree 7 thus maintains
two queues:- Q'“[t] corresponding to unaggregated packets
(i.e., those waiting for same round packets from children nodes
of ¢ on 7), and Q] “[t] corresponding to aggregated packets
(i.e., those which have aggregated all corresponding packets
from children nodes of ¢ on 7). When node i receives packets
corresponding to round r from all its children nodes, it shifts
an aggregate round r packet (e.g., taking XOR for parity) from
the unaggregated queue to the aggregated queue.

The routing is performed using a greedy tree-loading policy,

wherein all incoming rounds in a time slot are loaded on the
tree with smallest sum queue. Formally, we have:

Input: Time slot ¢, queues { Q" [t], Q7 *[t|}ienr reT,
incoming rounds.
Step 1: Calculate W, =),/ (Q7[t]) for all 7 € 7.
Step 2: Find the minimum loaded tree 7*[¢] as:
T*[t] = arg min W [t].
Step 3: Assign all incoming rounds to aggregation tree
7* and store the packets in the appropriate queues.

Algorithm 2: Greedy tree-loading algorithm.

The scheduling algorithm is similar to the MaxWeight
policy [8], in that it picks a maximum independent set with
weights given by the product of the rate and the maximum
queue across an edge. Formally we have:

Input: Time slot ¢, queues {Q; “[t], Q7 [t|}ien reT,
incoming packets .4;[t], admissible rate region T

Step 1: Place packets arriving on tree 7 at node ¢ in

Q7""[t] for non-leaf nodes, and Q['*[¢] for leaf nodes.

Step 2: Calculate P;;[t] = max,e7.(; j)er QF [t]. Also

define 7(4,) as the tree which maximizes P;;[t].

Step 3: Compute schedule c*[t] as:

c*[t] = arg max Z P;;[t]ci;t].
(i,5)eL
Step 4: Consider link (i, j). If ¢j;[t] > 0, then transmit
the first min(c?;[t], Q77 [#]) packets from Q79" [¢].

17 i

Algorithm 3: MaxWeight scheduling algorithm.

Finally we have a theorem stating the throughput-optimality
of this algorithm. The proof is given in [14].

Theorem 3. The dynamic queue based policy consisting of
greedy tree loading (Algorithm 2) and MaxWeight scheduling
(Algorithm 3) stabilizes the system for any refresh rate \ that
is less than the maximum refresh rate *.

VI. CONCLUSIONS

We have presented a queue-based framework for in-network
function computation, and used it to gain insights into de-
signing dynamic algorithms for such systems, and quantify
the gains over data-download. For wireline networks, we
have extended the random routing scheme of Massoulié et
al. [13] for aggregation. For wireless networks, we have
provided a fixed-routing via dynamic flow splitting along with
MaxWeight-like scheduling that is shown to be throughput-
optimal. The results have been presented for a specific class
of functions (the FMux functions). For extensions to a more
general class of functions, refer to [14].

ACKNOWLEDGMENTS

This work was supported in part by AFOSR under grant
FA9550-09-1-0317 and by NSF under grants CNS-0519535,
CNS-0721380 and CNS-0964309.

REFERENCES

[1] A. Giridhar and P. R. Kumar, “Computing and communicating functions
over sensor networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 23, no. 4, pp. 755-764, 2005.

[2] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Transactions
on Information Theory, vol. 47, no. 3, pp. 903-917, 2001.

[3] N. Ma, P. Ishwar, and P. Gupta, “Information-theoretic bounds for
multiround function computation in collocated networks,” CoRR,
vol. abs/0901.2356, 2009.

[4] H. Kowshik and P. R. Kumar, “Optimal computation of symmetric
boolean functions in tree networks,” in IEEE International Symposium
on Information Theory — ISIT 2010, 1IEEE, July 2010.

[5] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: Cut-set bounds,” IEEE Transactions
on Information Theory, vol. 57, no. 2, pp. 1015-1030, 2011.

[6] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data
aggregation in wireless sensor networks,” in Proc. the 26th IEEE
Internat. Conf. Distributed Computing Systems, pp. 575-578, 2002.

[7]1 L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 4, pp. 1936-1948, December 1992.

[8] M. Andrews, K. Kumaran, K. Ramanan, A. L. Stolyar, R. Vijayakumar,
and P. Whiting, “Scheduling in a queueing system with asynchronously
varying service rates,” Probability in Engineering and Informational
Sciences, vol. 14, pp. 191-217, 2004.

[9] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and

cross-layer control in wireless networks,” Foundations and Trends in

Networking, vol. 1, pp. 1-144, 2006.

U. Akyol, M. Andrews, P. Gupta, J. D. Hobby, 1. Saniee, and A. L.

Stolyar, “Joint scheduling and congestion control in mobile ad-hoc

networks,” in Proc. IEEE Infocom., pp. 619-627, 2008.

S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali, “Routing

without routes: the backpressure collection protocol,” in Internat. Work-

shop on Inform. Processing in Sensor Networks, pp. 279-290, 2010.

H. Zhao, C. H. Xia, Z. Liu, and D. Towsley, “A unified modeling

framework for distributed resource allocation of general fork and join

processing networks,” in Proc. Ann. ACM SIGMETRICS Conf., 2010.

L. Massoulié, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Random-

ized decentralized broadcasting algorithms,” in Proc. IEEE Infocom.,

pp- 1073-1081, 2007.

S. Banerjee, P. Gupta, and S. Shakkottai, “Towards a queueing-based

framework for in-network function computation,” tech. rep., 2010.

http://arxiv.org/abs/1105.5651.

J. Edmonds, “Edge-disjoint branchings.” in Combinatorial Algorithms,

1972.

[10]

[11]

[12]

[13]

[14]

[15]

