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Abstract

Geographic routing with greedy relaying strategies havenbagidely studied as a routing scheme
in sensor networks. These schemes assume that the nodepdréae information about the location
of the destination. When the distance between the sourcedesiihation is normalized to unity, the
asymptotic routing delays in these schemeﬁ(rg—v\[}—n)), whereM (n) is the maximum distance traveled
in a single hop (transmission range of a radio).

Three scenarios are consideré¢:where nodes have location errors (imprecise GR§)where
only coarse geographic information about the destinagavailable, such as the quadrant or half-plane
in which the destination is located, arfiii) where only a small fraction of the nodes have routing
information. In this paper, it is shown that even with suctpigtise or limited destination-location
information, the routing delays a@(ﬁ). Further, routing delays of this magnitude can be obtained
even if only a small fraction of the nodes have any locatidarimation, and other nodes simply forward
the packet to a randomly chosen neighbor.

Finally, the throughput-capacity is derived for network#improgressive routing strategies that take
packets closer to the destination in every step, but notssacity along a straight-line. Such a routing
strategy could potentially lead to spatial “hot spots” ie tmetwork where many data flows intersect at
a spatial region (a node or group of nodes), due to “sub-@btinnutes with increased path-lengths. In
this paper, it is shown that the effect of hot spots due to egjve routing does not reduce the network
throughput-capacity in an order sense. In other words,htteighput-capacity with progressive routing

is order-wise the same as the maximum achievable througtgpacity.
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. INTRODUCTION

The availability of cheap wireless technology and the emrmcg of micro-sensors based
on MEMS technology will enable the ubiquitous deploymentsehsor networks [25], [1],
[5]. Applications for sensor networks include robust conmmication, intrusion detection and
commercial applications involving macro-scale measurgmand control. Such networks are
characterized by the absence of any large-scale estatlisfrastructure, and nodes cooperate
by relaying packets to ensure that the packets reach thspective destinations.

A popular routing algorithm for sensor network that has besstely studied is geographic
routing [12], [13], [11], [6]. The main idea is to forward aqket to a node that is closer to the
final destination than the current packet position (a grefedyarding strategy). When greedy
forwarding fails (due to dead-ends or routing loops), ale routing methods such as perimeter
routing, or route discovery based methods (using floodirmyereen proposed [13], [12].

In practice, greedy algorithms could operate with impreas erroneous routing information.
For instance, consider a situation where the nodes only khewjuadrant or the half-plane on
which the final destination is. A node could theandomlyforward the packet to an arbitrary
node that is in that direction. As another example, suppdusentodes have the correct destination
coordinates. However, the GPS at nodes are erroneous (asiblydiased), as a result of which
packets are routed in the wrong direction.

In this paper, we study the routing delay and throughput cpaf geographic routing with
limited or erroneous destination-location informatiorelgd/ is measured by hop-count to the

destination, see also [4]).

A. Main Contributions

We consider a large-scale network where nodes are deploygdaaunit region. Each node’s
maximum transmission range is scaled @$n) = K./(logn/n), for someK > 1. For K
large enough, and large enough, results in [8], [24] ensure that straight lioeting (greedy
geographic routing) is possible without recourse to facating (the “loop-around” strategy
employed when straight-line routing fails due to dead ends)

We first consider the case where nodes have precise destinaiprdinates. However, we

assume that the GPS at nodes are imprecise. We model thisbyiag that each routing step
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Fig. 1. Random routing

has an angular errbthat is random. In other words, nodes attempt to performdyretraight-
line routing. However, due to the angular error, the pacgkdbiwarded to a random node that
is in some sector within angles, and ¢, (illustrated in Figure 3).

We then consider the case where nodes have limited destinaformation. In particular, we
consider the case where each node has only a coarse estirmath -as quadrant or half-plane
information. In other words, each node has a coordinateesy$a local notion of ‘North’) that
need not be common to all nodes. All that each node knows tshiedocal quadrant in which
the destination lies (or the half-plane in which the destomalies). In each of these cases, the
routing strategy that is adopted is to simply forward thekpad¢o a randomly selected node in
the appropriate quadrant (or the half-plane).

We also consider the case where only a small fraction of tldesidiave any routing infor-
mation at all. Most nodes simply forward the packet to a ramgicselected neighbor. A small
fraction of the nodes have quadrant information (as dismisarlier). This could be distributed by
some gossip mechanism [17], [14], where nodes forwardmgutiformation, but also forget this
information after some time. We consider a simple model eleenode has routing information
with some fixed probability € (0, 1), in which case, it routes to the appropriate quadrant and

other-wise randomly routes the packet to an arbitrary rimgh

"Note that by expressing the position of a node in polar coateis, the radial component of the error will not affect gapbic
routing; however the angular component could point in thengrdirection. Thus, we model GPS errors by randomness in the

angular component.
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Finally, we consider the throughput-capacity in networtis the special case gfrogressive
routing strategiesvhere the packets are transported closer to their destitgain each step, but
not necessarily along a straight-line. Such a routing egsatcould potentially lead to spatial
“hot spots” in the network where many data flows intersect apatial region (a node or
group of nodes), due to “sub-optimal” routes with increapath-lengths. For example, consider
Figure 1(a)(i). Withn randomly placed source-destination pairs and straiglet#louting, it has
been shown in [8] that the throughput-capacity per soussthalation pair scales a$\/m.
However, with the same source-destination pairs, if we usengerfect routing strategy where
the path length is increased loyly a constant facto(non-straight-line routing), it is possible
to have spatial hot-spots where multiple paths intersem (Sigure 1(a)(ii)), thus decreasing
throughput-capacity in an order-wise sense (the througpeuflow could reduce to as low as
1/n if sufficiently large number of flows pass through the saméorgg In this paper, we show
that the effect of hot spots due to progressive routing dae¢seaduce the network throughput-
capacity in an order sense. In other words, the throughgodaty with progressive routing is
order-wise the same as the maximum achievable througlgmaedy.

The main contributions in this paper are the following:

(i) We show that the time to reach the destination with eromiseangular information or limited
information (quadrant information) is within a constanttfa of straight-line greedy routing.
We derive upper and lower bounds on the routing delay whiehagymptotically tight (in

(i) We show that even in the case where only a fixed fractionh& nodes have routing
information, the routing delay is within a constant factdrstraight-line routing.Thus, this
implies that for any fixegh € (0, 1), we can achieve a delay within a constant factor of the
optimal strategy. The trade-off is that the constant fasttales aslp.

(i) In the delay analysis, we adopt a continuum model of asse network where packets are
routed along points on the plane, and each hop has a stephsizes bounded by/ (n).
In Section VII, we validate the analytical results using glations where the discretization
effects due to node locations are accounted for.

(iv) For networks with progressive routing strategies, evg that although hot spots might

occur, they are not severe enough to reduce the througlayaizity in an order-wise sense.
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We comment that for the strategies considered, supposevthatad a deterministic progress
toward the destination, then it is easy to see that the rgut@iay will be order-wise equivalent
to straight-line routing. For example, in Figure 1(b)(i)packet from source ‘S’ to destination
‘D’ is routed such that the packet’s location at each subsetjhop lies in a sector oriented
toward the final destination in a manner such that there istarméeistic lower-bound on the
progress toward the destination. This leads to an apptepdieterministic upper-bound on the
routing delay.

However, if a deterministic positive step does not occus, ifa Figure 1(b)(ii)), then it is
possible that the delay is significantly larger. It is readda to expect that if the expected
distance is positive (as in (ii)), we should expect the dételye order-wise equivalent to straight-
line routing, with a proportionality constant equal to tmeerse of the mean distance traveled
in every jump. Indeed, this would be true if the progress towhe destination in subsequent
hops were independent and identically distributed (),i.dr such that some form of the law
of large numbers were satisfied. However in our case, ther@ssg(the difference between
|S_D)| and |E| in Figure 1(b)(ii)) at subsequent hops are neither indepetfichor identically
distributed. In fact, the mean progress gets smaller as weepd towards the destination and
the sequence is correlated. We show that even under thesensitances, we can upper and
lower bound the projections of subsequent steps by a seguahic.d random variables, and

use these i.i.d.variables to derive asymptotically tightifds on the routing delay.

B. Related Work

There has been considerable interest in greedy geogramitiog and the associated recovery
mechanisms to route around dead-ends [13], [12], [15],,[@8]well as its applications [21].

The idea that approximate information may be sufficient wiaeraway from the destination,
has been explored in the context of mobile ad hoc networK&d} the authors propose the Fish-
eye state routing, where nodes exchange link state infoomatith a frequency that depends on
the distance from the destination. The idea that nodes fay &@m the destination requires less

precise information has been exploited in [3], where théaist propose lazy update mechanisms

2However, as discussed earlier, it is not clear even in thég dfthe throughput-capacity is unchanged in an order séfise

prove in Section VI that the throughput-capacity does natrese in an order sense.
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for routing tables. In [6], the authors exploit such an dffgcthe context of mobile nodes
to propose Last Encounter routing, where mobile nodes rdmertheir last encounter time
and location with other nodes. They show that with sufficierdbility, such schemes result
in a performance that is within a constant factor of the loase routing. In the context of
geographic routing, [2] have proposed a routing protocoergha set of embedded (circular)
geographic routing zones are defined about the destindtiagach zone, a packet travels along
a greedy path toward the center of the next-level zone (detigtircle about the destination).
When it enters the next level zone, a course correction sc@urd the packet is routed in a
greedy manner toward the center of the next-level zone. ,Tédmishe packet gets closer to the
destination, more detailed information is available, lrgdo a sequence of course corrections.
Using simulations, the authors have shown that such a scle@e efficient routing protocol
for large-scale networks.

In [18], the authors formulate the local topology knowledgeded for optimal energy efficient
geographic routing using an integer linear program, anghgse Partial Topology Forwarding
Routing. Related work also includes geographic routindhietcalization errors (where a node
does not know its own position precisely). In [10], the aushehow using simulations that
localization errors of less that 0.4 times the transmissaaiius does not impact the performance
of greedy forwarding in geographical routing. In [22], theteors study the effect of localization
errors on face routing. They first derive failure modes waballization errors (such as routing
loops, cross links, and excessive edge removals). Nextgusimulations, the authors in [22]
argue that even a 10% localization error can significantlyaot the performance of face routing
(perimeter routing). However, when the sensor network s4arge, it has been shown in [8],
[24] that with high probability, greedy routing will sucagdi.e., recovery mechanisms such as
face routing will be required with small probability). Inishpaper we study such large-scale
sensor networks, and analyze the performance of randorgeegraphic routing algorithms
with limited information. We show that the delay with sucthemes is asymptotically (order-
wise) equivalent to straight-line (greedy) routing. We reta¢erize the throughput capacity for
the special case of progressive routing schemes, and sladwhéére is no loss in capacity due
to such routing schemes.

In Section Il, we describe the system model. In Section$viignd V, we derive the delay

asymptotics for routing with imprecise and limited infortio@. In Section VI, we derive the
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Fig. 2. Routing as a hopping process

achievable throughput for progressive routing schemesshoa that it is order-wise equivalent

to the upper bound on throughput capacity. Finally, in $ectill, we present simulation results.

[I. SYSTEM DESCRIPTION

We consider a unit region over which sensor nodes are deghléyienodes are assumed to have
the same (maximum) transmission range and can transmitytoate within its transmission
radius. The transmission regions are assumed to be cirdtdara fixed X' > 1, We suppose

that the common transmission range for all the sensors is
M(n) = K+/(logn/n) (1)

In this paper, we study routing behavior with limited infation in the largen regime (i.e.,

n — oo). From results in [7], [8], such a scaling of the radius (eglently, the peak transmission
power) leads to a sensor network witlmandomly placed nodes being (asymptotically) connected.
Further, from results in [8], [24], foK large enough (but finite), this scaling ensures that sttaigh
line routing (greedy geographic routing) is possible withrecourse to face routing (the “loop-
around” strategy employed when straight-line routingsfaile to dead ends).

For each point ‘A, we define its neighborhood set as the ctibe of points
A = {X € R?*: XAl < M(n)}, )

where|)74| is the Euclidean distance between ‘X’ and ‘A.
In this paper, we ignore the discretization effects due tdenposition (see also [9] for a
similar model). In other words, suppose that a packet attimtdA needs to be transmitted

using geographic routing to the destination at locationa®’in Figure 2. Then, we assume that
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at the next hop, the packet is routed to the point ‘Z’ in Figlrd-or instance, suppose that the
network is a grid network witlm nodes over the unit square (i.% distance between nodes).
Then, in practice, straight-line routing would lead to thelket at ‘A’ being routed to the node
closest to the point ‘Z’. In this paper we ignore this disization error, as this asymptotically
vanishes (the error is at mo\é}%, whereas the transmission radiusli’s\/w, which is
order-wise larger). Note that a similar argument works ewgth randomly located nodes as
long as the node density is large enough. This is becausedarmrdy chosen point will be close
to some node in a dense network. To summarize, we adopt anaanti model of a sensor
network where we route along points on the plane, and eaclhasp step-size that is bounded
by M(n).

We employ a two-tier routing model in this paper. We considare(n) ball about the
destination (see Figure 2). When a packet is within tig ball (which is arbitrarily close to
the destination as increases, i.eg(n) — 0 asn — oo), we assume that nodes have sufficient
routing information to employ straight-line routing. Hoves, for nodes outside thign) ball,
we consider various routing strategies with limited infatran.

Physically, the ball around the destination correspondg®o destination-location advertise-
ment, within which all nodes have sufficient routing knovwgedo employ straight-line routing.
Observe that as long a§n) ~ o(1), only a negligibly small fraction of the nodes in the
network are inside an(n) ball within which nodes require straight-line routing infeation. For
our proofs, we require that(n) is order-wise larger than a hop step si¥gn) to overcome
edge effects. Thus, we choose a ball size(@f) = n~'/* in this paper (we use the parameter
1/4 for notational convenience; our proofs work for any radibattis order-wise larger than a
hop step-sizell(n)).

With this setup, let us defin@ ™ (i) to be the Euclidean distance traveled towards the
destination in the' step (and when the transmission rangeVi$n)). We define the routing

delay(n) for this strategy as follows

7(n) =sup {j : ZY(”)(Z’) <d—e(n)}, (3)

whered is the Euclidean distance between the source and the déstinghus,r(n) represents
the hitting time corresponding to a path entering ¢be) ball, when the transmission radius is

M (n). We say that a routing strategyhas an order-wise straight-line routing delay if the random
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variabler, (n) = @(m), as this is (order-wise) the number of steps required for deterministic
jumps of sizeM (n) to reach the destination a unit distance away along a striighpath.

Note that queueing delay has been ignored, and our defirofigelay is a hop-count based
metric (see also [4]). As has been argued in [4], ignoringuguey delays allows to focus
on the network induced delay as opposed to delay due to swatedluctuations. Also, we
comment that the continuum model does not take directly tate account the media access
time-delay. It has been shown in [4] that the the packet détagasured in time) in a network
with a large number of flows (see Section VI for the model d&tas proportional tdhop-count
x throughput per flowjf media access delay is taken into account. Thus, the haptcand
throughput-capacity together capture the delay and thmpuigcharacteristics of the network. In
this paper, for the throughput-capacity calculations, ime@dcess has been explicitly taken into
account in Section VI by reverting to a discrete model. Fentin Section VII, we validate the
analytical results we derive in this paper using simulaiarere the discretization effects are

accounted for.

[1l. A NALYSIS OF ROUTING WITH SECTORINFORMATION

In this section, we consider the situation where all nodeswkithe destination location
perfectly, but have imprecise GPS information about thaisifoons. This error in position
contributes to an angular error in the direction of the aedgton. Hence, when the node wishes
to transmit, the choice of neighbor is not along the corréeation to the destination, but in a
sector within angles$o,, ¢-] corresponding to the error in angular information. The iigsed
sector AFC is a sector contained between the angles).], such that for a randomly chosen
point (L, «) from the sectorE(L cosa) > 0.

Consider Figure 3. Let the packet be currently at the poihtatAthe i** step and wish to
travel to the destination ‘O’. An error in location is mathatically equivalent to stating that the
next hop location is randomly chosen (with an uniform dimition) as any point in the sector

AFC. The neighbor subset from which we choose our relay nedee setA /() 4,,6.), Where

AM(n),61,62) = {X € Ay 1 01 < (LXA - ZOA) < ¢2}. (4)

SWe denoteg(n) = O(f(n)), if there exists positive constants and c» such that for alln large enoughp < ¢ <

9(n)/f(n) < co.
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We have assumed that the radial distance of the hop is alstmmgnand not deterministically
equivalent toM (n). The randomness in the radial distance (per hop) models abkarpower
selection at the node. The analysis in this paper can betlgiregtended to the case when
the radial distance is deterministic (or any other givertritistion). Y ™) (i) is the Euclidean
distance traveled towards the destination in #igump. By definition,Y ™) (i) = |O—,>4| — \O—é\.
We denote the polar co-ordinates of this jump as the [@&iP (i), o (i)), whereL™ (i) = |AB]
anda™ (i) = ZOAB. Now, let us consider the delayn) for this routing scheme. The packet's

source is A and the destination O wmﬁ\ = 1 for notational simplicity.

Definition 3.1: We define a random sequenggn),n = 1,2, ...} to be asymptotically almost
surely (a.a.s) bounded by another random sequébee,n = 1,2,...} if 3N, > 0 such that
for all n > Ny, a(n) < b(n) a.s.

In the rest of the paper, we denote sequereds)} and {b(n)} satisfying Definition 3.1 by
a(n) <b(n) (a.a.s).

We shall now show in Theorem 3.1 that the delay for this schisrmoéthe order of straight-line
routing. To prove Theorem 3.1, we will need to prove the folltg Lemma.

Lemma 3.1 (A Limit theorem for Triangular Arraysifor any fixed K > 1, let M(n) =
K+/(logn/n). Consider a triangular array of bounded i.i.d. (independe identically dis-
tributed) random variabIeXZ.("), 1 < i <n. Then,

1
M(n)

lim M (n) Z Xi(") — EX] (a.a.s)

n—oo

Proof: We have

+P (M(n) > X" _pX < —e). (5)
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By the Chernoff Bound, we have

1
M(n)

P(M(n) Y X" - EX > e) < exp MO
i=1

where I(¢) is the non-negative rate function for the bounded randonebk. Applying the
bound toL.H.S of equation (5),

1
M (n)

P(1M() 30 X~ BEX| > €) < 2exp !0
i=1

Also,

. — 11 N log i
2 M(i) < M) = Ky —.
S e <, (i) = 6\

i=1
Thus, by Borel-Cantelli's Lemma,

_1
1}1_{1010 M(n) Ji”) XZ-(n) — EX (a.s).
=1
[

It can be shown that the sequence of random varia{ﬂ@@} are not i.i.d., but are history
dependent. Thus, we first upper and lower bound these randoiables by sequence of i.i.d.
random variables, and a sequence of error terms.

Lemma 3.2:Let (S, «) be the polar co-ordinates of any point B within a circle ofiusdn,

with center A. Let O be any point on the plane such qh?m > (m+¢€). Lete > 0 Then,

S2 — —
Scosa — — < |OA| —|OB| < Scosa
€

Proof: The proof is presented in the Appendix. [ ]
Using the bound in Lemma 3.2, we now derive the main result.
Theorem 3.1:Let (L, «) be the polar coordinates of a uniformly chosen point from @ae
within angles/¢,, ¢2] and unit radius. Let = E(L cos(«)) Then,V positivecy, ¢z : ¢; < % < ¢,
% log?n) s7(n) < % logTzn)
Proof: Recall thatY (™) (i) is the distance traveled towards the destination inithestep.

(a.a.s).0

For a packet located at ‘A’ at time-stép(see Figure 3), and the next hop position being ‘B’,
our routing model implies that ™ (i) = |OA| — |OB|.
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From Lemma 3.2, we have, for all< 7(n), the foIIowing equations.

i{”” ) cos o) (i) - L(n } ZY (6)
i ZL(" cos ™ (i). (7)

Defining L™ (i) = L(() and substituting in equations (6,7), we have

ZL(" ) cos a™ (7)— 8)

Z Y™ (4) M(n) Z L™ () cos a™ (i) (9)

We observe thaf{ L™ (i )cosa(” (4)}7_, are a sequence of i.i.d. random variables, with the
expected valueZ{ L™ (i) cos o™ (i)} = 3, such that) < 3 < 1.
Upper Bound:To prove the bounds for the hitting time, let us suppose thatcaim 7(n) <

2~ Vg > (a.a.s) is not true. Then, there exists a subsequencé = 1,2, ... such that

1
M(n) B
T(ng) > M(n 7 Note that, from (3), this implies that

]
M(ny,)

vty <1, k=12, (10)
i=1

However, from (8), (which holds for all < 7(n)), we have

_c2
Mng)

M (ny,) Z L) Cosa("")( ) —

co c
IVI(nk) 2 M(ny)

< Z Y m)( (11)

By substitutingX™ = L™ (i) cos a(™ (i) in Lemma 3.1 and noting that almost sure convergence
along a sequence implies an almost sure convergence aleng ¥sequence, it follows from

Lemma 3.1 that .
M(ny)

M (ny) Z L) (7) cos ™) (i) — o8, eoff > 1, (12)
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c
92
¢
A o
Fig. 3. A sector with bias.
as E(L™) (i) cos a™)(i)) = B.
Moreover, sincel,(") < 1 and %
TCap) 2 (C)
ng N
9 L) () 9 1
M(n < (M(n : 13
(M (n)) 20 ) (M (n4)) 2 o) (13)
and .
) M(ny,) 1
M(n — 0. 14
(0™ 2 s (14)
From equations (11,12,13 and 14) we héve, .., EW”’” () (7) > 1, which contradicts (10).
Thus we have shown that(n) < ey Ve > E (a.a.s).

Lower Bound:To prove the lower bound, we need this additional conswuactFor eachn,
let us augment the sequence of random variabl&s(i), 1 < i < n, as follows. Once a packet
has entered the(n) ball about the destination, we start a new packet from thecsoto the
destination. Thus we define a sequence of random variableg:) for all <. These random
variables generate the sequencel6f (i) cos o™ (1), Vi.

Let us assume that the lower bounth) > Tty Ve < % (a.a.s). is not true. Observe that
T(n) > m Then, there exists a subsequengeK = 1,2,... such that for some € (1, ¢),

M (ng)T(ng) — 7. (15)

Let W(n) = We observe that

M(n

=
3

7( k)
’ Z L) (7) cos o™ (7) — L) (7) cos o™ (i)

=1
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< )w<nk> - T<nk>)M<nk>. (16)

Thus, we have

T(ng)

1= Z y () ( Z L) (7) cos o™ (7) <

k)

A

10 (3) cos o™ (4) + ’W(nk) ()| M (n). (17)

=
3

1=1

Now applying Lemma 3.1 and equation (15) to (17), we get

W(ng)
L) i) cos ™) (7)) — r < 1, (18)
=1

‘W(nk) — ()| M () — 0. (19)

This contradicts our assumption tial () y () (7) = 1. Thus, by contradiction, we have shown

thatt(n) > -2~ Ve <

i) a.a.s). u

5(
Thus, this result implies that for large enoughthe delay with random angular error leads is

equal to-—— which is clearly the same order as that with straight-lingtiray, with the scaling

5M(
constant inversely proportional to the expected value efgitojection of each step on the line

joining the source and destination.

IV. ROUTING WITH QUADRANT INFORMATION

In the previous section, we had shown that even with GPS ,etlner routing delays were
within a constant factor of greedy straight-line routing. this section, we assume that there
is some mechanism that provides coarse geographic infmmabout the destination, such as
the quadrant or half-plane in which the destination is ledatUnder such a scenario, we derive
bounds on the routing delays. We show that even in an advarsande of choosing the local
guadrants, the routing delay is within a constant factor tcdight-line routing. Consider the
following routing strategyl, (see Figure 4). The node ‘A contains a packet at#fiestep that
needs to be routed to the destination ‘O’. The strategy a&dbistto randomly forward the packet
to a randomly chosen point ‘B’ from the correct quadrant.

Further, all nodes need not have the same coordinate syBtninstance, suppose that ‘A
only knows that the final destination is locally to the ‘Nokl¥est’ (with respect to its own

coordinate system). Let us denote the offset between the'siéacal coordinate system and
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Fig. 4. Adversarial Quadrants - where O’ and O” corresponthéopossible “worst-case” directions of the destination.

the true direction of the destination by a random variahléVe will consider two caseq(i)
the offsetx is assumed to be uniformly distributed within the quadramig (i) an adversarial
scenario wheres is chosen to be the worst-case at each hop, i.e., along thefotine local
coordinate axes that minimizes the distance traveled thwes destination (see Figure 4).

Let the polar representation of ‘B’ béé"’(i),aé")(i). The neighbor subset from which the

relay node is chosen is given by
A vy = {Node X € Ay : Kk — g < L(ﬂ) < Kk}

We first consider the case where the angle ZOAC' is assumed to be uniformly distributed
in [0, 7]. This is equivalent to picking a node ‘B’ from a semicirculFC (¢, = 5, ¢2 = 5
in Figure 3) with a probability distribution

1 T |042‘ e
sz’a2:Z2T Z<M7|Oég| <§
2

As before , let the source be a unit distance away from therdeisin. Let us define the

(20)

hitting time for the path to hit the(n) ball around the destination ag(n) in the first scenario
(uniform k), andr3(n) in the adversarial scenario. The following theorem prosidbeunds for

the hitting time in both these scenarios.
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Theorem 4.1: (i). Uniformly random: Let (L, as) be the polar representation of a point
chosen from a semicircular secte(< a, < 3) of a unit circle, with a probability distribution
fL.,.0, @S in (20). Letdy = E(Lycosaz). Then, for all positivers, cg @ c5 < 5—12 < ¢, We have
2/ T < m(n) < ¢ o8 () (a.a.s).

(i). Adversarial choice of quadrantd:et (L3, ) be the polar representation of a point chosen

randomly from a quadrant containing the destination, where the angle with respect to the

local quadrant. Letds = FE(Lsmin(cos~y,sinv)). Then for all positivec : é < ¢, we have
m3(n) < & o0 (a.a.s).

Proof: (i). Uniformly randomk: Consider any node B in the semicircle AFC in Figure 4(b).
For any step < m»(n), we have the following bounds faf (™ (i), the distance traveled towards

the destination in theé’" step. The following bounds are similar to equations (6) afjd (

7" (i) = |OA| - |OB|, (21)
.l " 1) "
LY (i) cos al™ (i) — i (75)) < ZM ()
< L8 (i) cos o™ (i). (22)

The rest of the proof is analogous to Theorem 3.1, where Wetiwlleﬁg") for L™, 15(n) for
7(n), Z™ for Y™, a, for a and 3, for 3. The details are skipped for brevity.

(ii). Adversarial choice of quadrantdrom Figure 4(a), it is clear that once a node ‘B’ is
selected, the distance traveled towards the destinationingnized if the destination O was
along either O’ or O”, whichever is more unfavorable. Thiue tistance traveled towards the

destination in theé' step is bounded below by
2

. L (4)
. (n) . (n) N 3
min {L3 (1) cosy"™ (7) )
P () (1)’
2(n) o\ win ()Y Ly (i) < 7 (;
L3" (1) sin "™ (7) ) } < Z™(1). (23)
By arguments similar to Theorem 3.1, we can show théat) < cm (a.a.s). u

The quadrant information can be replaced by half-planeri&tion and still lead to a delay
that is within a constant factor of straight-line routingthe uniform x assumption is made.
However, half-plane information is not sufficient for ordeise straight-line routing delay in an

adversarial scenario.
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V. ROUTING WITH FRACTIONAL INFORMATION

In this section, we consider the case where only a smallifnractf the nodes have any routing
information at all. Most nodes simply forward the packet tcaadomly selected neighbor. A
small fraction of the nodes have routing information (eitheadrant information, or GPS infor-
mation with errors). Such routing information could be disited by some gossip mechanism
(routing table updates) [17], [14], where nodes forwardirguinformation, but also could clear
routing tables after some time. We do not explicitly moded thynamics of such messaging.
Instead, we adopt the following simple model for routing.

We assume that each point has routing information (eithpregise GPS, or quadrant informa-
tion) with a fixed probability € (0, 1), independent of any other event. With probabilityp, the
next hop location is uniformly chosen from a circle of radiugn) about the current location
(i.e., random routing). In this section, we explicitly derithe results only for the quadrant
routing strategy. Analogous results hold when only a faactf the nodes have imprecise GPS
information. With such a strategy, let us denote the eveat the i'* hop location contains
quadrant informatichby E(i). As before, we normalize the distance between the source and
destination, and denote the routing delay under the syratiegcribed above by the random
variabler,(n).

Theorem 5.1:Let 3, be defined as in Theorem 4.1. Then for all positive: : ¢; < — < ¢,

B2

we have
1 n n

aJ o <rm)< ©
K\ log(n) = "7 = K\l log(n)
Proof: Let Q™ (i) be the random distance traveled towards the destinatiomeiii’t step.

Then,

(a.a.s).

Q™ (i) = Z™ (i) g + R™ ()1 geq) (24)

where Z( (i) is the random distance traveled towards destination witliadant information
strategy, and?™(3) is the distance traveled without any information. Let ‘B’ thee next hop
location if eventE(i) occurs, else let the next hop location be ‘B1. L(élﬁ,") (i),a(L")(i)) and
(§,(,”) (i), a(S”) (7)) be the polar coordinates of the nodes ‘B’ and ‘B1’ respegtiveocation ‘B’ is

defined identically to the next hop location in Section IVddacation ‘B1’ is chosen uniformly

“For notational convenience, we suppress explicitly shgwire dependence df(i) onn
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from a circle of radiusM (n) about ‘A. Let us define

P (i) = {L(n () cos a(Ln)( ) — Li(?’i)) Heae +
{507(3) cos oy (i) — Sf;(?fbf Hpeg) (25)

g;n> (i) cos ag” ()1 g (26)
From Lemma 3.2, we have the following bound for ak 7,(n).

P™(i) < QM(i) < T™(i). (27)

Now, let us suppose that
1

M(n)
is not true for some:, > ﬁ. Then, there exists a subsequengek = 1,2,... such that

Tp(ng) > Ok

7,(n) < ¢y (a.a.s.)

co _c2
M(ng) ]\{(nk)

Z P (1) = M(ny) Z {L k) cosaL )( )
i=1

L(nk)( )2 ]M(nk)
—M(ng) ——~ () Hee + M(ng) Z{S(”k )cosoz(s’“‘)(z)
i=1
(”k

The terms on theR.H.S of (28) are a triangular array of i.i.d. random variablestihg that
Sf)”‘“)(i) cosa(s”)(z') is a symmetric random variable with mean zero, the limit af #um in
equation (28) .

M?ik)

lim » P™)(i) = cy8p (29)

n—oo

1=1
which is greater than unity. This contradicts the fact t% was smaller tharm,(n), as the
path has already reached the destination. Hence,

C2 1
Tp(n) < M(n) Veg > e (a.a.s.).
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Similarly, using equation (26) we show that

Vey < L (a.a.s).

() 2 3 o3

VI. THROUGHPUTCAPACITY WITH PROGRESSIVEROUTING

In the previous sections, we had assumed a continuum modelseinsor network for the
analysis of routing delays. To obtain the throughput cdpaeie need to consider individual
nodes and their data-rates. Thus, in this section, we usscete node model of the sensor
network. We assume that thenodes are randomly placed on a unit square, and as before, the
transmission radio range of the nodes)i§n) = K 1"% To avoid technical complications
due to edge effects, we assume that paths wrap around the efiffee unit square. Thus, the
distance between any two nodes is simply the shortest Btrhige path between them (possibly
with wrap-around). The scaling parameters are the same #sicontinuum model. We also
assume the Protocol Model [8] for successful transmissions

Definition 6.1: The transmission protocol is called thpgotocol modelif the transmission
from nodeA to B is successful itl(A, B) < M(n) andd(C;, B) > (1 + A)M(n) for all other
transmitting nodeg’;.

We consideprogressivaouting strategies that ensure that at each step of the, ibeteistance
to the destination decreases by at ledsft(n) for somes > 0. For example, routing with sector
information (considered in Section Ill) will lead to progegdve routing if the transmit power
exceeds a minimum threshold (i.€s, is large enough), and the bias is not large. We assume
that a routing strategy that satisfies this property is useddute setup, and subsequent packets
in each flow (between a source-destination pair) follows thitial path. Further, the routes

are independently setup (across flows). It has been show8] ithdt for routing with straight-

1
vnlogn

throughput capacity with the protocol model is also of thides. However, with the addition of

lines, the throughput capacity 3

), for the protocol model, and the upper bound on the

randomness in routing, the capacity of the network coulddokiced, as discussed in Section |I.
The issue of concern is that the longer routing paths duedadahdom strategies might create
local hot spots (see Figure 1(a)). We show that, for progressuting schemes, such local hot

spots do not affect the throughput capacity in an order-wesgse.
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Theorem 6.1:Consider a unit square, with nodes uniformly distributed, and/2 randomly
chosen source-destination pairs. letbe a progressive routing strategy such that in each hop,

the Euclidean distance to the destination is reducedMyn). Then, under the Protocol Model,

1
vnlogn

routing strategyl.

a data rate of9( ) is simultaneously achievable by every source-transmijitér with

Proof: Consider a uniform tiling of the unit square, by square tikth side of length
M (n). The outline of the proof is as follows:
1) We show that each tile is active (i.e., nodes in the tileadi@ved to transmit) for a fixed
fraction of the time, without being interfered by transnoss from other tiles.
2) Observe that with progressive routing, each route coalkmultiple hops in each tile.
We prove that an uniform upper bound on the number of hops yntilsnsummed over

all routes isO(y/nlogn).

3) Using these results, we show that each route receivesaaratat ofO ( \/nll(m)-

The above statements are proved below.

It is clear from Definition 6.1 that if there is a transmissioom a nodeA; in some square,
other transmissions in neighboring squares can affectréresmissions of4;. However, since
A is a finite positive constant, the numbérof nearby squares that can affect the transmission
is finite. We use this fact to construct a transmission scleethat allows for concurrent spatial
transmissions. The problem is equivalent to a graph cajopiroblem with each vertex having
at most a degree of. Standard results from graph theory indicate that a grapih adegree no
more thanJ can have all its vertices colored hy+ 1 colors such that no two neighbors have
the same color. Thus, we can color the cells with 1 colors such that no two interfering cells
have the same color. We can construct a schedule such thaem gjot is divided into/ + 1
sub-slots and all cells of the same color can successfuhstnit simultaneously.

We assume that the strategy we have allows us to travel andestaf at least M (n) towards
the destination in each jump. Thus, the number of hops reduo reach the destination for any
route is no more tha% hops.

Claim 1: Given that a routing path passes through a square, the nuohtbeps inside the
square is no more thak?2.

Proof: Assume that the required destination is outside the sqiédren, in? steps, we

would have reached closer to the destination by more tam/(n), which would imply that
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we are no longer in the same square. Even if all the intermgdi@ps fell inside the square,
the number of hops cannot be greater thﬁn If the destination was inside the square, it would
have reach the destination with{g@ steps. [ ]
Let X* be a Bernoulli random variable, with* = 1 if the i’ path touched thé&' square.
Observe thatX* is independent oK]l. if i # j (and for anyl, k), as the paths are independently
routed with respect to each other (howev&# and X! are correlated). We now construct a

collection of i.i.d. Bernoulli random variablegf, {1<i<n, 1<k< W with
Tk 1 w.pa(n)
0 wpl—an)

wherea(n) is chosen to satisfy

Total number of squares touched by a path
Total number of squares '

Since theX* and X* are Bernoulli random variables, ad®{ X* = 1) is less thanP(X* = 1)

a(n)

(30)

(by construction, and the definition of(n)), we have thatX? <, X’f, for all 7, k, where <,
denotes stochastic ordering [23].

Since the total number of hops in any path is at n%, we immediately have the following
claim (using the worst-case bound that each hop can be intiaalisquare).

Claim 2: The total number of squares any path can touch is upper bdmw%.
Thus, by choosing

(30) is satisfied. Hence, for eaéhk, X* stochastically dominate¥”. We now use the above
results to provide an upper bound on the maximum number of,Ho@ny square. Observe that

the maximum number of hops in any square can upper boundekebgroduct of

max (number of hops by pathin squarek)
<i<n
1§k1§_1v1_(n)*2

1<k<M(n)~

X { max (number of paths touching squalr;aa}

We defineH (n) by
H(n):@< max ZX{“) (31)
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By Claim 1, ? is an upper bound on the number of hops by any path in any squihee

term (maxlgkg ke S Xf) is an upper bound on the number of paths touching any square.

Thus, H(n) is an upper bound on the maximum number of hops in any square.
Claim 3: H(n) < A(n) almost surelyfor \(n) = £v1osn 4 \/GK log n¥-08n,

Proof:

1
M’(n)E

P< maiin>>\(n)> <(a)

P( i XF > )\(n))

ks M(n)?2 i=1 k=1
<®) P(ZX’f > )\(n))
k=1 =1
1 U
< WP(;Xf > )\(n)) (32)

The first inequality (a) is a union bound on the probabilitgtth (n) > A(n). For the inequality
(b), notice that for any givei, (3", X¥) is a sum of independent random variables, and that
for eachi, k, X stochastically dominate¥*. From Theorem 1.A.3 of [23], we have that for
each fixedk, 32", X¥ stochastically dominates; , X*.
Let X*(n) = 3.7, XF. Now, from [19], we have that for sums of i.i.d Bernoulli ramdo
variables,
P(XHm) > 1+ HE(XH(n)) < e MEE 2, (33)

where E(X*(n)) = "M " and for anys > 0. Setting3 = \/6 logn/E(X*(n)) in (33), we

have

P(X5(n) > B(XH(m)) + /6 lognB(X+(n))) < . (34)

n

Thus, substituting in (32), and for any(n) > &¥niosr 4 \/GK logn¥"%&" we have
1
P(H ) <
(n) > An)) < K?n?logn
The almost sure convergendellows by Borel-Cantelli's Lemma. [ |
We now outline a scheduling strategy for achieving the data-proposed. Consider a time

interval of fixed lengthl’. We divide this time interval” into J 4 1 time-slots, each of duration

T
J+1

colored using/ + 1 different colors such that no two interfering neighborsénéive same color.

From our earlier discussion, each cell has at mbshterfering neighbors, and can be
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Fig. 5. Straight Line Routing - 1000 nodes. The plot in (a)vehthe path of the packet through the unit square; The plot in

(b) shows the number of hops (x-axis) vs the frequency of weoae (y-axis).

In each slot € {1,2, ..., 745}, we schedule transmissions only for cells with the col@enoted

as the active cells in the time-slot). Consider any activeatetime-slott. Within this cell, the

time-slott is further divided intor(n) sub-slots, where(n) is the number of hops inside the

cell. By definition of H(n), r(n) < H(n). From the bound orf{ (n) (from Claim 3) we note

that (n) < Ry/nlogn, for a large enough but finité&. Thus, each hop in any active cell (in

. . . . . 1 . .

time-slott) is guaranteed a transmission tlmem. Since each cell recelveﬁ}ﬁ of the

time-interval T (i.e., each cell is active for a time-interval g%), it follows that each of the
- 1 . - -

hops (inany cell) can support a data-rate of at Iem. This implies that a data-rate

1

(per flow) of orderm is achievable, between every source-destination pair. [ |

VIl. SIMULATION RESULTS FORROUTING DELAY

We have so far assumed a continuum model of nodes in the wmtresgin this section, we
account for the discretization effects, and simulate th@oua scenarios discussed earlier. We
consider a simulation scenario whekenodes are placed uniformly randomly on a unit square.
The source is located &b, 0] and the destination d0.7,0.7] (such that the Euclidean distance
between the source and the destination is one). A histogfattmeorouting delays (number of
hops) from 150 simulations is plotted, along with a samplin par illustration.

The simulations are for a node density = 1000. The geographic greedy routing strategy,
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Fig. 6. Unbiased Sector Routing - 1000 nodes.
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where the relay node is the neighbor node that is closesteaéstination shows an almost

deterministic path length of 7 hops and the correspondingpsa path resembles a straight-line

path from the source to the destination (see Figure 5). Thall srariations in the path length

occur due to the randomness in the node positions. With sabiaectors (of 60 degrees), our

simulation results indicate that the average path lengbauit 11 hops (Figure 6), which is an

increase by a factor predicted in Theorem 3.1 (the constaorfs = 0.636, thus the predicted

March 17, 2005

DRAFT



25

1 T T T T T T T T T 20

0.9

0.8

0.7

0.6

051

0.4

0.3

0.2

0.1

)

0 O‘.l 0.‘2 0‘.3 0‘.4 0‘5 0‘.6 0.‘7 0‘.8 0.‘9 1 5 10 15 20 25 30 35
(a) Sample Path (b) Distribution

Fig. 8. Quadrant based Routing - 1000 nodes.
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Fig. 9. Fractional information: 35% have quadrant inforiorat-1000 nodes.

path length is 11.01 hops). Routing with biased GPS infaonaits considered next, and the
sample path shows some spiraling (Figure 7(a)) due to biasuting, and the average routing
delay is about 15 hops. The quadrant based routing strategymulated next in this setup,
and the results are shown in Figure 8. The sample path is\@tbéo be similar to the sector
routing case, and the average routing delay of 15 hops ismalginally more than the sector

routing strategy. Both of these are again close to that predliiby our analytical results. Routing
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Fig. 10. Straight Line Routing - 10,000 nodes.
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Fig. 11. Unbiased Sector Routing - 10,000 nodes.

with fractional information is simulated by assuming thah@de contains routing (quadrant)
information with a probability ofp = .35. The sample path and the distribution of routing delay
are shown in Figure 9. The routing path is considerably leeiged as most of the nodes do not
contain routing information. The average delay in this dasgpproximately 40 hops, which is
close to the analytically predicted value (42.7 hops, wilsch1 /p factor increase from quadrant
routing). These plots indicate that the random routingtegjias have delays that are comparable

to the greedy geographic routing strategy, as predictedubpyapalysis.
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Fig. 12. Biased Sector Routing- Spiralling drift - 10,000das.
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Fig. 13. Quadrant based Routing - 10,000 nodes.

The simulations are repeated for a larger network with= 10000 nodes. The number of
hops for a greedy geographic routing strategy is about 2&,hapich is about four times as
that in the previous case. The analogous results for the dwgng strategies are displayed in
Figures 10-14. The average fractional routing delay is ad@0 hops (Figure 14(b)), which
is approximately a]lg factor increase from the routing delay for the quadrantinguscheme
(which has an average routing delay of 42 hops). The spialiirift of a routing scheme with

directional bias is also seen in Figure 12.
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Fig. 14. Fractional information: 35% have quadrant infatiora-10,000 nodes.

VIII. CONCLUSION

In this paper, we have presented geographic routing stest@ghere the nodes have erroneous
or limited information about the destination location, drale analyzed the asymptotic routing
delays with such schemes. Our analysis shows that even imitedl destination information
(as in quadrant routing) or erroneous angular informatibe,routing delays are order-wise the
same as straight-line routing. Simulation results indictat the discretization effects due to
node locations are small, and there is a good match betweesithulation results and that
predicted by our analysis. We finally have shown that for {hec&l case of progressive routing
strategies that carry the packet closer to the destinatiach hop, the capacity is order-wise

the same as a straight-line routing strategy.

APPENDIX. PROOF OFLEMMA 3.2

Proof: Consider Figure 15. Let B be any point inside the circle, atdJd, o) be the polar
representation of the point. It is clear from the figure thdt = OA + AB. Now, we have
— —
|OA? — |OBJ

(OA| - |0B| = ——=—1
\OA\HOB\

(35)
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Fig. 15. Geometric interpretation of the problemBAO = «.

Where|(7>4| - |(ﬁ?>| is the distance traveled towards the destinatiom that jump. Substituting
for OB in (35), we obtainOA| — |OB|
 |OAP — [|OA]? + |AB? — 2|AB||OA cos o]

— — ) (36)
|OA| + |OB|
—

_ 2S5|0A|cosa — 5? (37)
|OA| + 0B

When |OA| — |[OB| > 0, we have thaRS|OA|cosa — S? is positive. In order to obtain a
lower bound onOA| — [OB]|, we replace the denominator of (37) by a larger quantity.dden
by replacing|OA| + |OB| with 2|OA|, we obtain

52 <2S|O—z>4|cosoz—52_ e =

Scosa — —= < — |OA| — |OB|. (38)
200A| ~  |OA|+ OB
Next, in the case wher)A| — |OB| < 0, we have that the terSI2Alesa=S" is 4 negative

|OA|+|OB|
guantity (this follows from the equality in (37)). Thus, inder to get a lower bound, we replace

|0A| + |OB| by two times the smaller of the two terms, i.2|0A| (because in this case,
|0A| < |OB|). Hence we have that

25|O_1>4| cosa — 52 < 25|@)l| cosa — 52

2|0A| |OA| + |OB|
Thus, asS? > 0 ande < |O_,>4|, from (37), (38) and (39), we have
S2 — —
Scosa— — < |OA| —|OB]. (40)
€

For the upper bound, consider the vec®B. Since the projection of a vector in any other

direction reduces its magnitude, we have that

0A
0B > |OB'@' (41)
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Thus,

— — — — @)l
|0A| — |OB| < |0A| - \OB.ﬁ| (42)

We notice that the term on the right of (42) is indeg€dos o (see Figure 15). Hence, we have

the following upper bound on the distance traveled in a jump.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

|(T4| — |O—B>| < Scosa.
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