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Abstract

Geographic routing with greedy relaying strategies have been widely studied as a routing scheme

in sensor networks. These schemes assume that the nodes haveperfect information about the location

of the destination. When the distance between the source anddestination is normalized to unity, the

asymptotic routing delays in these schemes areΘ( 1
M(n) ), whereM(n) is the maximum distance traveled

in a single hop (transmission range of a radio).

Three scenarios are considered:(i) where nodes have location errors (imprecise GPS),(ii) where

only coarse geographic information about the destination is available, such as the quadrant or half-plane

in which the destination is located, and(iii) where only a small fraction of the nodes have routing

information. In this paper, it is shown that even with such imprecise or limited destination-location

information, the routing delays areΘ( 1
M(n) ). Further, routing delays of this magnitude can be obtained

even if only a small fraction of the nodes have any location information, and other nodes simply forward

the packet to a randomly chosen neighbor.

Finally, the throughput-capacity is derived for networks with progressive routing strategies that take

packets closer to the destination in every step, but not necessarily along a straight-line. Such a routing

strategy could potentially lead to spatial “hot spots” in the network where many data flows intersect at

a spatial region (a node or group of nodes), due to “sub-optimal” routes with increased path-lengths. In

this paper, it is shown that the effect of hot spots due to progressive routing does not reduce the network

throughput-capacity in an order sense. In other words, the throughput-capacity with progressive routing

is order-wise the same as the maximum achievable throughput-capacity.
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I. INTRODUCTION

The availability of cheap wireless technology and the emergence of micro-sensors based

on MEMS technology will enable the ubiquitous deployment ofsensor networks [25], [1],

[5]. Applications for sensor networks include robust communication, intrusion detection and

commercial applications involving macro-scale measurements and control. Such networks are

characterized by the absence of any large-scale established infrastructure, and nodes cooperate

by relaying packets to ensure that the packets reach their respective destinations.

A popular routing algorithm for sensor network that has beenwidely studied is geographic

routing [12], [13], [11], [6]. The main idea is to forward a packet to a node that is closer to the

final destination than the current packet position (a greedyforwarding strategy). When greedy

forwarding fails (due to dead-ends or routing loops), alternate routing methods such as perimeter

routing, or route discovery based methods (using flooding) have been proposed [13], [12].

In practice, greedy algorithms could operate with imprecise or erroneous routing information.

For instance, consider a situation where the nodes only knowthe quadrant or the half-plane on

which the final destination is. A node could thenrandomly forward the packet to an arbitrary

node that is in that direction. As another example, suppose that nodes have the correct destination

coordinates. However, the GPS at nodes are erroneous (and possibly biased), as a result of which

packets are routed in the wrong direction.

In this paper, we study the routing delay and throughput capacity of geographic routing with

limited or erroneous destination-location information (delay is measured by hop-count to the

destination, see also [4]).

A. Main Contributions

We consider a large-scale network where nodes are deployed over a unit region. Each node’s

maximum transmission range is scaled asM(n) = K
√

(log n/n), for someK > 1. For K

large enough, andn large enough, results in [8], [24] ensure that straight linerouting (greedy

geographic routing) is possible without recourse to face routing (the “loop-around” strategy

employed when straight-line routing fails due to dead ends).

We first consider the case where nodes have precise destination coordinates. However, we

assume that the GPS at nodes are imprecise. We model this by assuming that each routing step
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has an angular error1 that is random. In other words, nodes attempt to perform greedy straight-

line routing. However, due to the angular error, the packet is forwarded to a random node that

is in some sector within anglesφ1 andφ2 (illustrated in Figure 3).

We then consider the case where nodes have limited destination information. In particular, we

consider the case where each node has only a coarse estimate –such as quadrant or half-plane

information. In other words, each node has a coordinate system (a local notion of ‘North’) that

need not be common to all nodes. All that each node knows is that the local quadrant in which

the destination lies (or the half-plane in which the destination lies). In each of these cases, the

routing strategy that is adopted is to simply forward the packet to a randomly selected node in

the appropriate quadrant (or the half-plane).

We also consider the case where only a small fraction of the nodes have any routing infor-

mation at all. Most nodes simply forward the packet to a randomly selected neighbor. A small

fraction of the nodes have quadrant information (as discussed earlier). This could be distributed by

some gossip mechanism [17], [14], where nodes forward routing information, but also forget this

information after some time. We consider a simple model where a node has routing information

with some fixed probabilityp ∈ (0, 1), in which case, it routes to the appropriate quadrant and

other-wise randomly routes the packet to an arbitrary neighbor.

1Note that by expressing the position of a node in polar coordinates, the radial component of the error will not affect geographic

routing; however the angular component could point in the wrong direction. Thus, we model GPS errors by randomness in the

angular component.
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Finally, we consider the throughput-capacity in networks for the special case ofprogressive

routing strategieswhere the packets are transported closer to their destinations in each step, but

not necessarily along a straight-line. Such a routing strategy could potentially lead to spatial

“hot spots” in the network where many data flows intersect at aspatial region (a node or

group of nodes), due to “sub-optimal” routes with increasedpath-lengths. For example, consider

Figure 1(a)(i). Withn randomly placed source-destination pairs and straight-line routing, it has

been shown in [8] that the throughput-capacity per source-destination pair scales as1/
√

n log(n).

However, with the same source-destination pairs, if we use an imperfect routing strategy where

the path length is increased byonly a constant factor(non-straight-line routing), it is possible

to have spatial hot-spots where multiple paths intersect (see Figure 1(a)(ii)), thus decreasing

throughput-capacity in an order-wise sense (the throughput per flow could reduce to as low as

1/n if sufficiently large number of flows pass through the same region). In this paper, we show

that the effect of hot spots due to progressive routing does not reduce the network throughput-

capacity in an order sense. In other words, the throughput-capacity with progressive routing is

order-wise the same as the maximum achievable throughput-capacity.

The main contributions in this paper are the following:

(i) We show that the time to reach the destination with erroneous angular information or limited

information (quadrant information) is within a constant factor of straight-line greedy routing.

We derive upper and lower bounds on the routing delay which are asymptotically tight (in

n).

(ii) We show that even in the case where only a fixed fraction ofthe nodes have routing

information, the routing delay is within a constant factor of straight-line routing.Thus, this

implies that for any fixedp ∈ (0, 1), we can achieve a delay within a constant factor of the

optimal strategy. The trade-off is that the constant factorscales as1
p
.

(iii) In the delay analysis, we adopt a continuum model of a sensor network where packets are

routed along points on the plane, and each hop has a step-sizethat is bounded byM(n).

In Section VII, we validate the analytical results using simulations where the discretization

effects due to node locations are accounted for.

(iv) For networks with progressive routing strategies, we show that although hot spots might

occur, they are not severe enough to reduce the throughput-capacity in an order-wise sense.
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We comment that for the strategies considered, suppose thatwe had a deterministic progress

toward the destination, then it is easy to see that the routing delay2 will be order-wise equivalent

to straight-line routing. For example, in Figure 1(b)(i), apacket from source ‘S’ to destination

‘D’ is routed such that the packet’s location at each subsequent hop lies in a sector oriented

toward the final destination in a manner such that there is a deterministic lower-bound on the

progress toward the destination. This leads to an appropriate deterministic upper-bound on the

routing delay.

However, if a deterministic positive step does not occur, (as in Figure 1(b)(ii)), then it is

possible that the delay is significantly larger. It is reasonable to expect that if the expected

distance is positive (as in (ii)), we should expect the delayto be order-wise equivalent to straight-

line routing, with a proportionality constant equal to the inverse of the mean distance traveled

in every jump. Indeed, this would be true if the progress toward the destination in subsequent

hops were independent and identically distributed (i.i.d.), or such that some form of the law

of large numbers were satisfied. However in our case, the progress (the difference between

|−→SD| and |−−→AD| in Figure 1(b)(ii)) at subsequent hops are neither independent, nor identically

distributed. In fact, the mean progress gets smaller as we proceed towards the destination and

the sequence is correlated. We show that even under these circumstances, we can upper and

lower bound the projections of subsequent steps by a sequence of i.i.d random variables, and

use these i.i.d.variables to derive asymptotically tight bounds on the routing delay.

B. Related Work

There has been considerable interest in greedy geographic routing and the associated recovery

mechanisms to route around dead-ends [13], [12], [15], [16], as well as its applications [21].

The idea that approximate information may be sufficient whenfar away from the destination,

has been explored in the context of mobile ad hoc networks. In[20], the authors propose the Fish-

eye state routing, where nodes exchange link state information with a frequency that depends on

the distance from the destination. The idea that nodes far away from the destination requires less

precise information has been exploited in [3], where the authors propose lazy update mechanisms

2However, as discussed earlier, it is not clear even in this case if the throughput-capacity is unchanged in an order sense. We

prove in Section VI that the throughput-capacity does not decrease in an order sense.
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for routing tables. In [6], the authors exploit such an effect in the context of mobile nodes

to propose Last Encounter routing, where mobile nodes remember their last encounter time

and location with other nodes. They show that with sufficientmobility, such schemes result

in a performance that is within a constant factor of the best-case routing. In the context of

geographic routing, [2] have proposed a routing protocol where a set of embedded (circular)

geographic routing zones are defined about the destination.In each zone, a packet travels along

a greedy path toward the center of the next-level zone (a tighter circle about the destination).

When it enters the next level zone, a course correction occurs, and the packet is routed in a

greedy manner toward the center of the next-level zone. Thus, as the packet gets closer to the

destination, more detailed information is available, leading to a sequence of course corrections.

Using simulations, the authors have shown that such a schemeis an efficient routing protocol

for large-scale networks.

In [18], the authors formulate the local topology knowledgeneeded for optimal energy efficient

geographic routing using an integer linear program, and propose Partial Topology Forwarding

Routing. Related work also includes geographic routing with localization errors (where a node

does not know its own position precisely). In [10], the authors show using simulations that

localization errors of less that 0.4 times the transmissionradius does not impact the performance

of greedy forwarding in geographical routing. In [22], the authors study the effect of localization

errors on face routing. They first derive failure modes with localization errors (such as routing

loops, cross links, and excessive edge removals). Next, using simulations, the authors in [22]

argue that even a 10% localization error can significantly impact the performance of face routing

(perimeter routing). However, when the sensor network sizeis large, it has been shown in [8],

[24] that with high probability, greedy routing will succeed (i.e., recovery mechanisms such as

face routing will be required with small probability). In this paper we study such large-scale

sensor networks, and analyze the performance of randomized-geographic routing algorithms

with limited information. We show that the delay with such schemes is asymptotically (order-

wise) equivalent to straight-line (greedy) routing. We characterize the throughput capacity for

the special case of progressive routing schemes, and show that there is no loss in capacity due

to such routing schemes.

In Section II, we describe the system model. In Sections III,IV and V, we derive the delay

asymptotics for routing with imprecise and limited information. In Section VI, we derive the
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achievable throughput for progressive routing schemes andshow that it is order-wise equivalent

to the upper bound on throughput capacity. Finally, in Section VII, we present simulation results.

II. SYSTEM DESCRIPTION

We consider a unit region over which sensor nodes are deployed. All nodes are assumed to have

the same (maximum) transmission range and can transmit to any node within its transmission

radius. The transmission regions are assumed to be circular. For a fixedK > 1, We suppose

that the common transmission range for all the sensors is

M(n) = K
√

(log n/n) (1)

In this paper, we study routing behavior with limited information in the largen regime (i.e.,

n → ∞). From results in [7], [8], such a scaling of the radius (equivalently, the peak transmission

power) leads to a sensor network withn randomly placed nodes being (asymptotically) connected.

Further, from results in [8], [24], forK large enough (but finite), this scaling ensures that straight

line routing (greedy geographic routing) is possible without recourse to face routing (the “loop-

around” strategy employed when straight-line routing fails due to dead ends).

For each point ‘A’, we define its neighborhood set as the collection of points

AM(n) = {X ∈ R2 : |−−→XA| < M(n)}, (2)

where|−−→XA| is the Euclidean distance between ‘X’ and ‘A’.

In this paper, we ignore the discretization effects due to node position (see also [9] for a

similar model). In other words, suppose that a packet at location ‘A’ needs to be transmitted

using geographic routing to the destination at location ‘O’as in Figure 2. Then, we assume that
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at the next hop, the packet is routed to the point ‘Z’ in Figure2. For instance, suppose that the

network is a grid network withn nodes over the unit square (i.e.,1√
n

distance between nodes).

Then, in practice, straight-line routing would lead to the packet at ‘A’ being routed to the node

closest to the point ‘Z’. In this paper we ignore this discretization error, as this asymptotically

vanishes (the error is at most0.5√
n
, whereas the transmission radius isK

√

(log n/n), which is

order-wise larger). Note that a similar argument works evenwith randomly located nodes as

long as the node density is large enough. This is because a randomly chosen point will be close

to some node in a dense network. To summarize, we adopt a continuum model of a sensor

network where we route along points on the plane, and each hophas a step-size that is bounded

by M(n).

We employ a two-tier routing model in this paper. We consideran ǫ(n) ball about the

destination (see Figure 2). When a packet is within thisǫ(n) ball (which is arbitrarily close to

the destination asn increases, i.e.,ǫ(n) → 0 asn → ∞), we assume that nodes have sufficient

routing information to employ straight-line routing. However, for nodes outside thisǫ(n) ball,

we consider various routing strategies with limited information.

Physically, the ball around the destination corresponds toǫ(n) destination-location advertise-

ment, within which all nodes have sufficient routing knowledge to employ straight-line routing.

Observe that as long asǫ(n) ∼ o(1), only a negligibly small fraction of the nodes in the

network are inside anǫ(n) ball within which nodes require straight-line routing information. For

our proofs, we require thatǫ(n) is order-wise larger than a hop step sizeM(n) to overcome

edge effects. Thus, we choose a ball size ofǫ(n) = n−1/4 in this paper (we use the parameter

1/4 for notational convenience; our proofs work for any radius that is order-wise larger than a

hop step-sizeM(n)).

With this setup, let us defineY (n)(i) to be the Euclidean distance traveled towards the

destination in theith step (and when the transmission range isM(n)). We define the routing

delay τ(n) for this strategy as follows

τ(n) = sup
{

j :

j
∑

i=1

Y (n)(i) ≤ d − ǫ(n)
}

, (3)

whered is the Euclidean distance between the source and the destination. Thus,τ(n) represents

the hitting time corresponding to a path entering theǫ(n) ball, when the transmission radius is

M(n). We say that a routing strategyπ has an order-wise straight-line routing delay if the random
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variableτπ(n) = Θ( 1
M(n)

), as this is (order-wise)3 the number of steps required for deterministic

jumps of sizeM(n) to reach the destination a unit distance away along a straight-line path.

Note that queueing delay has been ignored, and our definitionof delay is a hop-count based

metric (see also [4]). As has been argued in [4], ignoring queueing delays allows to focus

on the network induced delay as opposed to delay due to sourcerate-fluctuations. Also, we

comment that the continuum model does not take directly takeinto account the media access

time-delay. It has been shown in [4] that the the packet delay(measured in time) in a network

with a large number of flows (see Section VI for the model details) is proportional tohop-count

× throughput per flow,if media access delay is taken into account. Thus, the hop-count and

throughput-capacity together capture the delay and throughput characteristics of the network. In

this paper, for the throughput-capacity calculations, media access has been explicitly taken into

account in Section VI by reverting to a discrete model. Further, in Section VII, we validate the

analytical results we derive in this paper using simulations where the discretization effects are

accounted for.

III. A NALYSIS OF ROUTING WITH SECTOR INFORMATION

In this section, we consider the situation where all nodes know the destination location

perfectly, but have imprecise GPS information about their positions. This error in position

contributes to an angular error in the direction of the destination. Hence, when the node wishes

to transmit, the choice of neighbor is not along the correct direction to the destination, but in a

sector within angles[φ1, φ2] corresponding to the error in angular information. The misaligned

sector AFC is a sector contained between the angles[φ1, φ2], such that for a randomly chosen

point (L, α) from the sector,E(L cos α) > 0.

Consider Figure 3. Let the packet be currently at the point ‘A’ at the ith step and wish to

travel to the destination ‘O’. An error in location is mathematically equivalent to stating that the

next hop location is randomly chosen (with an uniform distribution) as any point in the sector

AFC. The neighbor subset from which we choose our relay node is the setA(M(n),φ1,φ2), where

A(M(n),φ1,φ2) =
{

X ∈ AM(n) : φ1 < (∠
−−→
XA − ∠

−→
OA) < φ2

}

. (4)

3We denoteg(n) = Θ(f(n)), if there exists positive constantsc1 and c2 such that for alln large enough,0 < c1 ≤

g(n)/f(n) ≤ c2.
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We have assumed that the radial distance of the hop is also random, and not deterministically

equivalent toM(n). The randomness in the radial distance (per hop) models a variable power

selection at the node. The analysis in this paper can be directly extended to the case when

the radial distance is deterministic (or any other given distribution). Y (n)(i) is the Euclidean

distance traveled towards the destination in theith jump. By definition,Y (n)(i) = |−→OA| − |−−→OB|.
We denote the polar co-ordinates of this jump as the pair(L̂(n)(i), α(n)(i)), whereL̂(n)(i) = |−→AB|
andα(n)(i) = ∠OAB. Now, let us consider the delayτ(n) for this routing scheme. The packet’s

source is A and the destination O with|−→OA| = 1 for notational simplicity.

Definition 3.1: We define a random sequence{a(n),n = 1, 2, . . .} to be asymptotically almost

surely (a.a.s) bounded by another random sequence{b(n),n = 1, 2, . . .} if ∃N0 > 0 such that

for all n > N0, a(n) ≤ b(n) a.s.

In the rest of the paper, we denote sequences{a(n)} and{b(n)} satisfying Definition 3.1 by

a(n) ≤ b(n) (a.a.s).

We shall now show in Theorem 3.1 that the delay for this schemeis of the order of straight-line

routing. To prove Theorem 3.1, we will need to prove the following Lemma.

Lemma 3.1 (A Limit theorem for Triangular Arrays):For any fixedK > 1, let M(n) =

K
√

(log n/n). Consider a triangular array of bounded i.i.d. (independent and identically dis-

tributed) random variablesX(n)
i , 1 ≤ i ≤ n. Then,

lim
n→∞

M(n)

1
M(n)
∑

i=1

X
(n)
i −→ EX1

1 (a.a.s)

Proof: We have

P
(

|M(n)

1
M(n)
∑

i=1

X
(n)
i − EX| > ǫ

)

<

P
(

M(n)

1
M(n)
∑

i=1

X
(n)
i − EX > ǫ

)

+P
(

M(n)

1
M(n)
∑

i=1

X
(n)
i − EX < −ǫ

)

. (5)
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By the Chernoff Bound, we have

P
(

M(n)

1
M(n)
∑

i=1

X
(n)
i − EX > ǫ

)

< exp
− 1

M(n)
I(ǫ)

.

where I(ǫ) is the non-negative rate function for the bounded random variable. Applying the

bound toL.H.S of equation (5),

P
(

|M(n)

1
M(n)
∑

i=1

X
(n)
i − EX| > ǫ

)

< 2 exp− 1
M(n)

I(ǫ)

Also,

2

n
∑

i=1

exp− 1
M(i)

I(ǫ) < ∞, M(i) = K

√

log i

i
.

Thus, by Borel-Cantelli’s Lemma,

lim
n→∞

M(n)

1
M(n)
∑

i=1

X
(n)
i −→ EX (a.s).

It can be shown that the sequence of random variables{Y (n)
i } are not i.i.d., but are history

dependent. Thus, we first upper and lower bound these random variables by sequence of i.i.d.

random variables, and a sequence of error terms.

Lemma 3.2:Let (S, α) be the polar co-ordinates of any point B within a circle of radius m,

with center A. Let O be any point on the plane such that|−→OA| > (m + ǫ). Let ǫ > 0 Then,

S cos α − S2

ǫ
≤ |−→OA| − |−−→OB| ≤ S cos α

Proof: The proof is presented in the Appendix.

Using the bound in Lemma 3.2, we now derive the main result.

Theorem 3.1:Let (L, α) be the polar coordinates of a uniformly chosen point from a sector

within angles[φ1, φ2] and unit radius. Letβ = E(L cos(α)) Then,∀ positivec1, c2 : c1 < 1
β

< c2,

c1

K

√

n

log(n)
≤ τ(n) ≤ c2

K

√

n

log(n)
(a.a.s).2

Proof: Recall thatY (n)(i) is the distance traveled towards the destination in theith step.

For a packet located at ‘A’ at time-stepi (see Figure 3), and the next hop position being ‘B’,

our routing model implies thatY (n)(i) = |−→OA| − |−−→OB|.
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From Lemma 3.2, we have, for allj < τ(n), the following equations.
j

∑

i=1

{

L̂(n)(i) cos α(n)(i) − L̂(n)(i)
2

ǫ(n)

}

<

j
∑

i=1

Y (n)(i), (6)

j
∑

i=1

Y (n)(i) <

j
∑

i=1

L̂(n)(i) cos α(n)(i). (7)

Defining L(n)(i) = L̂(n)(i)
M(n)

and substituting in equations (6,7), we have

M(n)

j
∑

i=1

L(n)(i) cos α(n)(i)− (8)

(

M(n)
)2

j
∑

i=1

L(n)(i)
2

ǫ(n)
<

j
∑

i=1

Y (n)(i)

j
∑

i=1

Y (n)(i) < M(n)

j
∑

i=1

L(n)(i) cos α(n)(i). (9)

We observe that{L(n)(i) cos α(n)(i)}n
i=1 are a sequence of i.i.d. random variables, with the

expected valueE{L(n)(i) cos α(n)(i)} = β, such that0 < β < 1.

Upper Bound:To prove the bounds for the hitting time, let us suppose that our claim τ(n) ≤
c2

M(n)
∀c2 > 1

β
(a.a.s) is not true. Then, there exists a subsequencenk, k = 1, 2, . . . such that

τ(nk) > c2
M(nk)

. Note that, from (3), this implies that

c2
M(n

k
)

∑

i=1

Y (nk)(i) < 1, k = 1, 2, . . . (10)

However, from (8), (which holds for allj < τ(n)), we have

M(nk)

c2
M(nk)
∑

i=1

L(nk)(i) cos α(nk)(i) −

(

M(nk)
)2

c2
M(nk)
∑

i=1

L(nk)(i)
2

ǫ(nk)
<

c2
M(nk)
∑

i=1

Y (nk)(i) (11)

By substitutingX(n)
i = L(n)(i) cos α(n)(i) in Lemma 3.1 and noting that almost sure convergence

along a sequence implies an almost sure convergence along every subsequence, it follows from

Lemma 3.1 that

M(nk)

c2
M(nk)
∑

i=1

L(nk)(i) cos α(nk)(i) → c2β; c2β > 1, (12)
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asE(L(nk)(i) cos α(nk)(i)) = β.

Moreover, sinceL(nk) ≤ 1 and M(n)
ǫ(n)

→ 0, we have

(

M(nk)
)2

c2
M(nk)
∑

i=1

L(nk)(i)
2

ǫ(nk)
<

(

M(nk)
)2

c2
M(nk)
∑

i=1

1

ǫ(nk)
, (13)

and

(

M(nk)
)2

c2
M(n

k
)

∑

i=1

1

ǫ(nk)
→ 0. (14)

From equations (11,12,13 and 14) we havelimk→∞
∑

c2
M(n

k
)

i=1 Y (nk)(i) > 1, which contradicts (10).

Thus we have shown thatτ(n) ≤ c2
M(n)

∀c2 > 1
β

(a.a.s).

Lower Bound:To prove the lower bound, we need this additional construction. For eachn,

let us augment the sequence of random variablesY (n)(i), 1 ≤ i ≤ n, as follows. Once a packet

has entered theǫ(n) ball about the destination, we start a new packet from the source to the

destination. Thus we define a sequence of random variablesY (n)(i) for all i. These random

variables generate the sequence ofL̂(n)(i) cos α(n)(i), ∀i.

Let us assume that the lower boundτ(n) ≥ c1
M(n)

∀c1 < 1
β

(a.a.s). is not true. Observe that

τ(n) ≥ 1
M(n)

. Then, there exists a subsequencenk, K = 1, 2, . . . such that for somer ∈ (1, c1),

M(nk)τ(nk) → r. (15)

Let W (n) = r
M(n)

. We observe that

∣

∣

∣

τ(nk)
∑

i=1

L̂(nk)(i) cos α(nk)(i) −
W (nk)
∑

i=1

L̂(nk)(i) cos α(nk)(i)
∣

∣

∣
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≤
∣

∣

∣
W (nk) − τ(nk)

∣

∣

∣
M(nk). (16)

Thus, we have

1 =

τ(nk)
∑

i=1

Y (nk)(i) ≤
τ(nk)
∑

i=1

L̂(nk)(i) cos α(nk)(i) ≤

W (nk)
∑

i=1

L̂(nk)(i) cos α(nk)(i) +
∣

∣

∣
W (nk) − τ(nk)

∣

∣

∣
M(nk). (17)

Now applying Lemma 3.1 and equation (15) to (17), we get

W (nk)
∑

i=1

L̂(nk)(i) cos α(nk)(i) → r < 1, (18)

∣

∣

∣
W (nk) − τ(nk)

∣

∣

∣
M(nk) → 0. (19)

This contradicts our assumption that
∑τ(nk)

i=1 Y (nk)(i) = 1. Thus, by contradiction, we have shown

that τ(n) ≥ c1
M(n)

∀c1 < 1
β
(a.a.s).

Thus, this result implies that for large enoughn, the delay with random angular error leads is

equal to 1
βM(n)

which is clearly the same order as that with straight-line routing, with the scaling

constant inversely proportional to the expected value of the projection of each step on the line

joining the source and destination.

IV. ROUTING WITH QUADRANT INFORMATION

In the previous section, we had shown that even with GPS error, the routing delays were

within a constant factor of greedy straight-line routing. In this section, we assume that there

is some mechanism that provides coarse geographic information about the destination, such as

the quadrant or half-plane in which the destination is located. Under such a scenario, we derive

bounds on the routing delays. We show that even in an adversarial mode of choosing the local

quadrants, the routing delay is within a constant factor of straight-line routing. Consider the

following routing strategyΨ2 (see Figure 4). The node ‘A’ contains a packet at theith step that

needs to be routed to the destination ‘O’. The strategy adopted is to randomly forward the packet

to a randomly chosen point ‘B’ from the correct quadrant.

Further, all nodes need not have the same coordinate system.For instance, suppose that ‘A’

only knows that the final destination is locally to the ‘North-West’ (with respect to its own

coordinate system). Let us denote the offset between the node’s local coordinate system and
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L i

L i sinγ

cosγ

M(n)

O’

O"

A
B

κ

O

Fig. 4. Adversarial Quadrants - where O’ and O” correspond tothe possible “worst-case” directions of the destination.

the true direction of the destination by a random variableκ. We will consider two cases:(i)

the offsetκ is assumed to be uniformly distributed within the quadrant;and (ii) an adversarial

scenario whereκ is chosen to be the worst-case at each hop, i.e., along the oneof the local

coordinate axes that minimizes the distance traveled toward the destination (see Figure 4).

Let the polar representation of ‘B’ beL(n)
2 (i), α

(n)
2 (i). The neighbor subset from which the

relay node is chosen is given by

Aκ,M(n) = {NodeX ∈ AM(n) : κ − π

2
< ∠(

−−→
XA) < κ}.

We first consider the case where the angleκ = ∠OAC is assumed to be uniformly distributed

in [0, π
2
]. This is equivalent to picking a node ‘B’ from a semicircularAFC (φ1 = −π

2
, φ2 = π

2

in Figure 3) with a probability distribution

fL2,α2
=

1

A

π
2
− |α2|

π
2

z < M, |α2| <
π

2
. (20)

As before , let the source be a unit distance away from the destination. Let us define the

hitting time for the path to hit theǫ(n) ball around the destination asτ2(n) in the first scenario

(uniform κ), andτ3(n) in the adversarial scenario. The following theorem provides bounds for

the hitting time in both these scenarios.
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Theorem 4.1: (i). Uniformly randomκ: Let (L2, α2) be the polar representation of a point

chosen from a semicircular sector (−π
2

< α2 < π
2
) of a unit circle, with a probability distribution

fL2,α2
as in (20). Letβ2 = E(L2 cos α2). Then, for all positivec5, c6 : c5 < 1

β2
< c6, we have

c5
K

√

n
log(n)

≤ τ2(n) ≤ c6
K

√

n
log(n)

(a.a.s).

(ii). Adversarial choice of quadrants:Let (L3, γ) be the polar representation of a point chosen

randomly from a quadrant containing the destination, whereγ is the angle with respect to the

local quadrant. Letβ3 = E(L3 min(cos γ, sin γ)). Then for all positivec : 1
β3

< c, we have

τ3(n) ≤ c
K

√

n
log(n)

(a.a.s).

Proof: (i). Uniformly randomκ: Consider any node B in the semicircle AFC in Figure 4(b).

For any stepi < τ2(n), we have the following bounds forZ(n)(i), the distance traveled towards

the destination in theith step. The following bounds are similar to equations (6) and (7).

Z(n)(i) = |−→OA| − |−−→OB|, (21)

L̂
(n)
2 (i) cos α

(n)
2 (i) − L̂

(n)
2 (i)

2

ǫ(n)
≤ Z(n)(i)

≤ L̂
(n)
2 (i) cos α

(n)
2 (i). (22)

The rest of the proof is analogous to Theorem 3.1, where we substituteL̂
(n)
2 for L̂(n), τ2(n) for

τ(n), Z(n) for Y (n), α2 for α andβ2 for β. The details are skipped for brevity.

(ii). Adversarial choice of quadrants:From Figure 4(a), it is clear that once a node ‘B’ is

selected, the distance traveled towards the destination isminimized if the destination O was

along either O’ or O”, whichever is more unfavorable. Thus, the distance traveled towards the

destination in theith step is bounded below by

min
{

L̂
(n)
3 (i) cos γ(n)(i) − L̂

(n)
3 (i)

2

ǫ(n)
,

L̂
(n)
3 (i) sin γ(n)(i) − L̂

(n)
3 (i)

2

ǫ(n)

}

≤ Z(n)(i). (23)

By arguments similar to Theorem 3.1, we can show thatτ3(n) ≤ c 1
M(n)

(a.a.s).

The quadrant information can be replaced by half-plane information and still lead to a delay

that is within a constant factor of straight-line routing, if the uniform κ assumption is made.

However, half-plane information is not sufficient for order-wise straight-line routing delay in an

adversarial scenario.
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V. ROUTING WITH FRACTIONAL INFORMATION

In this section, we consider the case where only a small fraction of the nodes have any routing

information at all. Most nodes simply forward the packet to arandomly selected neighbor. A

small fraction of the nodes have routing information (either quadrant information, or GPS infor-

mation with errors). Such routing information could be distributed by some gossip mechanism

(routing table updates) [17], [14], where nodes forward routing information, but also could clear

routing tables after some time. We do not explicitly model the dynamics of such messaging.

Instead, we adopt the following simple model for routing.

We assume that each point has routing information (either imprecise GPS, or quadrant informa-

tion) with a fixed probabilityp ∈ (0, 1), independent of any other event. With probability1−p, the

next hop location is uniformly chosen from a circle of radiusM(n) about the current location

(i.e., random routing). In this section, we explicitly derive the results only for the quadrant

routing strategy. Analogous results hold when only a fraction of the nodes have imprecise GPS

information. With such a strategy, let us denote the event that the ith hop location contains

quadrant information4 by E(i). As before, we normalize the distance between the source and

destination, and denote the routing delay under the strategy described above by the random

variableτp(n).

Theorem 5.1:Let β2 be defined as in Theorem 4.1. Then for all positivec1, c2 : c1 < 1
pβ2

< c2,

we have
c1

K

√

n

log(n)
≤ τp(n) ≤ c2

K

√

n

log(n)
(a.a.s).

Proof: Let Q(n)(i) be the random distance traveled towards the destination in the ith step.

Then,

Q(n)(i) = Z(n)(i)1E(i) + R(n)(i)1Ec(i) (24)

whereZ(n)(i) is the random distance traveled towards destination with a quadrant information

strategy, andR(n)(i) is the distance traveled without any information. Let ‘B’ bethe next hop

location if eventE(i) occurs, else let the next hop location be ‘B1’. Let(L̂
(n)
p (i), α

(n)
L (i)) and

(Ŝ
(n)
p (i), α

(n)
S (i)) be the polar coordinates of the nodes ‘B’ and ‘B1’ respectively. Location ‘B’ is

defined identically to the next hop location in Section IV; and location ‘B1’ is chosen uniformly

4For notational convenience, we suppress explicitly showing the dependence ofE(i) on n
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from a circle of radiusM(n) about ‘A’. Let us define

P (n)(i) = {L̂(n)
p (i) cos α

(n)
L (i) − L̂

(n)
p (i)

2

ǫ(n)
}1E(i) +

{Ŝ(n)
p (i) cos α

(n)
S (i) − Ŝ

(n)
p (i)

2

ǫ(n)
}1Ec(i) (25)

T (n)(i) = L̂(n)
p (i) cosα

(n)
L (i)1E(i) +

Ŝ(n)
p (i) cos α

(n)
S (i)1Ec(i) (26)

From Lemma 3.2, we have the following bound for alli < τp(n).

P (n)(i) ≤ Q(n)(i) ≤ T (n)(i). (27)

Now, let us suppose that

τp(n) ≤ c2
1

M(n)
(a.a.s.)

is not true for somec2 > 1
pβ2

. Then, there exists a subsequencenk, k = 1, 2, . . . such that

τp(nk) > c2
M(n)

. Now, along this subsequence,

c2
M(n

k
)

∑

i=1

P (nk)(i) = M(nk)

c2
M(n

k
)

∑

i=1

{L(nk)
p (i) cos α

(nk)
L (i)

−M(nk)
L

(nk)
p (i)

2

ǫ(nk)
}1E(i) + M(nk)

c2
M(n

k
)

∑

i=1

{S(nk)
p (i) cos α

(nk)
S (i)

−M(nk)
S

(nk)
p (i)

2

ǫ(nk)
}1Ec(i) (28)

The terms on theR.H.S of (28) are a triangular array of i.i.d. random variables. Noting that

S
(nk)
p (i) cos α

(n)
S (i) is a symmetric random variable with mean zero, the limit of the sum in

equation (28)

lim
n→∞

c2
M(nk)
∑

i=1

P (nk)(i) = c2βp (29)

which is greater than unity. This contradicts the fact thatc2
M(n)

was smaller thanτp(n), as the

path has already reached the destination. Hence,

τp(n) ≤ c2

M(n)
∀c2 >

1

pβ
(a.a.s.).
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Similarly, using equation (26) we show that

τp(n) ≥ c1

M(n)
∀c1 <

1

pβ
(a.a.s).

VI. THROUGHPUT CAPACITY WITH PROGRESSIVEROUTING

In the previous sections, we had assumed a continuum model ofa sensor network for the

analysis of routing delays. To obtain the throughput capacity, we need to consider individual

nodes and their data-rates. Thus, in this section, we use a discrete node model of the sensor

network. We assume that then nodes are randomly placed on a unit square, and as before, the

transmission radio range of the nodes isM(n) = K
√

log n
n

. To avoid technical complications

due to edge effects, we assume that paths wrap around the edges of the unit square. Thus, the

distance between any two nodes is simply the shortest straight-line path between them (possibly

with wrap-around). The scaling parameters are the same as inthe continuum model. We also

assume the Protocol Model [8] for successful transmissions.

Definition 6.1: The transmission protocol is called theprotocol modelif the transmission

from nodeA to B is successful ifd(A, B) < M(n) andd(Cl, B) ≥ (1 + ∆)M(n) for all other

transmitting nodesCl.

We considerprogressiverouting strategies that ensure that at each step of the route, the distance

to the destination decreases by at leastδM(n) for someδ > 0. For example, routing with sector

information (considered in Section III) will lead to progressive routing if the transmit power

exceeds a minimum threshold (i.e.,K is large enough), and the bias is not large. We assume

that a routing strategy that satisfies this property is used for route setup, and subsequent packets

in each flow (between a source-destination pair) follows this initial path. Further, the routes

are independently setup (across flows). It has been shown in [8] that for routing with straight-

lines, the throughput capacity isΘ( 1√
n log n

), for the protocol model, and the upper bound on the

throughput capacity with the protocol model is also of this order. However, with the addition of

randomness in routing, the capacity of the network could be reduced, as discussed in Section I.

The issue of concern is that the longer routing paths due to the random strategies might create

local hot spots (see Figure 1(a)). We show that, for progressive routing schemes, such local hot

spots do not affect the throughput capacity in an order-wisesense.
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Theorem 6.1:Consider a unit square, withn nodes uniformly distributed, andn/2 randomly

chosen source-destination pairs. LetΨ be a progressive routing strategy such that in each hop,

the Euclidean distance to the destination is reduced byδM(n). Then, under the Protocol Model,

a data rate ofΘ( 1√
n log n

) is simultaneously achievable by every source-transmitterpair with

routing strategyΨ.

Proof: Consider a uniform tiling of the unit square, by square tileswith side of length

M(n). The outline of the proof is as follows:

1) We show that each tile is active (i.e., nodes in the tile areallowed to transmit) for a fixed

fraction of the time, without being interfered by transmissions from other tiles.

2) Observe that with progressive routing, each route could have multiple hops in each tile.

We prove that an uniform upper bound on the number of hops in any tile summed over

all routes isΘ(
√

n log n).

3) Using these results, we show that each route receives a data-rate ofΘ( 1√
n log n

).

The above statements are proved below.

It is clear from Definition 6.1 that if there is a transmissionfrom a nodeAi in some square,

other transmissions in neighboring squares can affect the transmissions ofAi. However, since

∆ is a finite positive constant, the numberJ of nearby squares that can affect the transmission

is finite. We use this fact to construct a transmission schedule that allows for concurrent spatial

transmissions. The problem is equivalent to a graph coloring problem with each vertex having

at most a degree ofJ . Standard results from graph theory indicate that a graph with a degree no

more thanJ can have all its vertices colored byJ + 1 colors such that no two neighbors have

the same color. Thus, we can color the cells withJ +1 colors such that no two interfering cells

have the same color. We can construct a schedule such that a given slot is divided intoJ + 1

sub-slots and all cells of the same color can successfully transmit simultaneously.

We assume that the strategy we have allows us to travel a distance of at leastδM(n) towards

the destination in each jump. Thus, the number of hops required to reach the destination for any

route is no more than 1
δM(n)

hops.

Claim 1: Given that a routing path passes through a square, the numberof hops inside the

square is no more than
√

2
δ

.

Proof: Assume that the required destination is outside the square.Then, in
√

2
δ

steps, we

would have reached closer to the destination by more than
√

2M(n), which would imply that
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we are no longer in the same square. Even if all the intermediary steps fell inside the square,

the number of hops cannot be greater than
√

2
δ

. If the destination was inside the square, it would

have reach the destination within
√

2
δ

steps.

Let Xk
i be a Bernoulli random variable, withXk

i = 1 if the ith path touched thekth square.

Observe thatXk
i is independent ofX l

j if i 6= j (and for anyl, k), as the paths are independently

routed with respect to each other (however,Xk
i and X l

i are correlated). We now construct a

collection of i.i.d. Bernoulli random variables̃Xk
i , {1 ≤ i ≤ n, 1 ≤ k ≤ 1

M(n)2
with

X̃k
i =







1 w.p α(n)

0 w.p 1 − α(n)

whereα(n) is chosen to satisfy

α(n) ≥ Total number of squares touched by a path
Total number of squares

. (30)

Since theXk
i and X̃k

i are Bernoulli random variables, andP (Xk
i = 1) is less thanP (X̃k

i = 1)

(by construction, and the definition ofα(n)), we have thatXk
i ≤st X̃k

i , for all i, k, where≤st

denotes stochastic ordering [23].

Since the total number of hops in any path is at most1
δM(n)

, we immediately have the following

claim (using the worst-case bound that each hop can be in a distinct square).

Claim 2: The total number of squares any path can touch is upper bounded by 1
δM(n)

.

Thus, by choosing

α(n) =
M(n)

δ
,

(30) is satisfied. Hence, for eachi, k, X̃k
i stochastically dominatesXk

i . We now use the above

results to provide an upper bound on the maximum number of hops, in any square. Observe that

the maximum number of hops in any square can upper bounded by the product of


 max
1≤i≤n

1≤k≤M(n)−2

(number of hops by pathi in squarek)





×
[

max
1≤k≤M(n)−2

(number of paths touching squarek)

]

We defineH(n) by

H(n) =

√
2

δ

(

max
1≤k≤ 1

M(n)2

n
∑

i=1

Xk
i

)

. (31)
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By Claim 1,
√

2
δ

is an upper bound on the number of hops by any path in any square. The

term
(

max1≤k≤ 1

M(n)2

∑n
i=1 Xk

i

)

is an upper bound on the number of paths touching any square.

Thus,H(n) is an upper bound on the maximum number of hops in any square.

Claim 3: H(n) ≤ λ(n) almost surely, for λ(n) = K
√

n log n
δ

+
√

6K log n
√

n log n
δ

.

Proof:

P
(

max
1≤k≤ 1

M(n)2

n
∑

i=1

Xk
i > λ(n)

)

≤(a)

1

M(n)2
∑

k=1

P
(

n
∑

i=1

Xk
i > λ(n)

)

≤(b)

1

M(n)2
∑

k=1

P
(

n
∑

i=1

X̃k
i > λ(n)

)

≤ 1

M(n)2P
(

n
∑

i=1

X̃k
i > λ(n)

)

(32)

The first inequality (a) is a union bound on the probability that H(n) > λ(n). For the inequality

(b), notice that for any givenk, (
∑n

i=1 X̃k
i ) is a sum of independent random variables, and that

for eachi, k, X̃k
i stochastically dominatesXk

i . From Theorem 1.A.3 of [23], we have that for

each fixedk,
∑n

i=1 X̃k
i stochastically dominates

∑n
i=1 Xk

i .

Let X̃k(n) =
∑n

i=1 X̃k
i . Now, from [19], we have that for sums of i.i.d Bernoulli random

variables,

P
(

X̃k(n) > (1 + β)E(X̃k(n))
)

≤ e−β2E(X̃k(n))/2, (33)

whereE(X̃k(n)) = nM(n)
δ

, and for anyβ > 0. Settingβ =
√

6 log n/E(X̃k(n)) in (33), we

have

P
(

X̃k(n) > E(X̃k(n)) +

√

6 log nE(X̃k(n))
)

≤ 1

n3
. (34)

Thus, substituting in (32), and for anyλ(n) ≥ K
√

n log n
δ

+
√

6K log n
√

n log n
δ

, we have

P
(

H(n) > λ(n)
)

≤ 1

K2n2 log n
.

The almost sure convergencefollows by Borel-Cantelli’s Lemma.

We now outline a scheduling strategy for achieving the data-rate proposed. Consider a time

interval of fixed lengthT . We divide this time intervalT into J +1 time-slots, each of duration
T

J+1
. From our earlier discussion, each cell has at mostJ interfering neighbors, and can be

colored usingJ + 1 different colors such that no two interfering neighbors have the same color.
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Fig. 5. Straight Line Routing - 1000 nodes. The plot in (a) shows the path of the packet through the unit square; The plot in

(b) shows the number of hops (x-axis) vs the frequency of occurrence (y-axis).

In each slott ∈ {1, 2, ..., T
J+1

}, we schedule transmissions only for cells with the colort (denoted

as the active cells in the time-slot). Consider any active cell at time-slot t. Within this cell, the

time-slot t is further divided intor(n) sub-slots, wherer(n) is the number of hops inside the

cell. By definition ofH(n), r(n) ≤ H(n). From the bound onH(n) (from Claim 3) we note

that r(n) ≤ R
√

n log n, for a large enough but finiteR. Thus, each hop in any active cell (in

time-slot t) is guaranteed a transmission time of 1
R
√

n log n
. Since each cell receives1

J+1
of the

time-intervalT (i.e., each cell is active for a time-interval ofT
J+1

), it follows that each of the

hops (inany cell) can support a data-rate of at least 1
(J+1)R

√
n log n

. This implies that a data-rate

(per flow) of order 1√
n log n

is achievable, between every source-destination pair.

VII. SIMULATION RESULTS FORROUTING DELAY

We have so far assumed a continuum model of nodes in the unit square. In this section, we

account for the discretization effects, and simulate the various scenarios discussed earlier. We

consider a simulation scenario whereN nodes are placed uniformly randomly on a unit square.

The source is located at[0, 0] and the destination at[0.7, 0.7] (such that the Euclidean distance

between the source and the destination is one). A histogram of the routing delays (number of

hops) from 150 simulations is plotted, along with a sample path for illustration.

The simulations are for a node densityN = 1000. The geographic greedy routing strategy,
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Fig. 6. Unbiased Sector Routing - 1000 nodes.
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Fig. 7. Biased Sector Routing- Spiraling drift - 1000 nodes.

where the relay node is the neighbor node that is closest to the destination shows an almost

deterministic path length of 7 hops and the corresponding sample path resembles a straight-line

path from the source to the destination (see Figure 5). The small variations in the path length

occur due to the randomness in the node positions. With unbiased sectors (of 60 degrees), our

simulation results indicate that the average path length isabout 11 hops (Figure 6), which is an

increase by a factor predicted in Theorem 3.1 (the constant factorβ = 0.636, thus the predicted
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Fig. 8. Quadrant based Routing - 1000 nodes.
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Fig. 9. Fractional information: 35% have quadrant information -1000 nodes.

path length is 11.01 hops). Routing with biased GPS information is considered next, and the

sample path shows some spiraling (Figure 7(a)) due to bias inrouting, and the average routing

delay is about 15 hops. The quadrant based routing strategy is simulated next in this setup,

and the results are shown in Figure 8. The sample path is observed to be similar to the sector

routing case, and the average routing delay of 15 hops is onlymarginally more than the sector

routing strategy. Both of these are again close to that predicted by our analytical results. Routing
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Fig. 10. Straight Line Routing - 10,000 nodes.
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Fig. 11. Unbiased Sector Routing - 10,000 nodes.

with fractional information is simulated by assuming that anode contains routing (quadrant)

information with a probability ofp = .35. The sample path and the distribution of routing delay

are shown in Figure 9. The routing path is considerably lengthened as most of the nodes do not

contain routing information. The average delay in this caseis approximately 40 hops, which is

close to the analytically predicted value (42.7 hops, whichis a1/p factor increase from quadrant

routing). These plots indicate that the random routing strategies have delays that are comparable

to the greedy geographic routing strategy, as predicted by our analysis.
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Fig. 12. Biased Sector Routing- Spiralling drift - 10,000 nodes.
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Fig. 13. Quadrant based Routing - 10,000 nodes.

The simulations are repeated for a larger network withN = 10000 nodes. The number of

hops for a greedy geographic routing strategy is about 28 hops, which is about four times as

that in the previous case. The analogous results for the five routing strategies are displayed in

Figures 10–14. The average fractional routing delay is about 120 hops (Figure 14(b)), which

is approximately a1
p

factor increase from the routing delay for the quadrant routing scheme

(which has an average routing delay of 42 hops). The spiralling drift of a routing scheme with

directional bias is also seen in Figure 12.
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Fig. 14. Fractional information: 35% have quadrant information -10,000 nodes.

VIII. C ONCLUSION

In this paper, we have presented geographic routing strategies where the nodes have erroneous

or limited information about the destination location, andhave analyzed the asymptotic routing

delays with such schemes. Our analysis shows that even with limited destination information

(as in quadrant routing) or erroneous angular information,the routing delays are order-wise the

same as straight-line routing. Simulation results indicate that the discretization effects due to

node locations are small, and there is a good match between the simulation results and that

predicted by our analysis. We finally have shown that for the special case of progressive routing

strategies that carry the packet closer to the destination in each hop, the capacity is order-wise

the same as a straight-line routing strategy.

APPENDIX: PROOF OFLEMMA 3.2

Proof: Consider Figure 15. Let B be any point inside the circle, and let (S, α) be the polar

representation of the point. It is clear from the figure that
−−→
OB =

−→
OA +

−→
AB. Now, we have

|−→OA| − |−−→OB| =
|−→OA|2 − |−−→OB|2

|−→OA| + |−−→OB|
, (35)
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Fig. 15. Geometric interpretation of the problem -∠BAO = α.

where|−→OA| − |−−→OB| is the distance traveled towards the destinationO in that jump. Substituting

for
−−→
OB in (35), we obtain|−→OA| − |−−→OB|

=
|−→OA|2 − [|−→OA|2 + |−→AB|2 − 2|−→AB||−→OA| cosα]

|−→OA| + |−−→OB|
, (36)

=
2S|−→OA| cosα − S2

|−→OA| + |−−→OB|
(37)

When |−→OA| − |−−→OB| > 0, we have that2S|−→OA| cos α − S2 is positive. In order to obtain a

lower bound on|−→OA| − |−−→OB|, we replace the denominator of (37) by a larger quantity. Hence

by replacing|−→OA| + |−−→OB| with 2|−→OA|, we obtain

S cos α − S2

2|−→OA|
≤ 2S|−→OA| cosα − S2

|−→OA| + |−−→OB|
= |−→OA| − |−−→OB|. (38)

Next, in the case where|−→OA| − |−−→OB| < 0, we have that the term2S|−→OA| cos α−S2

|−→OA|+|−−→OB|
is a negative

quantity (this follows from the equality in (37)). Thus, in order to get a lower bound, we replace

|−→OA| + |−−→OB| by two times the smaller of the two terms, i.e.,2|−→OA| (because in this case,

|−→OA| ≤ |−−→OB|). Hence we have that

2S|−→OA| cosα − S2

2|−→OA|
≤ 2S|−→OA| cos α − S2

|−→OA| + |−−→OB|
. (39)

Thus, asS2 > 0 and ǫ < |−→OA|, from (37), (38) and (39), we have

S cos α − S2

ǫ
≤ |−→OA| − |−−→OB|. (40)

For the upper bound, consider the vector
−−→
OB. Since the projection of a vector in any other

direction reduces its magnitude, we have that

|−−→OB| > |−−→OB.

−→
OA

|−→OA|
| (41)
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Thus,

|−→OA| − |−−→OB| < |−→OA| − |−−→OB.

−→
OA

|−→OA|
| (42)

We notice that the term on the right of (42) is indeedS cos α (see Figure 15). Hence, we have

the following upper bound on the distance traveled in a jump.

|−→OA| − |−−→OB| ≤ S cos α.
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