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Improved Greedy Algorithms for Learning Graphical Models
Avik Ray, Sujay Sanghavi Member, IEEE and Sanjay Shakkottai Fellow, IEEE

Abstract—We propose new greedy algorithms for learning the
structure of a graphical model of a probability distribution, given
samples drawn from the distribution. While structure learning
of graphical models is a widely studied problem with several
existing methods, greedy approaches remain attractive due to
their low computational cost.

The most natural greedy algorithm would be one which,
essentially, adds neighbors to a node in sequence until stopping;
it would do this for each node. While it is fast, simple and
parallel, this naive greedy algorithm has the tendency to add
non-neighbors that show high correlations with the given node.
Our new algorithms overcome this problem in three different
ways. The recursive greedy algorithm iteratively recovers the
neighbors by running the greedy algorithm in an inner loop, but
each time only adding the last added node to the neighborhood
set. The second forward-backward greedy algorithm includes a
node deletion step in each iteration that allows non-neighbors
to be removed from the neighborhood set which may have been
added in previous steps. Finally the greedy algorithm with pruning
runs the greedy algorithm until completion and then removes all
the incorrect neighbors. We provide both analytical guarantees
and empirical performance for our algorithms. We show that
in graphical models with strong non-neighbor interactions, our
greedy algorithms can correctly recover the graph, where as the
previous greedy and convex optimization based algorithms do
not succeed.

Index Terms—Graphical models, greedy algorithms,
forward-backward algorithms, conditional entropy

I. INTRODUCTION

Graphical models have been widely used to tractably capture
dependence relations amongst a collection of random variables
in a variety of domains, ranging from statistical physics, social
networks to biological applications [2]–[7]. While hard in
general [8], there has been much progress [10]–[12], [14]–
[16] in recent years in understanding the relations between
the sample and computational complexity for learning the
dependence graph between the random variables.

We propose three new greedy algorithms to find the Markov
graph for any discrete graphical model. While greedy algo-
rithms (that learn the structure by sequentially adding nodes
and edges to the graph) tend to have low computational
complexity, they are known to fail (i.e., do not determine
the correct graph structure) in loopy graphs with low girth
[14], even when they have access to exact statistics. This is
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because a non-neighbor can be the best node (having strong
correlation) at a particular iteration; once added, it will always
remain. Convex optimization based algorithms like in [10] by
Ravikumar et al. (henceforth we call this the RWL algorithm)
also cannot provide theoretical guarantees of learning in these
situations. These methods require strong incoherence condi-
tions to guarantee success. But such conditions may not be
satisfied even in simple graphs [16].

Example: If we run the existing algorithms for an Ising
model on a diamond network (Figure 4) with D = 4 the
performance plot in Figure 1 shows that greedy [14] and RWL
[10] algorithms fail to learn the correct graph even with large
number of samples.
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Fig. 1: Performance of different algorithms in an Ising model
on diamond network with 6 nodes (Figure 4 with D = 4,
edge weight θ = .5). Both the Greedy(ϵ) [14] and RWL
[10] algorithms estimate an incorrect edge between nodes
0 and 5 therefore never recovers the true graph G, while
our new RecGreedy(ϵ), FbGreedy(ϵ, α), GreedyP (ϵ) algo-
rithms succeed.

A. Main Contributions

In this paper, we present three algorithms that overcome this
shortfall of greedy and convex optimization based algorithms.

• The recursive greedy algorithm is based on the observa-
tion that the last node added by the simple, naive greedy
algorithm is always a neighbor; thus, we can use the
naive greedy algorithm as an inner loop that, after every
execution, yields just one more neighbor (instead of the
entire set).

• The forward-backward greedy algorithm takes a different
tack, interleaving node addition (forward steps) with node
removal (backward steps). In particular, in every iteration,
the algorithm looks for nodes in the existing set that
have a very small marginal effect; these are removed.
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Inclusion of correct neighbors reduces the influence of
non-neighbors, and in the end all such spurious nodes
get removed leaving us with the correct neighborhood
set.

• Our third algorithm, namely the greedy algorithm with
pruning, first runs the greedy algorithm until it is unable
to add any more nodes to the neighborhood estimate.
Subsequently, it executes a node pruning step that iden-
tifies and removes all the incorrect neighbors that were
possibly included in the neighborhood estimate by the
greedy algorithm.

• We show that all three algorithms can efficiently learn
the structure of a large class of graphical models even
without correlation decay, and when the graph has strong
correlation between non-neighbors. We calculate the sam-
ple complexity and computational (number of iterations)
complexity for these algorithms (with high probability)
under a natural non-degeneracy assumption (Theorems 1
and 2);

• Finally we present numerical results that indicate
tractable sample and computational complexity for loopy
graphs (diamond graph, grid).

B. Related Work
Several approaches have been taken so far to learn the graph

structure of MRF in presence of cycles.
First, search based algorithms like local independence test

(LIT) by Bresler et al. in [11], conditional variation distance
thresholding (CVDT) by Anandkumar et al. in [15] and
conditional independence test by Wu et al. [12] try to find the
smallest set of nodes through exhaustive search, conditioned
on which either a given node is independent of rest of the
nodes in the graph, or a pair of nodes are independent
of each other. These algorithms have a fairly good sample
complexity, but due to exhaustive search they have a high
computation complexity. Also to run these algorithms one
needs to know some additional information about the graph
structure. For example the local independence test needs the
knowledge of the maximum degree of the graph and the CVDT
algorithm needs the knowledge of the maximum size of the
local separator for the graph.

Second, an algorithm with very good sample complexity
using convex optimization was proposed (for Ising models)
in [10] by Ravikumar et. al. This was further generalized for
any pairwise graphical model in [13]. These algorithms try to
construct a pseudo likelihood function using the parametric
form of the distribution such that it is convex and try to max-
imize it over the parameter values. The optimized parameter
values in effect reveal the Markov graph structure. However
these algorithms require a strong incoherence assumption to
guarantee its success. In [16], Bento and Montanari showed
that even for a large class of Ising models, the incoherence
conditions are not satisfied hence the convex optimization
based algorithms fail. They also show that in Ising models
with weak long range correlation, a simple low complexity
thresholding algorithm can correctly learn the graph.

Finally, a greedy learning algorithm was proposed in [14]
which tries to find the minimum value of the conditional

entropy of a particular node in order to estimate its neighbor-
hood. We call this algorithm as Greedy(ϵ). It is an extension
of the Chow-Liu [9] algorithm to graphs with cycles. It was
shown that for graphs with correlation decay and large girth
this exactly recovers the graph G. However it fails for graphs
with large correlation between non-neighbors. A forward-
backward greedy algorithm based on convex optimization was
also presented recently by Jalali et al. in [17], which works for
any pairwise graphical model. This required milder assumption
than in [10] and also gives a better sample complexity.

This paper is organized as follows. First we review the
definition of a graphical model and the graphical model
learning problem in section II. The three greedy algorithms are
described in section III. Next we give sufficient conditions for
the success of the greedy algorithms in section IV. In section V
we present the main theorems showing the performance of the
recursive greedy, forward-backward and greedy with pruning
algorithms. We compare the performance of our algorithm
with other well known algorithms in section VI. In section VII
we present some simulation results. The proofs are presented
in the appendix.

II. BRIEF REVIEW: GRAPHICAL MODELS

In this section we briefly review the general graphical model
and the Ising model [10], [18]. Let X = (X1, X2, . . . , Xp)
be a random vector over a discrete set X p, where X =
{1, 2, . . . ,m}. XS = (Xi : i ∈ S) denote the random
vector over the subset S ⊆ {1, 2, . . . , p}. Let G = (V,E)
denote a graph having p nodes. Let ∆ be the maximum
degree of the graph G and ∆i be the degree of the ith node.
An undirected graphical model or Markov random field is a
tuple M = (G,X) such that each node in G corresponds
to a particular random variable in X . Moreover G captures
the Markov dependence between the variables Xi such that
absence of an edge (i, j) implies the conditional independence
of variables Xi and Xj given all the other variables.

For any node r ∈ V , let Nr denote the set of neighbors of r
in G. Then the distribution P(X) has the special Markov prop-
erty that for any node r, Xr is conditionally independent of
XV \{r}

∪
Nr

given XNr = {Xi : i ∈ Nr}, the neighborhood
of r, i.e.

P(Xr|XV \r) = P(Xr|XNr ) (1)

A graphical model is called an Ising model when the joint
distribution of {Xi} has only pairwise interactions and take
values in the set X = {−1, 1}. For this paper we also consider
the node potentials as zero (the zero field Ising model). Hence
the distribution take the following simplified form.

PΘ(X = x) =
1

Z
exp

 ∑
(i,j)∈E

θijxixj

 (2)

where xi, xj ∈ {−1, 1}, θij ∈ R and Z is the normalizing
constant.
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Algorithm Graph family / Assumptions Sample complexity Computation complexity
Bresler et al. [11] ∆ degree limited, non-degenerate Ω

(
|X |4∆∆log p

)
O

(
p2∆+1 log p

)
CVDT [15] (∆, γ)− local separation Ω

(
|X |2∆(∆ + 2) log p

)
O

(
p∆+2

)
RWL [10] ∆ degree limited, Ising model, dependency, incoherence Ω

(
∆3

C2
min

log p

)
O

(
p4

)
Jalali et al. [13] ∆ degree limited, pairwise graphical model, RSC Ω

(
∆2 log p

)
O

(
p4

)
Greedy [14] ∆ degree limited, large girth, correlation decay, non-degenerate Ω

(
|X |4∆ log p

)
O

(
p2∆

)
RecGreedy ∆ degree limited, non-degenerate Ω

(
|X|2 log |X|/ϵ

ϵ5
log p

)
O

(
p2 ∆

ϵ

)
FbGreedy ∆ degree limited, non-degenerate Ω

(
|X|4 log |X|/((1−α)ϵ)

ϵ5(1−α)α4 log p

)
O

(
p2

(1−α)ϵ

)
GreedyP ∆ degree limited, non-degenerate Ω

(
|X|2 log |X|/ϵ

ϵ5
log p

)
O

(
p2

ϵ

)
Bento and Montanari [16] ∆ degree limited, Ising model, correlation decay Ω

(
∆2

(1−2∆ tanh θ)2
log p

)
O

(
p2

)
TABLE I: Performance comparison between different discrete graphical model learning algorithms in literature. ∆ denotes the
maximum degree of the graph and p is the number of nodes. X is the alphabet set from which a random variable take its
value in the discrete graphical model. ϵ is a non-degeneracy parameter for the graphical model (see Condition (A1) in Section
IV). α is an input parameter to determine the elimination threshold in FbGreedy algorithm (see Section III-B). Cmin is a
dependency parameter in [10]. θ is the edge weight parameter of the Ising model in [16].

The graphical model selection problem is as follows. Given
n independent samples Sn = {x(1), x(2), . . . , x(n)} from the
distribution P(X), where each x(i) is a p dimensional vector
x(i) = (x

(i)
1 , x

(i)
2 , . . . , x

(i)
p ) ∈ {1, . . . ,m}p, the problem is to

estimate the Markov graph G corresponding to the distribution
P(X) by recovering the correct edge set E. This problem is
NP hard and has been solved only under special assumptions
on the graphical model structure. In some cases a learning
algorithm is able to find the correct neighborhood of each
node v ∈ V with a high probability and hence recover the
true topology of the graph. Table I has a brief survey of some
relevant methods for discrete graphical models; the algorithms
RecGreedy, FbGreedy and GreedyP are proposed in this paper
(see Section III for algorithm descriptions).

We describe some notations. For a subset S ⊆ V , we
define P (xS) = P(XS = xS), xS ∈ X |S|. The empirical
distribution P̂ (X) is the distribution of X computed from the
samples. Let i ∈ V − S, the entropy of the random variable
Xi conditioned on XS is written as H(Xi|XS). The empirical
entropy calculated corresponding to the empirical distribution
P̂ is denoted by Ĥ . If P and Q are two probability measures
over a finite set Y, then the total variational distance between
them is given by, ||P −Q||TV = 1

2

∑
y∈Y |P (y)−Q(y)|.

III. GREEDY ALGORITHMS

In this section we describe three new greedy algorithms for
learning the structure of a MRF. First we recall the recent
greedy algorithm proposed by Netrapalli et al. [14]. The
Greedy(ϵ) algorithm finds the neighborhood of node i by
greedily adding nodes to the set N̂(i) which causes the most
decrease in conditional entropy Ĥ(Xi|XN̂(i)). When no more
node addition is possible the set N̂(i) gives the neighborhood
estimate of node i. The high level pseudo-code is shown in
Algorithm 1.

The naive Greedy(ϵ) algorithm suffers from the problem
that in Step 4 node j can be a non-neighbor which produces
the most decrease in conditional entropy, hence gets added
to neighborhood set N̂(i). We now describe our new greedy

Algorithm 1 Greedy(ϵ) [14]

1: for i ∈ V do
2: N̂(i)← ϕ
3: do
4: Find node j ∈ V \N̂(i) for which δj =

Ĥ(Xi|XN̂(i)) − Ĥ(Xi|XN̂(i), Xj) is maximized. Add
node j to N̂(i) if δj ≥ ϵ

2

5: while New node has been added to N̂(i)
6: end for
7: Output edge set E = {(i, j) : i ∈ N̂(j) and j ∈ N̂(i)}

algorithms which overcome this problem using three different
techniques.

A. Recursive Greedy Algorithm

Idea: Consider first the simpler setting when we know
the exact distribution P(X). The naive greedy algorithm
(Algorithm 1) adds nodes to the neighborhood set N̂(i), stop-
ping when no further strict reduction in conditional entropy
H(Xi|XN̂(i)) is possible. This stopping occurs when the true
neighborhood Ni is a subset of the estimated neighborhood
N̂(i). Our key observation here is that the last node to be
added to the set N̂(i) by the naive greedy algorithm will
always be in the true neighborhood Ni, since inclusion of the
last neighbor in the conditioning set enables it to reach the
minimum conditional entropy. We leverage this observation
as follows. We run the naive greedy algorithm as an inner
loop, using a conditioning set T̂ (i); at the end of every run
of this inner loop, we pick only the last node added to T̂ (i)
and add it to the estimated neighborhood N̂(i). The next inner
loop starts with the set T̂ (i) initialized to the current estimated
neighborhood N̂(i), and it proceeds to find the next neighbor.
Hence the algorithm discovers a neighbor in each run of the
innermost loop and finds all the neighbors of a given node i
in exactly ∆i iterations of the outer loop.

The above idea works as long as every neighbor has a
measurable effect on the conditional entropy, even when there
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are several other variables in the conditioning. The algorithm is
RecGreedy(ϵ), high level pseudocode detailed below. It needs
a non-degeneracy parameter ϵ, which is the threshold for how
much effect each neighbor has on the conditional entropy. A
more detailed pseudo-code is given in Appendix B.

Algorithm 2 RecGreedy(ϵ) (High level)

1: for i ∈ V do
2: N̂(i), T̂ (i)← ϕ
3: do
4: Set T̂ (i) = N̂(i)
5: Find node j ∈ V \T̂ (i) for which δj =

Ĥ(Xi|XT̂ (i))−Ĥ(Xi|XT̂ (i), Xj) is maximized. Add node
j to T̂ (i) if δj ≥ ϵ

2 . Repeat till no new node can be added
to T̂ (i)

6: Add the node l last added to T̂ (i) in the previous
step to the set N̂(i)

7: while New node has been added to N̂(i)
8: end for
9: Output edge set E = {(i, j) : i ∈ N̂(j) and j ∈ N̂(i)}

Note that in all our greedy algorithms, in order to maintain
edge consistency in the estimated graph, we output an edge
(i, j) if i ∈ N̂(j) and j ∈ N̂(i). This may lead to spurious or
missing edges when individual neighborhoods are incorrectly
estimated. However we prove that the likelihood of such errors
tend to zero asymptotically with large number of samples
(Theorem 1).

B. Forward-Backward Greedy Algorithm

Our second algorithm takes a different approach to fix the
problem of spurious nodes added by the naive greedy algo-
rithm, by adding a backward step at every iteration that prunes
nodes it detects as being spurious. In particular, after every
forward step that adds a node to the estimated neighborhood
N̂(i), the algorithm finds the node in this new estimated
neighborhood that has the smallest individual effect on the
new conditional entropy; i.e. removing this node from N̂(i)
will produce the least increase in conditional entropy. If this
increase is too small, this node is removed from the estimated
neighborhood N̂(i).

The algorithm, FbGreedy(ϵ, α), is described below (de-
tailed pseudo-code in Appendix B). It takes two input param-
eters beside the samples. The first is the same non-degeneracy
parameter ϵ as in the RecGreedy(ϵ) algorithm. The second
parameter α ∈ (0, 1) is utilized by the algorithm to determine
the threshold of elimination in the backward step. We will see
later that this parameter also helps to trade-off between the
sample and computation complexity of the FbGreedy(ϵ, α)
algorithm. The algorithm stops when there are no further
forward or backward steps.

C. Greedy Algorithm with Pruning

The third algorithm overcomes the problem of non-neighbor
inclusion in the Greedy(ϵ) algorithm by adding a node
pruning step after the execution of the greedy algorithm

Algorithm 3 FbGreedy(ϵ, α) (High level)

1: for i ∈ V do
2: N̂(i)← ϕ
3: do
4: Find node j ∈ V \N̂(i) for which δj =

Ĥ(Xi|XN̂(i)) − Ĥ(Xi|XN̂(i), Xj) is maximized. Add
node j to N̂(i) if δj ≥ ϵ

2

5: Find node l ∈ N̂(i) for which γl =
Ĥ(Xi|XN̂(i)\l) − Ĥ(Xi|XN̂(i)) is minimized. Remove
node l from N̂(i) if γl ≤ αϵ

2

6: while Node is added to or removed from N̂(i)
7: end for
8: Output edge set E = {(i, j) : i ∈ N̂(j) and j ∈ N̂(i)}

(similar to the backward step in FbGreedy(ϵ, α)). In this
algorithm, after running the Greedy(ϵ) algorithm, the pruning
step declares a neighbor node to be spurious if its removal
from the neighborhood estimate N̂(i) does not significantly
increase the final conditional entropy. These spurious nodes
are removed to result in an updated neighborhood estimate
for each node.

The pseudocode of this greedy algorithm with node-pruning
– GreedyP (ϵ) – is given in Algorithm 4. In addition to
the samples, the input is again a non-degeneracy parameter
ϵ similar to RecGreedy(ϵ) and FbGreedy(ϵ, α) algorithms.

Algorithm 4 GreedyP (ϵ) (High level)

1: for i ∈ V do
2: Run Greedy(ϵ) to generate neighborhood estimate

N̂(i)
3: For each j ∈ N̂(i) compute γj = Ĥ(Xi|XN̂(i)\j) −

Ĥ(Xi|XN̂(i)). If γj ≤ ϵ
2 remove node j from N̂(i)

4: end for
5: Output edge set E = {(i, j) : i ∈ N̂(j) and j ∈ N̂(i)}

D. Choice of Parameters

We now briefly describe how the different parameters ϵ, α
are chosen in the greedy algorithms. For real datasets the non-
degeneracy parameter ϵ can be chosen through cross validation
over a labeled training / held out dataset as the value for
which a suitable performance metric is maximized (i.e. the
model best fits the given data). Other graphical model learn-
ing algorithms require similar parameters e.g. regularization
parameter λ in RWL [10] and local separator size η in CVDT
algorithm [15] for recovery. In Figure 2 we plot the cross
validation profile of the greedy algorithms on synthetic dataset
with increasing values of ϵ, and probability of success as the
performance metric. We can see that the greedy algorithms
correctly recover the graph G for a wide range of ϵ hence
is robust to the choice of the parameter. The parameter α in
FbGreedy algorithm can be chosen as any value in (0, 1). We
choose α = .9 in our experiments.
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Fig. 2: Figure showing the cross validation profile of
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
for Ising model in a diamond network with D = 4, θ = .5
and n = 1000 samples. The greedy algorithms can correctly
recover the graph for a wide range of choice of ϵ.

IV. SUFFICIENT CONDITIONS FOR MARKOV GRAPH
RECOVERY

In this section we describe the sufficient condition which
guarantees that the RecGreedy(ϵ), FbGreedy(ϵ, α) and
GreedyP (ϵ) algorithms recover the correct Markov graph G.

A. Non-degeneracy

Our non-degeneracy assumption requires every neighbor
have a significant enough effect. Other graphical model learn-
ing algorithms require similar assumptions to ensure correct-
ness [10], [11], [14].

(A1) Non-degeneracy condition: Consider the graphical
model M = (G,X), where G = (V,E). Then there exists
ϵ > 0 such that for all i ∈ V, A ⊂ V, Ni ̸⊂ A and j ∈ Ni,
j ̸∈ A the following condition holds.

H(Xi|XA, Xj) < H(Xi|XA)− ϵ (3)

Thus by adding a neighboring node to any conditioning set
that does not already contain it, the conditional entropy strictly
decreases by at least ϵ. Also the above condition together
with the local Markov property (1) implies that the conditional
entropy attains a unique minimum at H(Xi|XNi

). Note that
condition (A1) can also be written as I(Xi;Xj |XA) > ϵ,
where I(.) is the mutual information. Expressed in this form
the non-degeneracy condition has an alternative interpretation
as follows. Conditioned on any set A which does not contain
all the neighbors, a neighbor j of node i has a non-zero
information about the distribution of Xi. Condition (A1) is
also necessary for the success of search based algorithms e.g.
CMIT in [15], which exploit the global Markov property to
recover graph G. This is because when (A1) is not satisfied
there exists a set A such that I(Xi;Xj |XA) = 0, hence this set
A is detected as a separator between nodes i and j, therefore
j is not included in the neighborhood of node i.

In Figure 3 we plot how the non-degeneracy parameter ϵ
scales in an Ising model over a diamond network (Figure

4) with varying maximum degree. When the edge weight
parameter θ of the Ising model is small ϵ approximately
scales linearly in 1

∆ . In Section V we will show that for
any graphical model satisfying non-degeneracy condition (A1)
the non-degeneracy parameter ϵ is also upper bounded as
ϵ = O

(
1
∆

)
.
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Fig. 3: Figure showing the variation of non-degeneracy pa-
rameter ϵ for an Ising model over a diamond network with
increasing maximum degree ∆. For smaller values of edge
weight parameter θ the non-degeneracy parameter approxi-
mately scales as ϵ ≈ c

∆ for some constant c.

V. MAIN RESULT

In this section we state our main result showing the
performance of the RecGreedy(ϵ), FbGreedy(ϵ, α) and
GreedyP (ϵ) algorithms. First we state some useful lemmas.
We restate the first lemma from [14], [19] that will be used
to show the concentration of the empirical entropy Ĥ with
samples.

Lemma 1. Let P and Q be two discrete distributions over a
finite set X such that ||P −Q||TV ≤ 1

4 . Then,

|H(P )−H(Q)| ≤ 2||P −Q||TV log
|X |

2||P −Q||TV

The following two lemmas bound the number of steps in
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
which also guarantees their convergence.

Lemma 2. The number of greedy steps in each recursion of
the RecGreedy(ϵ) and in GreedyP (ϵ) algorithm is less than
2 log |X |

ϵ .

Proof. In each step the conditional entropy is reduced by an
amount at least ϵ/2. Since the maximum reduction in entropy
possible is Ĥ(Xi) ≤ log |X |, the number of steps is upper
bounded by 2 log |X |

ϵ .

Remark: Note that the GreedyP (ϵ) algorithm will take at
least ∆ steps to include all the neighbors in the conditioning
set. Lemma 2 states that the maximum number of steps is
upper bounded by 2 log |X |

ϵ . This implies 2 log |X |
ϵ ≥ ∆.
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Lemma 3. The number of steps in the FbGreedy(ϵ, α) is
upper bounded by 4 log |X |

ϵ(1−α) .

Proof. Note that as long as the forward step is active (which
occurs till all neighbors are included in the conditioning set
N̂(i)), in each step the conditional entropy reduces by at
least (1− α)ϵ/2. Hence all the neighbors are included within
2 log |X |
(1−α)ϵ steps. The number of non-neighbors included in the

conditioning set is also bounded by 2 log |X |
(1−α)ϵ . Thus it will take

at most the same number backward steps to remove the non-
neighbors. Hence the total number of steps is at most 4 log |X |

(1−α)ϵ .

We now state our main theorem showing the performance
of Algorithms 2, 3 and 4.

Theorem 1. Consider a MRF over a graph G with maximum
degree ∆, having a distribution P (X).
1) Correctness (non-random): Suppose (A1) holds and the
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
have access to the true conditional entropies therein, then they
correctly estimate the graph G.
2) Sample complexity: Suppose (A1) holds and 0 < δ < 1.

• When the number of samples n = Ω
(

|X |2 log |X|/ϵ

ϵ5 log p
δ

)
the RecGreedy(ϵ) correctly estimates G with probability
greater than 1− δ.

• When the number of samples n =

Ω
(

|X |4 log |X|/((1−α)ϵ)

ϵ5(1−α)α4 log p
δ

)
the FbGreedy(ϵ, α)

correctly estimates G with probability greater than 1−δ,
for 0 < α < 1.

• When the number of samples n = Ω
(

|X |2 log |X|/ϵ

ϵ5 log p
δ

)
the GreedyP (ϵ) correctly estimates G with probability
greater than 1− δ.

The proof of correctness with true conditional entropies
known is straightforward under non-degenerate assumption
(A1). The proof in presence of samples is based on Lemma
4 similar to Lemma 2 in [14] showing the concentration
of empirical conditional entropy, which is critical for the
success of RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ)
algorithms. We show that with sufficiently many samples the
empirical distributions and hence the empirical conditional
entropies also concentrate around their true values with a
high probability. This will ensure that algorithms 2, 3 and
4 correctly recover the Markov graph G. The complete proof
is presented in Appendix A.

Lemma 4. Consider a graphical model M = (G,X) with
distribution P (X). Let 0 < δ3 < 1. If the number of samples

n >
8|X |2(s+2)

ζ4

[
(s+ 1) log 2p|X |+ log

1

δ3

]
then with probability at least 1− δ3

|Ĥ(Xi|XS)−H(Xi|XS)| < ζ

for any S ⊂ V such that |S| ≤ s.

Lemma 4 follows from Lemma 1 and Azuma’s inequal-
ity. Although the sample complexities of RecGreedy(ϵ),

FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms are slightly
more than other non-greedy algorithms [10], [11], [15], the
main appeal of these greedy algorithms lie in their low
computation complexity. The following theorem characterizes
the computation complexity of Algorithms 2, 3 and 4. When
calculating the run-time, each arithmetic operation and com-
parison is counted as an unit-time operation. For example to
execute line 6 in Algorithm 5, each comparison takes an unit-
time and each entropy calculation takes O(n) time (since there
are n samples using which the empirical conditional entropy
is calculated). Since there are at most p− 1 comparisons the
total time required to execute this line is O(np).

Theorem 2 (Run-time). Consider a graphical model M =
(G,X), with maximum degree ∆, satisfying assumptions (A1).
Then the expected run-time of the greedy algorithms are,

• O
(
δ p3

ϵ n+ (1− δ)p
2

ϵ ∆n
)

for the RecGreedy(ϵ) algo-
rithm.

• O
(

p2

(1−α)ϵn
)

for the FbGreedy(ϵ, α) algorithm.

• O
(

p(p+1)
ϵ n

)
for the GreedyP (ϵ) algorithm.

The proofs of Theorem 2 are given in Appendix.
Remark: Note that if we take α < ∆−1

∆ the FbGreedy(ϵ, α)
has a better run time guarantee than the RecGreedy(ϵ)
algorithm for small δ. Also for small δ, GreedyP (ϵ) algorithm
has the best runtime among three all greedy algorithms.

VI. PERFORMANCE COMPARISON

In this section we compare the performance of the
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
with other graphical model learning algorithms.

A. Comparison with Greedy(ϵ) algorithm:

The RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) al-
gorithms are strictly better than the Greedy(ϵ) algorithm in
[14]. This is because Algorithms 2, 3 and 4 always find
the correct graph G when the Greedy(ϵ) finds the correct
graph, but they are applicable to a wider class of graphical
models since they do not require the assumption of large
girth or correlation decay to guarantee its success. Note that
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
use the Greedy(ϵ) algorithm as an intermediate step. Hence
when Greedy(ϵ) finds the true neighborhood Ni of node i,
RecGreedy(ϵ) algorithm will find the correct neighborhood in
each of the recursive steps and FbGreedy(ϵ, α), GreedyP (ϵ)
algorithms output the correct neighborhood directly without
having to utilize any of the backward steps or the pruning
step respectively. Hence RecGreedy(ϵ), FbGreedy(ϵ, α) and
GreedyP (ϵ) algorithms also succeed in finding the true graph
G. We now demonstrate a clear example of a graph where
Greedy(ϵ) fails to recover the true graph but the Algorithms
2, 3 and 4 are successful. This example is also presented in
[14]. Consider an Ising model on the graph in Figure 4. We
have the following proposition.

Proposition 1. Consider an Ising model with V =
{0, 1, . . . , D,D+1} and E = {(0, i), (i,D+1) ∀i : 1 ≤ i ≤
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0 D+1

1

2

D

D-1

Fig. 4: An example of a diamond network with D + 2
nodes and maximum degree D where Greedy(ϵ) can fail but
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
always correctly recover the true graph.

D} with a distribution function P (x) = 1
Z

∏
(ij)∈E eθxixj ,

Xi ∈ {1,−1}. Then with D > 2θ
log cosh(2θ) + 1 we have

H(X0|XD+1) < H(X0|X1)

The proof follows from straightforward calculation (see
Appendix). Hence for the Ising model considered above (Fig-
ure 4) with D > 2θ

log cosh(2θ) + 1 the Greedy(ϵ) incorrectly
includes node D+1 in the neighborhood set in the first step.
However with an appropriate ϵ the MRF satisfies assumption
(A1). Therefore Theorem 1 ensures that the RecGreedy(ϵ),
FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms correctly esti-
mate the graph G.

B. Comparison with search based algorithms:

Search based graphical model learning algorithms like the
Local Independence Test (LIT) by Bresler et al. [11] and
the Conditional Variation Distance Thresholding (CVDT) by
Anandkumar et al. [15] generally have good sample com-
plexity, but high computation complexity. As we will see the
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
have slightly more sample complexity but significantly lower
computational complexity than the search based algorithms.
Moreover to run the search based algorithms one needs to
know the maximum degree ∆ for LIT and the maximum
size of the separator η for the CVDT algorithm. However the
greedy algorithms can be run without knowing the maximum
degree of the graph.

For bounded degree graphs the LIT algorithm has a sample
complexity of Ω(|X |4∆∆ log 2p

δ ). Without any assumption on
the maximum size of the separator, for bounded degree graphs
the CVDT algorithm also has a similar sample complexity of
Ω(|X |2∆(∆ + 2) log p

δ ). Note that the quantity Pmin in the
sample complexity expression for CVDT algorithm (Theorem
2 in [15]) is the minimum probability of P (XS = xS) where
|S| ≤ η+1. This scales with ∆ as Pmin ≤ 1

|X |η+1 . For general
degree bounded graphs we have η = ∆. The sample com-
plexity for RecGreedy(ϵ), GreedyP (ϵ) and FbGreedy(ϵ, α)

algorithms is slightly higher at Ω
(

|X |2 log |X|/ϵ

ϵ5 log p
δ

)
and

Ω
(

|X |4 log |X|/((1−α)ϵ)

ϵ5(1−α)α4 log p
δ

)
respectively (since 2 log |X |

ϵ >

∆). However the computation complexity of the LIT al-
gorithm is O(p2∆+1 log p) and that of the CVDT al-
gorithm is O(|X |∆p∆+2n), which is much larger than
O
(

p2

ϵ ∆n
)

for RecGreedy(ϵ) algorithm, O
(

p2

(1−α)ϵn
)

for

the FbGreedy(ϵ, α) algorithm and O
(

p2

ϵ n
)

for GreedyP (ϵ)

algorithm.
We finally comment that in [11] the authors showed that

under an additional exponential correlation decay assumption,
the computation complexity of the LIT algorithm can be
decreased by reducing the search space through a correlation-
neighborhood selection procedure. Under similar assump-
tions it can be shown that the computation complexity of
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
(and the CVDT algorithm [15]) can also be reduced. Even
in this case (i.e., with correlation decay), we can show that
the greedy algorithms still outperform the search based algo-
rithms in run-time. However, note that the correlation decay
assumption is not necessary to guarantee the success of the
greedy algorithms presented in this paper; specifically, the
sample complexity and run-time results presented so far do
not make this assumption.

C. Comparison with convex optimization based algorithms:

In [10] Ravikumar et al. presented a convex optimization
based learning algorithm for Ising models, which we have
referred as the RWL algorithm. It was later extended for
any pairwise graphical model by Jalali et al. in [13]. These
algorithms assume extra incoherence or restricted strong con-
vexity conditions hold, in which case they have a low sam-
ple complexity of Ω

(
∆3 log p

)
, when dependency parameter

Cmin = Ω(1). However these algorithms have a compu-
tation complexity of O(p4) higher than the RecGreedy(ϵ),
FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms. Moreover the
greedy algorithms we propose are applicable for a wider class
of graphical models. Finally these optimization based algo-
rithms require a strong incoherence property to guarantee its
success; conditions which may not hold even for a large class
of Ising models as shown by Bento and Montanari in [16].
They also prove that the RWL algorithm fails in a diamond
network (Figure 4) for a large enough degree, whenever there
is a strong correlation between non-neighbors, our algorithm
successfully recovers the correct graph in such scenarios. In
our simulations later we will see that the failure of the RWL
algorithm for the diamond network exactly corresponds to the
case ∆ > Dth = 2θ

log cosh(2θ) + 1, which is also when the
Greedy(ϵ) fails. In [16] the authors prove that for a given
∆ the RWL algorithm fails when θ < θT and this critical
threshold θT behaves like 1

∆ . Now if we define

θ0 = max{θ :
2θ

log cosh (2θ)
+ 1 ≥ ∆} (4)

Then from our simulations for all θ < θ0 the RWL
algorithm fails. Also this θ0 is almost equal to 1

∆ . Hence we
make the following conjecture.



8

Conjecture 1. The RWL algorithm fails to recover the correct
graph in the diamond network exactly when θ < θ0. θ0 given
by equation (4).

In [17] Jalali et al. presented a forward-backward algorithm
based on convex optimization for learning pairwise graphical
models (as opposed to general graphical models in this paper).
It has even lower sample complexity of Ω(∆2 log p) and works
under slightly milder assumptions than the RWL algorithm.

D. Which greedy algorithm should we use?

From the above performance comparison we can say that
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
can be used to find the graph G efficiently in discrete
graphical models satisfying non-degeneracy assumption. A
natural question to ask then is which among these three
greedy algorithms should we use? The answer depends on
the particular application. In terms of sample complexity
theoretically FbGreedy(ϵ, α) has a higher sample complexity
than RecGreedy(ϵ) and GreedyP (ϵ) algorithms. However the
difference is not much for a constant α and in our experiments
we see all the three greedy algorithms have similar sample
complexities (see Section VII). The theoretical guarantees on
computation complexity also vary depending on parameters
α and ∆. Theoretically for fixed α the FbGreedy(ϵ, α)
algorithm has the best expected runtime guarantee. From our
experiments we see RecGreedy(ϵ) has much higher run-
time than FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms which
show similar run-times. We conclude that in practical appli-
cations it is better to use FbGreedy(ϵ, α) and GreedyP (ϵ)
algorithms than the RecGreedy(ϵ) algorithm. Now if we know
the bound on maximum degree ∆, after running the Greedy(ϵ)
algorithm if the size of the estimated neighborhood set N̂(i)
is considerably higher than ∆ this indicates there are large
number of non-neighbors. In such cases GreedyP (ϵ) may
take a considerable time to remove these non-neighbors during
the node pruning step and FbGreedy(ϵ, α) algorithm could
have removed much of these nodes in earlier iterations, when
the size of the conditioning set was still small, resulting in
less computation. This calls for the use of FbGreedy(ϵ, α)
algorithm in these cases. Similarly when size of the set N̂(i)
returned by the Greedy(ϵ) is comparable or slightly greater
than ∆ it will be more efficient to use the GreedyP (ϵ)
algorithm (for example in the diamond network and grid
network as shown in Section VII).

VII. SIMULATION RESULTS

In this section we present some simulation results character-
izing the performance of RecGreedy(ϵ), FbGreedy(ϵ, α) and
GreedyP (ϵ) algorithms. We compare the performance with
the Greedy(ϵ) algorithm [14] and the logistic regression based
RWL algorithm [10] in Ising models. We consider two graphs,
a 4×4 square grid (Figure 5) and the diamond network (Figure
4). In each case we consider an Ising model on the graphs.
For the 4× 4 grid we take the edge weights θ ∈ {.25,−.25},
generated randomly. For the diamond network we take all
equal edge weights θ = .25 or .5. Independent and identically

distributed samples are generated from the models using Gibbs
sampling and the algorithms are run with increasing number
of samples. We implement the RWL algorithm using ℓ1−
logistic regression solver by Koh et al. [20] and our algorithms
using MATLAB. The parameter ϵ for the greedy algorithms
and the ℓ1 regularization parameter λ for the RWL algorithm
are chosen through cross validation which gives the least
estimation error on a training dataset (See Section III-D).
From Theorem 1 and 2 we see that reducing α decreases
the runtime of FbGreedy(ϵ, α) algorithm but can increase its
sample complexity. Hence for practical applications α can be
chosen to trade-off between sample complexity and runtime
to best suit the application requirements. In our experiments
α was taken as .9.

Fig. 5: A 4x4 grid with ∆ = 4 and p = 16 used for
the simulation of the RecGreedy(ϵ), FbGreedy(ϵ, α) and
GreedyP (ϵ) algorithms.

First we show that for the diamond network (Figure 4)
whenever D > Dth = 2θ

log cosh(2θ)+1 the RWL algorithm fails
to recover the correct graph. We run the RWL algorithm in
diamond network with increasing maximum degree D keeping
θ fixed. We take θ = .25 for which Dth = 2×.25

log cosh(2×.25)+1 =
5.16. The performance is shown in Figure 6. We clearly see
that the failure of the RWL algorithm in diamond network
corresponds exactly to the case when D > Dth. The RWL
algorithm fails since it predicts a false edge between nodes 0
and D + 1. This is surprising since this is also the condition
in Proposition 1 which describes the case when Greedy(ϵ)
algorithm fails for the diamond network due to the same reason
of estimating a false edge. In some sense D = Dth marks the
transition between weak and strong correlation between non-
neighbors in the diamond network, and both Greedy(ϵ) and
RWL algorithms fail whenever there is a strong correlation.
However see next that our greedy Algorithms 2, 3 and 4
succeed even when D > Dth.

Figure 1 shows the performance of the various algorithms
in the case of the diamond network with p = 6, θ = .5
and D = 4 > Dth = 3.3. The Greedy(ϵ) and RWL algo-
rithms are unable to recover the graph but the RecGreedy(ϵ),
FbGreedy(ϵ, α) and GreedyP (ϵ) recover the true graph
G, they also show the same error performance. However
Figure 7 shows that GreedyP (ϵ) has a better runtime than
the RecGreedy(ϵ) and FbGreedy(ϵ, α) algorithms for this
diamond network.

Figure 8 shows the performance of the different algorithms
for a 4 × 4 grid network. We see that for this network
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Fig. 6: Performance of the RWL algorithm in diamond network
of Figure 4 for varying maximum degree with θ = .25 and
Dth = 5. RWL fails whenever D > Dth.
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Fig. 7: Figure showing the average runtime performance of
RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ) algorithms
for the diamond network with p = 6, ∆ = 4, for varying
sample size.

the RWL algorithm shows a better sample complexity than
RecGreedy(ϵ), FbGreedy(ϵ, α) or GreedyP (ϵ) as predicted
by the performance analysis. This network exhibits a weak
correlation among non-neighbors, hence the Greedy(ϵ) is
able to correctly recover the graph, which obviously implies
that the RecGreedy(ϵ), FbGreedy(ϵ, α) and GreedyP (ϵ)
also correctly recovers the graph, and all have the same
performance.

Figure 9 shows that the GreedyP (ϵ) algorithm also has the
best runtime in the 4× 4 grid network among the new greedy
algorithms.
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APPENDIX A
PROOF OF MAIN THEOREMS

In this section we present the proofs of Lemma 4, Theorem
1, 2 and Proposition 1.

Lemma 4

Proof. The proof is similar to that in [14]. Let S ⊂ V such
that |S| ≤ s. For any i ∈ V using Azuma’s inequality we get,

P (|P̂ (xi, xS)− P (xi, xS)| > γ3) ≤ 2 exp(−2γ2
3n)

≤ 2δ3
(2|X |p)s+1

(say)

Now taking union bound over all i ∈ V , S ⊂ V , |S| ≤ s
and all xi ∈ X , xS ∈ X |S|, with probability at least 1−δ3 we
have |P̂ (xi, xS) − P (xi, xS)| < γ3, for any i ∈ V , S ⊂ V ,
|S| ≤ s. This implies

||P̂ (Xi, XS)− P (Xi, XS)||TV ≤ |X |(s+1)

2
γ3

||P̂ (XS)− P (XS)||TV ≤ |X |(s+1)

2
γ3

Now taking γ3 = ϵ2α2

256|X |s+2 and using Lemma 1 we get,

|Ĥ(Xi|XS)−H(Xi|XS)|
≤ |Ĥ(Xi, XS)−H(Xi, XS)|+ |Ĥ(XS)−H(XS)|

≤ |X |

(
2||P̂ (Xi, XS)− P (Xi, XS)||TV

|X |

log
|X |

2||P̂ (Xi, XS)− P (Xi, XS)||TV

+

2||P̂ (XS)− P (XS)||TV

|X |
log

|X |
2||P̂ (XS)− P (XS)||TV

)
≤ 2|X |

√
|X |sγ3 <

αϵ

8
= ζ

Theorem 1

Proof. For this proof please refer to the detailed pseudo-
code in Algorithm 5, 6 (Appendix B). The proof of correct-
ness when P (X) is known is straight forward. From local
Markov property (1) the conditional entropy H(Xi|XNi) =
H(Xi|XV ) < H(Xi|XA) for any set A not containing all the
neighbors Ni. From degeneracy assumption (A1) including
a neighboring node in the conditioning set always produce
a decrease in entropy by at least ϵ. In RecGreedy(ϵ) in
each iteration the algorithm runs till all the neighbors Ni are
included in the conditioning set and the last added node is
always a neighbor. In GreedyP (ϵ) nodes are added till all
neighbors have been included in the conditioning set. Then in
the pruning step removing a non-neighbor does not increase
the entropy, therefore all spurious nodes are detected and
removed. In FbGreedy(ϵ, α) each iteration decrease entropy
by at least (1 − α)ϵ/2. Since the entropy is bounded it
terminates in a finite number of steps and minimum is reached
only when all neighbors have been added to the conditioning
set. All spurious nodes get eliminated by the backward steps
(in earlier iterations or after all neighbors are added).

Now we give the proof of sample complexity when we
have samples. Define the error event E = {∃S ⊂ V, |S| <
s| |Ĥ(Xi|XS)−H(Xi|XS)| > ϵ

8}. Note that when Ec occurs
we have for any i ∈ V , j ∈ Ni, A ⊂ V \{i, j}, |A| < s

Ĥ(Xi|XA)− Ĥ(Xi|XA, Xj) ≥ H(Xi|XA)−

H(Xi|XA, Xj)−
ϵ

4
>

3ϵ

4
(5)

which follows from equation (3).

Proof for RecGreedy(ϵ) algorithm: We first show that when
Ec occurs the RecGreedy(ϵ) correctly estimates the graph G.
The proof is by induction. Let Ni = {j1, . . . , j∆i} ⊂ V .
Let r denote the counter indicating the number of times the
outermost while loop has run and s be the counter indicating
the number of times the inner while loop has run in a particular
iteration of the outer while loop. Clearly from Lemma 2
s ≤ 2 log |X |

ϵ . In the first step since T̂ (i) = ϕ the algorithm
finds the node k ∈ V such that Ĥ(Xi|Xk) is minimized
and adds it to T̂ (i). Suppose it runs till s = s1 such that
Ni ̸⊂ T̂ (i), then ∃ some jl ∈ Ni such that jl /∈ T̂ (i). Then
from equation (5) Ĥ(Xi|XT̂ (i), Xjl) < Ĥ(Xi|XT̂ (i)) − ϵ/2.
Hence mink∈V−T̂ (i) Ĥ(Xi|XT̂ (i), Xk) < Ĥ(Xi|XT̂ (i))−ϵ/2.
Therefore the control goes to the next iteration s = s1 + 1.
However after the last neighbor say jl is added to T̂ (i) we
have

|Ĥ(Xi|XT̂ (i), Xk)− Ĥ(Xi|XT̂ (i))| ≤ |H(Xi|XT̂ (i), Xk)

−H(Xi|XT̂ (i))|+
ϵ

4
= 0 +

ϵ

4
=

ϵ

4
<

ϵ

2
(6)

for any k ∈ V − T̂ (i). Thus jl is added to N̂i, variable
complete is set to TRUE and the control exits the inner while
loop going to the next iteration r = r+1. Proceeding similarly
one neighboring node is discovered in each iteration r = 1 to
r = ∆i. At r = ∆i + 1, N̂(i) = Ni. Thus in step s = 1,
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T̂ (i) = Ni, so the entropy cannot be reduced further. Hence
variable iterate is set to FALSE and control exits the outer
while loop returning the correct neighborhood N̂(i) = Ni.
Lemma 2 bounds the number of steps in each iteration by
2 log |X |

ϵ . Since a single node is added in each iteration the
maximum size of the conditioning set is also upper bounded
by ⌈ 2 log |X |

ϵ ⌉.
Now taking δ3 = δ, s = ⌈ 2 log |X |

ϵ ⌉, ζ = ϵ
8 in Lemma 4 we

have for n = Ω
(

|X |2 log |X|/ϵ

ϵ5 log p
δ

)
, P (E) ≤ δ.

Therefore with probability greater than 1 − δ the
RecGreedy(ϵ) correctly recovers G.

Proof for FbGreedy(ϵ, α) algorithm: Define E = {∃S ⊂
V, |S| < s| |Ĥ(Xi|XS) − H(Xi|XS)| > αϵ

8 }. Let s denote
the number of iterations of the while loop. When Ec occurs
we have for any i ∈ V , j ∈ Ni, A ⊂ V \{i, j}, |A| < s

Ĥ(Xi|XA)− Ĥ(Xi|XA, Xj) ≥ H(Xi|XA)−

H(Xi|XA, Xj)−
αϵ

4
>

3ϵ

4
(7)

Again we prove by induction. For s = 1 the forward step
adds a node to the conditioning set N̂(i) as shown previously
for the RecGreedy(ϵ) algorithm. Consider iteration s > 1.
Note that it is enough to show the following.

• In each iteration the backward step never removes a
neighboring node j ∈ Ni.

• After the last neighbor is added to the conditioning set
N̂(i) the backward step removes all non-neighbors if any.

From equation (7) it is clear that removing a neighboring
node j ∈ N̂(i)

∩
Ni increases the entropy by at least 3ϵ

4 > αϵ
2 .

Hence a neighboring node is never removed in the backward
step. If there exists a non-neighbor l ∈ N̂(i) such that
Ĥ(Xi|XN̂(i)\l)−Ĥ(Xi|XN̂(i)) <

αϵ
2 and it produces the least

increase in entropy then it gets removed from N̂(i) and we go
to iteration s+1. This continues till the forward step had added
all neighbors j ∈ Ni to the conditioning set. After adding the
last neighbor to the conditioning set equation (6) ensures that
the forward step adds no other nodes to the conditioning set
N̂(i). If N̂(i) = Ni we are done. Else for any non-neighbor
j ∈ N̂(i) we have,

|Ĥ(Xi|XN̂(i)\j)− Ĥ(Xi|XN̂(i))| ≤ |H(Xi|XN̂(i)\j)−

H(Xi|XN̂(i))|+
αϵ

4
= 0 +

αϵ

4
=

αϵ

4
<

αϵ

2
(8)

Hence the backward step will remove j from the
conditioning set (or any other non-neighbor that produces the
least increase in entropy). This occurs till all non-neighbors
are removed and N̂(i) = Ni when neither the forward or the
backward step works. The flag complete is then set to TRUE
and Algorithm 6 exits the while loop giving the correct
neighborhood of node i. Again from Lemma 3 the number of
steps required for convergence is bounded by 4 log |X |

(1−α)ϵ . At most
one node is added to the conditioning set in each iteration
hence the maximum size of the conditioning set is bounded
by ⌈ 4 log |X |

(1−α)ϵ ⌉. As shown previously for the RecGreedy(ϵ)

algorithm from Lemma 4 with δ3 = δ, s = ⌈ 4 log |X |
(1−α)ϵ ⌉ and

ζ = αϵ
8 for n = Ω

(
|X |4 log |X|/((1−α)ϵ)

(1−α)α4ϵ5 log p
δ

)
the probability

of error P (E) ≤ δ. Therefore the FbGreedy(ϵ, α) succeeds
with probability at least 1− δ. This completes the proof.

Proof for GreedyP (ϵ) algorithm: The proof is similar to that
for the RecGreedy(ϵ) algorithm. Let event E be as defined in
the proof for RecGreedy(ϵ) algorithm. When event Ec occurs
the Greedy(ϵ) runs till all neighbors are added to the set N̂(i).
Then for non-neighbors j ∈ N̂(i)

|Ĥ(Xi|XN̂(i)\j)− Ĥ(Xi|XN̂(i))| ≤ |H(Xi|XN̂(i)\j)−

H(Xi|XN̂(i))|+
ϵ

4
= 0 +

ϵ

4
=

ϵ

4
<

ϵ

2

Hence j is removed from N̂(i). But for any neighbor k ∈
N (i)

|Ĥ(Xi|XN̂(i)\k)− Ĥ(Xi|XN̂(i))| ≥ |H(Xi|XN̂(i)\j)−

H(Xi|XN̂(i))| −
ϵ

4
≥ ϵ− ϵ

4
=

3ϵ

4
>

ϵ

2

Thus the neighbors are not eliminated. The algorithm ter-
minates after all non-neighbors have been eliminated. Using
Lemma 4 and 2 the probability of error is upper bounded by
P (E) ≤ δ with number of samples n = Ω

(
|X |2 log |X|/ϵ

ϵ5 log p
δ

)
.

Theorem 2

Proof. First consider the RecGreedy(ϵ) algorithm. With prob-
ability 1 − δ Algorithm 2 finds the correct neighborhood
of each node i. In this case from Lemma 2 the number
of steps in each recursion is O( 1ϵ ), the search in each step
takes O(p) time, number of recursions is at most ∆ and
the entropy calculation takes O(n) time for each node i.
Hence the overall runtime is O(p

2

ϵ ∆n). When the algorithm
makes an error with probability δ the number of recursions
is bounded by O(p). Hence the overall expected runtime is
O
(
δ p3

ϵ n+ (1− δ)p
2

ϵ ∆n
)

.
For the FbGreedy(ϵ, α) algorithm from Lemma 3 we

know that the number of steps is O( 1
(1−α)ϵ ). The search in

either the forward or backward step is bounded by p and
the entropy calculation takes O(n) time. Hence when the
algorithm succeeds the run time is O( p2

(1−α)ϵn). Note that even
when the algorithm fails with probability δ, we can prevent
going into infinite loops by making sure that once the forward
step stopped it is never restarted. Hence the number of steps
will still be O( 1

(1−α)ϵ ) and the overall runtime remains the

same. Thus the expected runtime is O
(

p2

(1−α)ϵn
)

.
In GreedyP (ϵ) algorithm when it succeeds with probability

1 − δ, for each node i ∈ V , the Greedy(ϵ) takes at most
2 log |X |

ϵ steps. In each step search set is bounded by p
and conditional entropy computation takes O(n) time. After
greedy algorithm terminates |N̂(i)| ≤ 2 log |X |

ϵ since one node
has been added in each step. Hence number iterations in
pruning step is bounded by 2 log |X |

ϵ and again conditional
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entropy computation take O(n) time. Hence the total run-
time is O

(
p2

ϵ n+ p
ϵn
)

= O
(

p(p+1)
ϵ n

)
. Even when error

occurs the number of greedy steps and pruning iterations is
still bounded by 2 log |X |

ϵ . Therefore the overall expected run-
time is O

(
p(p+1)

ϵ n
)

.

Proposition 1

Proof. Define H(a) = a log( 1a ) + (1 − a) log( 1
1−a ) for 0 ≤

a ≤ 1. Then simple calculation shows H(X0|XD+1) = H(p)
and H(X0|X1) = H(q) where

p =
2D+1

2D+1 + 2(e2θ + e−2θ)D

q =
2D + 2e−2θ(e2θ + e−2θ)D−1

2D+1 + 2(e2θ + e−2θ)D

Note that p < 1
2 and q < 1

2 . Since H(a) is monotonic
increasing for 0 < a < 1

2 , H(X0|XD+1) < H(X0|X1) iff
p < q. This implies,

2D+1 < 2D + 2e−2θ(e2θ + e−2θ)D−1

2 < 1 + e−2θ

(
e2θ + e−2θ

2

)D−1

e2θ <

(
e2θ + e−2θ

2

)D−1

D >
2θ

log
(

e2θ+e−2θ

2

) + 1 =
2θ

log cosh (2θ)
+ 1

APPENDIX B
DETAILED PSEUDO-CODE

In this section we give a more detailed pseudo-code for
RecGreedy(ϵ) and FbGreedy(ϵ, α) algorithms useful in im-
plementation and is used in our numerical experiments.
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Algorithm 5 RecGreedy(ϵ)

1: for i = 1 to |V | do
2: N̂(i)← ϕ, iterate ← TRUE
3: while iterate do
4: T̂ (i)← N̂(i), last ← 0, complete ← FALSE
5: while ! complete do
6: j = argmink∈V \T̂ (i) Ĥ(Xi|XT̂ (i), Xk)

7: if Ĥ(Xi|XT̂ (i), Xj) < Ĥ(Xi|XT̂ (i))−
ϵ
2 then

8: T̂ (i)← T̂ (i)
∪
{j}

9: last ← j
10: else
11: if last ̸= 0 then
12: N̂(i)← N̂(i)

∪
{last}

13: else
14: iterate ← FALSE
15: end if
16: complete ← TRUE
17: end if
18: end while
19: end while
20: end for

Algorithm 6 FbGreedy(ϵ, α)

1: for i = 1 to |V | do
2: N̂(i)← ϕ, added ← FALSE, complete ← FALSE
3: while ! complete do ◃ Forward Step:
4: j = argmink∈V \N̂(i) Ĥ(Xi|XN̂(i), Xk)

5: if Ĥ(Xi|XN̂(i), Xj) < Ĥ(Xi|XN̂(i))−
ϵ
2 then

6: N̂(i)← N̂(i)
∪
{j}

7: added ← TRUE
8: else
9: added ← FALSE

10: end if ◃ Backward Step:
11: l = argmink∈N̂(i) Ĥ(Xi|XN̂(i)\k)

12: if Ĥ(Xi|XN̂(i)\l)− Ĥ(Xi|XN̂(i)) <
αϵ
2 then

13: N̂(i)← N̂(i)\{l}
14: else
15: if ! added then
16: complete ← TRUE
17: end if
18: end if
19: end while
20: end for
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