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Abstract—We consider the problem of throughput-optimal
routing over large-scale wireless ad-hoc networks. Gupta and
Kumar (2000) showed that a throughput capacity (a uniform
rate over all source-destination pairs) ofΘ( 1

√

n log n
) is achievable

in random planar networks, and the capacity is achieved by
straight-line routes. In reality, both the network model and the
traffic demands are likely to be highly non-uniform. In this paper,
we first propose a randomized forwarding strategy based on
geographic routing that achieves near-optimal throughputover
random planar networks with an arbitrary number of routing
holes (regions devoid of nodes) of varying sizes. Next, we study a
random planar network with arbitrary source-destination p airs
with arbitrary traffic demands. For such networks, we demon-
strate a randomized local load-balancing algorithm that supports
any traffic load that is within a poly-logarithmic factor of t he
throughput region. Our algorithms are based on geographic
routing and hence inherit their advantageous properties oflow-
complexity, robustness and stability.

I. I NTRODUCTION

We study the problem of throughput-optimal routing in large
wireless networks such as ad-hoc and sensor networks. In such
large networks, there is a need for scalable, low-complexity
and distributed routing algorithms that can provide good data
rates for the traffic flows. The work in [8], [6] has shown
that a throughput-capacity ofΘ(

√

1
n ) is achievable inuniform

networkswith uniform traffic demands, and that the capacity
achieving routes are straight-line paths. In many practical
networks, both the network and the traffic distribution may
be highly non uniform. Non-uniformities may arise due to
factors such as network holes (regions devoid of any living
nodes), the arbitrary locations of source-destination pairs or
due to variations in the required data rates.

In recent studies [9], [10], [17], [11], [5], geographic
forwarding based protocols have been suggested as a stable
routing (providing fixed routes that do not flip) technique
over large non-uniform networks as they are scalable, low-
complexity and highly distributed. However, in recent work
[19], it was demonstrated that network non-uniformities can
cause significant losses in throughput (rates could be as low
asΘ(1/n)) while employing such schemes. A critical issue is
that conventional “shortest-path” (such as straight-line) routes
are oblivious to the distribution of other routes (between
other source-destination pairs) and may cause heavy losses
in throughput due to spatial congestion.

Typically, throughput optimal routing schemes over non-
uniform networks and traffic demands are based on (i) solving
a global optimization problem [1] (setting up routes such that
the traffic balanced over the wireless links) or (ii) adaptive
schemes [21], [18] that converge to an optimal set of routes
(or a per-packet route) over time. While global optimization
requires co-ordination and heavy computation by the nodes,
adaptive schemes may take a long time to converge to good
paths and also have issues of stability.

In this paper, we are interested in developing distributed
routing algorithms that are “near-optimal” (close to the rates
obtained by a global optimization) over non-uniform networks
with arbitrary traffic demands, but are still low-complexity,
distributed and stable.

A. Main Contributions

We consider a random planar network withn nodes arbi-
trarily distributed over a unit region, with each node having a

uniform circular radio range ofM(n) = C
√

log n
n , for any

C > 1√
π

. This scaling ensures that the resultant graph is
connected [7].

(a) We first consider non-uniform networks with large
number of routing holes andn/2 uniformly randomly
distributed source-destination pairs. In contrast to earlier
work [19], with finite number of holes of constant
area, we allow for an arbitrary number of holes of
varying sizes. Over such networks, we demonstrate that

a near-optimal throughput capacity ofΘ(
√

1
n ) is achiev-

able (up to poly-logarithmic factors) by our algorithm
RandHT(n). Unlike the RANDOMWAY algorithm [19],
the new algorithm does not overload the network with
increasing number of holes, and is also oblivious to the
number of holes in the network.

(b) Next, we consider networks with anarbitrary number
of source-destination pairs witharbitrary locationsand
varying rate requirements. We assume that the net-
work however has no routing holes. Conventionally, cut-
set bounds (amount of traffic that can enter/leave the
boundary of any sub-region of the network) have been
used to characterize upper bounds on network capacity
[14], [12]. However, when sources and sinks can be
arbitrarily close or far, and with widely varying traffic



requirements, cut-set bounds alone are insufficient to
characterize network loads. This is because traffic flows
that never leave the region are unaccounted by such cuts.
In this paper, we jointly utilize transport capacity bounds
(bounds that arise due to the interference nature of the
channel) along with cut-set based bounds to characterize
the allowable set of source-destination pairs. That is,
we demonstrate thatall routing scheme have a local
conservation property, where using less amount of the
local cut capacity requires it to use more of the limited
local transport-capacity, and vice-versa. Using this key
property, we demonstrate that locally load balancing the
traffic by means of a low-complexity randomized algo-
rithm (RandLLB) is optimal up to a poly-logarithmic
factor. Unlike RANDOMSPREAD [19], this algorithm
does not assume that the source-destination pairs are
Θ(1) away from each other, and distributes the traffic
over an appropriate area rather than over the whole
network as performed in RANDOMSPREAD.

Finally, we discuss some considerations when implement-
ing these algorithms in practical deployments. These include
combining RandHT and RandLLB algorithms over mixed
networks and incorporating GPSR-like algorithms [9], [5]
into RandHT in order to guarantee (low-rate) connectivity in
“worst-case” network topologies.

B. Related Work

Routing in large wireless networks has been widely studied
in the past decade (see [15] for an overview). Many of these
algorithms are derived from Internet routing protocols, and
do not scale well (in terms of route setup, routing table
complexity) in large networks. Recently, geography based
routing algorithms [9], [10], [17], [11], [5] have been investi-
gated for providing low-complexity routing protocols thatare
scalable and stable. In these schemes, packets are greedily
routed towards the location of the destination node and if
the greedy routes are trapped in a routing “local minima”,
techniques such as planarization and face-traversal are used to
route around these “holes”. However, in recent work [19], we
demonstrated that traditional shortest path schemes (suchas
DSDV or AODV) and greedy geographic schemes (with face-
traversal) can cause heavy throughput losses in the presence
of network non-uniformities or unbalanced traffic demands.
As source-destination pairs setup routes without knowledge
of other flows in the network, greedy or shortest path routing
can cause spatial congestion. Certain randomized strategies
to route around holes were suggested in [3]. However, such
schemes may fail in networks with typical hole configurations,
and even when working, may provide low throughput.

Traditionally, throughput-optimal schemes have either been
based on a global optimization [1] (the routes are centrally
chosen to balance the flows over the network) or on adaptive
schemes where the packets are routed according to current
queue/traffic states (e.g., back-pressure algorithms). Two main
drawbacks of global schemes are the need for network-wide

coordination and the high complexity of solving the optimiza-
tion. On the other hand, while adaptive schemes that use only
local coordination have been developed [21] (and more recent
follow-ups [18], [13]), these algorithms have to contend with
issues of stability, slow convergence to optimality (especially
in large-scale networks) and long packet delays.

Randomized approximations to throughput optimal routing
have been studied since the classical paper of [22], where the
traffic flow is distributed equally over the entire network and
recombined at the destination. We used an extension of this
idea in [19] to provide near-optimal throughput in networks
where the source-destination pairs were randomly chosen.
Further, in [19] we assumed networks with a finite number
of routing holes (whose size was comparable to the network
size), and randomly distributed source-destination pairs(thus
the typical distance between a source and its destination was
comparable to the network diameter). For such networks,
we proposed scalable and distributed algorithms based on
geographic schemes that were near throughput-optimal.

In this paper, we allow for (i) a more complex network
topology and (ii) an arbitrary number of arbitrarily located
source-destination pairs with variable traffic requirements. We
note that Valiant-like schemes (as used earlier in [19]) for
distributing traffic over the whole network are provably sub-
optimal as they require packets to be unnecessarily transported
over long distances. Such networks require new routing algo-
rithms as well as different proof techniques to demonstrate
optimality, as we shall show in the rest of this paper.

II. SYSTEM DESCRIPTION

We initially consider a random planar network wheren
nodes are randomly and uniformly thrown over a unit torus (a
square region with wrap-around at the edges). We allow for a
uniform circular radio range,M(n) = C

√

log n/n, to ensure
connectivity and a non-zero number of nodes in any tile of
sizeM(n) × M(n).

A. Networks with Routing Holes

In the first part of the paper, we consider a random traffic
pattern wheren/2 source-destination pairs are chosen uni-
formly randomly from the torus. Further, we allow for an
arbitrary number of holes to occur on the network. We ignore
the traffic generated by any source or destination node that are
removed by the occurrence of a hole. We assume the following
conditions on the holes. (After the occurrence of holes with
these assumptions, the connectivity and the non-zero nodesin
any tile M(n) × M(n) outside the hole is preserved.)

Assumption 2.1: Hole placements: Let δr be the side of the
smallest unique axis-parallel square that contains the hole r,
andεr = δr(1 + ∆) be the side of a larger concentric square
around the hole. Then, no other holet can be placed such
that its εt outer square can intersect with that of holer. This
ensures that each hole is separated from any other hole by a
distance proportional to its diameter.

Assumption 2.2: Hole shapes: Consider the tiling of the
unit region by square tiles of dimensionp× p for some small
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Fig. 1. Assumptions on holes in wireless networks.

p > nγ−1/2 for some0 < γ < 1/2. Then the holes are
composed by the union of contiguous tiles. Further, any node
A in the interior of theδ-square can reach any point in the
annular region between theε and theδ-squares by straight line
not intersecting the hole. For an illustration, see figure 1.Thus,
any surviving nodes inside theδ-square are easily reachable
from outside the hole. This assumption essentially disallows
the formation of holes with complex topologies that house
surviving nodes that are extremely hard to reach by local
search methods. The holes can still be concave.
Holes can be chosen arbitrarily to occur over the network
subject to the above assumptions. These assumptions are
similar to [19] - however, we now allow for a large number of
holes of varying sizes to occur on the network. Thus, the hole
sizes are decoupled from the network size. We note that this
allows for a significantly larger class of non-uniform network
topologies. We also note that after the removal of nodes due
to holes, the number of surviving source-destination pairsare
Θ(n) (w.h.p).

B. Networks with Arbitrary Traffic

In the second part, we are concerned with the issue of traffic
non-uniformity in networks. Here, the random planar network
is without any routing holes, but with arbitrarily chosen source
and destination pairs from the network.

Formally, we allow forH source-destination pairs, with
0 ≤ H ≤ n2 and with l-th source-destination pair (l ∈
{1, 2, · · · , H}) at a distancenαl−1/2 away from each other,
for 0 < α∗ ≤ αl ≤ 1

2 . The algorithms and proofs described
immediately extend to any constant scaling of the distance
model described above. However for notational simplicity,we
keep the constant as unity. The rate required by any flow is
assumed to be from a finite setR = { 1

dnγ1e , · · · , 1
dnγ|R|e},

with 0 ≤ γi < ∞. Thus, for a given source-destination
configuration, a rate vector̄r = [r1, · · · , rH ], rl ∈ R describes
the traffic demand. In other words, the S-D pairs may be
arbitrarily close to each other (compared to network diameter).
An α = 1

2 signifies source-destinations that are a unit distance
away from each other, and anα = 0 a distance of 1√

n
, the

average distance between nearest neighbors in a random planar
network. Further, we assume the finite-level rate model only

to illustrate our proof method clearly. We can extend it to any
rate model by assuming a non-integral number of sources of
the basic rate that are collocated, and our proof method can
be used to show this result.

C. Interference Model and Standard Definitions

Definition 2.1: The throughput capacityT (n) of a network
is defined as the maximum data-rate that is simultaneously
achievable by all surviving source-destination pairs.
Also, we assume the following to model the interference
effects of simultaneously transmitting nodes which are within
each other’s radio range.

Definition 2.2 (Protocol Model, [8]):A transmission be-
tween a nodeA and its receiving nodeB is assumed to
be successful ifd(A, B) ≤ M(n) and d(C, B) > (1 +
d)M(n), for somed > 0, for all other transmitting nodes
C 6= A.
This successful transmission occurs at rate ‘1’ WLOG. We
define the packet delayD(n) as the maximum time taken
by the routing algorithm to travel from the source to its
destination over all source-destination pairs.

We definef(n) = Θ̃(g(n)) if f(n) = O(g(n)(log n)k)
andg(n) = O(f(n)(log n)k1) for somek, k1 < ∞, and thus,
a throughputT (n) is near-optimal if it achieves̃Θ(T ∗(n)),
whereT ∗(n) is the optimal throughput.

III. ROUTING WITH NETWORK HOLES

In this section, we consider the problem of routing over
a network with a large number of holes - in particular, we
consider networks in which the number of holes may be
comparable to the number of nodes in the network. An impor-
tant question is to determine if geographic forwarding based
schemes can provide routing strategies that are throughputand
delay optimal.

Geography based routing schemes are preferred for routing
over large networks predominantly for two reasons. Firstly,
the routing information is scalable, i.e., the amount of routing
information that a node needs to remember is proportional to
the number of its neighbors and does not increase significantly
with the network size. Secondly, the routing strategy is stable,
low complexity and scalable - the routes are chosen in a greedy
geographic manner, and hence the routes are easily computed
and do not flip/switch due to the loss or the addition of a few
extra nodes.

In earlier work [19], we studied a network with a finite
number of holes, and demonstrated that pure greedy forward-
ing strategies such as GPSR can cause the throughput capacity
of the network to be considerably reduced. We also proposed
a randomized forwarding algorithm (RANDOMWAY) that
was throughput optimal (while inheriting the nicer properties
of geographic routing schemes) for networks with a finite
number of constant area ‘holes’. While the routing scheme was
oblivious to the actual location of the holes, a drawback of the
proposed scheme was (i) an exponential drop in throughput
with increasing number of network holes, (ii) the algorithm
required a knowledge of the number of holes in the network.



Field Name Functionality
TOPOLOGY or DATA Toggle bit - Topology information or Data Packet.

TOPOLOGY DATA Information about Hole location and dimension
SRC-LOC The ID and location of source

STAGE The stage of routing
NEXT-DEST Location of the next waypoint
SEC-DEST Location of next+1 waypoint

FINAL-DEST Location and ID of the original destination
DATA Message to the destination node

TABLE I
FIELDS IN THE HEADER OF THE PACKET.

In this section, we propose a randomized routing algo-
rithm based on greedy forwarding that provides near-optimal
throughput and delay even in the presence of a more com-
plicated network topology (an arbitrary number of network
holes), and operates without the knowledge of the number of
holes. We also characterize the scaling laws for its throughput,
delay and routing information at each node. The network
model is as described in Section II-A.

A. The RandHT(n) Algorithm

We first define a packet structure to provide a common
communication scheme between nodes. See Table I.

The source node while sending out a data packet sets the
data flag bit, and sets its SRC-LOC and FINAL-DEST. It sets
STAGE = 0, NEXT-DEST = FINAL-DEST and other fields to
a NULL symbol.

We shall initially assume that the nodes that are on the
boundary of a holeh know the dimensions and location of the
smallest (up to an order) axis-parallel square that contains the
hole h, i.e., they know the pair{xmin(h), ymax(h)} which
are the end points of the diagonal of the containing square.
We denote this square asSq(h). We will shortly describe an
update scheme by which the nodes on the hole boundary can
obtain this data. The randomized hole traversing algorithm
(RandHT(n)) is defined as follows (See Figure 2.)

Algorithm RandHT (n):
A node on receiving a packet with the data flag set (i.e.,

signifying that it is a data packet) checks if the FINAL-DEST
id is identical to its own. If yes, it accepts the packet. Elseit
checks if it is on the boundary of a hole.

If the node is not on the boundary of a hole, it first checks
if its node location ‘matches’ (within a radio-range hop) the
NEXT-DEST. If that does not match its own location, it
forwards the packet greedily towards NEXT-DEST. If it is
the NEXT-DEST,

1) The node checks the STAGE to see what stage of routing
the packet is in. If STAGE = 0, NEXT-DEST is always
FINAL-DEST. The node would have already accepted
the packet.

2) If STAGE = 1, it updates STAGE = 2, and sets NEXT-
DEST = SEC-DEST and clears SEC-DEST to null,
and forwards the packet to neighbor closest to the new
NEXT-DEST.
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Fig. 2. RandHT algorithm - Routing around a hole.

3) If STAGE = 2, it picks a random locationB from the
∆2Sq(h) Box 3 and sets NEXT-DEST =B, STAGE =
3 and forwards packet greedily towardsB.

4) If STAGE = 3, it picks a random locationB′ from the
∆2Sq(h) Box 4 and sets NEXT-DEST = the intersection
of B B′ and the line joining source and destination,
sets STAGE = 4, and greedily forwards towards NEXT-
DEST.

5) If STAGE = 4, it sets NEXT-DEST = FINAL-DEST,
STAGE = 0, and greedily forwards towards NEXT-
DEST.

If it does lie on a hole,

1) it generates two random pointsA′ andA from ∆2Sq(h)
boxes 1 and 2 respectively, and sets NEXT-DEST =the
intersection ofAA′ and the line joining source and
destination, sets STAGE = 1, SEC-DEST =A and
greedily forwards towards NEXT-DEST.

2) It also updates the TOPOLOGY DATA field to provide
thexmin(h), ymax(h) of the holeh that it is bordering.

This provides the nodes the information about the holes’
dimensions to compute random points from appropriate boxes.
Note that the SEC-DEST is modified only by a node that is
on the boundary of a hole.End of Algorithm

Calculation of the Hole’s dimensions:
A node on the hole perimeter (at location(x, y) re-

ceiving a packet with the topology flag set (i.e., signify-
ing that it is a topology packet) computesxmin(h) =
min(xmin(h), x) , ymax = max(ymax(h), y) and passes
it to the clock-wise closest neighbor that is on the hole
boundary. A periodic update of such messages, along with
their respective timeout mechanisms can be used to generate
a knowledge of hole dimensions at the boundaries.

More informally, our algorithm constructs a random path (as
shown in Figure 2) in the annular region around the hole, and
then continues on in its straight-line path once it leaves the (1+
∆)Sq(h) region around the hole. In our algorithm, we choose
the hole traversal algorithm to go above the hole for analytical
simplicity. In practice one can randomize this choice (to go
above or below) to perform better load balancing although the
results would be order-wise the same. We note that the above
algorithm can be either used to initialize static routes that can
be remembered, or each packet can be independently routed.



For the following analysis, we assume that RandHT is run to
setup static routes.

B. Analysis of RandHT(n) Algorithm

In this section, we provide a quantitative analysis of the
throughput-capacity achievable in networks with holes (as
defined in Section II-A) and random source-destination pairs.
Before we begin our analysis, we show the following upper
bound on the best achievable throughput capacity. In this
section, we skip the proofs of the claims and refer to [20]
for details.

Claim 1: In networks with holes and a random distribution
of source-destination pairs the best achievable throughput-
capacityT (n) = O( 1√

n
).

Theorem 3.1:Consider networks as defined in Section II-A.
The simultaneously achievable throughput capacityT (n) =
Θ̃( 1√

n
). Further, the delayD(n) = Θ̃(nT (n)).

Thus, we show that our routing scheme achieves near-
optimal throughput & delay (at the maximum capacity), and
the routing information at nodes does not grow significantly.

Proof: We shall make use of the following result (whose
proof is similar to Lemma 4.13 of [8] and is skipped for
brevity).

Result 3.1:Consider a torus of dimensionsnγ−1/2, with
0 < γ < 1/2. We pick Rnγ log n random source destination
pairs and connect them with straight-lines. Then, in each tile
of size M(n) × M(n), there areO(

√
n log n) lines through

any tile, with high probability.
We begin by considering a tiling of the unit torus by square

tiles of the sizeM(n) × M(n) and showing that the number
of lines through any arbitrary tile chosen from the tiling is
Θ̃(

√
n) w.h.p. Note that a route may pass through the same

tile more than once - each time using a different straight-line
path. Then, based on standard coloring arguments in [8], [2],
we can show that the constant bandwidth available at a tile can
be uniformly split among alllinespassing through it to provide
a throughputT (n) = Θ̃( 1√

n
) for all routes. There are three

kinds of tiles: (i) Tiles that lie outside the(1+∆)Sq(h) of all
holesh, (ii) Tiles that lie withinSq(h) for someh, (iii) Tiles
that lie in the annular region(1 + ∆)Sq(h)− Sq(h) of some
h. We show the above bound for each of these possibilities.

CASE 1: If a tile is outside the annular region, the tile is
exactly equivalent to a tile in a network without holes where
Θ(n) random source-destination pairs are chosen. This is due
to the fact that outside the annular regions, the number of
lines that go through a tile is unchanged if the routing were
according to our scheme or my a direct straight-line path - i.e.,
our stage 0 routes and the straight-line paths from source to
destination are exactly the same on regions outside the region
(1 + ∆)Sq(h) of any h. From standard results on throwing
n/2 random lines due to random choice of source-destination
pairs on a unit torus (Lemma 4.13 of [8] or Claim 2 of [19]),
we know that the maximally loaded tile is at mostΘ̃(

√
n)

with probability1 − 1
n2 .

CASE 2: If a tile is inside the square regionSq(h), for
some hole regionh, it is clear that packets of only 2 stages

pass through it. The stage 0 lines may pass through a tile in this
region if a randomly chosen destination is on the other side of
the hole. If a stage 0 packet hits a hole, it leaves the region by
using the reverse path (Stage 1 packet) to a random pointC in
the annular region (Figure 2). Thus, for every stage 0 packet
through a tile, there is at most one stage 1 packet passing
through it. Since the stage 0 of any route is an exact subset of
the straight-line between the random source-destination pair
(stage 1 is a subset as well, but with flows in the opposite
direction), the total load on a tile in theSq(h) region is again
upper bounded bỹΘ(

√
n).

CASE 3: Note that all stages of packets may pass through
the annular region. But as the traffic due to stages 0 and 1
have been shown to bẽΘ(

√
n), w.h.p, we restrict our attention

to Stage 3 of any route. This is because, stage 2 routes are
subsets ofAA′ and stage 4 routes are subsets ofBB′ and
both AA′ and BB′ are symmetric toAB (in the sense that
their distribution is identical toAB over the corresponding
rectangular arm - Region (Stage 3)). Thus, if we show the
load due to stage 3 of routes is no more thanΘ̃(

√
n) with

probability 1 − 1
n2 , our claim on the achievable throughput

capacity follows. First, we show a bound on the number of
stage 3 routes that are generated for any holeh, and let |h|
be the side of the smallest square containing the hole.

Claim 2: The number of stage 3 routes around any holeh
is O(n|h| log n).

Now, we consider a tile in the rectangular region where
stage 3 routes are active (See Figure 2). The distribution of
stage 3 routes over this region is not uniform for standard
bounds to apply. We upper bound this system by the following
uniform system.

Consider a toroidal regionTbound of side 2(1 + ∆)|h|. In
this region we throw2(1+∆)2|h|×Kn(log n)2 (we choose a
sufficiently largeK) random source-destination pairs. Noticing
that this network is a smaller analog of the uniform network
considered in the proof of Lemma 4.13 of [8], we apply our
standard bounds on uniform networks to show the following
claim.

Claim 3: The number of lines through any tile is no more
thanΘ(

√
n(log n)2) with probability at least1 − 1

n2 .
In this toroidal region, we pick two boxesB2, B3 of size
(∆|h|)2 that are a distance|h| apart from each other, i.e., a
region similar to Region(stage 3) in Figure 2. We show that the
number of source destination pairs such that the source liesin
box B2 and destination in boxB3 is greater than the number
of stage 3 routes of the original network, and further as eachof
these lines are independently and identically distributedas the
line segmentAB. Now, as we throw2(1+∆)2|h|×Kn logn
over (1 + 1/∆)2 tiles of size(∆|h|)2, the number of sources
over box 2 is at leastΘ(n|h|(log n)2) with probability1− 1

n2 .
Further, each of these sources picks a random destination. We
count the number of destinations that would fall in box 3. As
we throwΘ(n|h|(log n)2) over (1 + 1/∆)2 boxes, there exist
at leastΘ(n|h|(log n)) source-destination pairs that have a
random source in boxB2 and a random destination in boxB3

(this is with probability at least1− 1
n2 ). Let L be the number



of lines over a tile of sizeM(n)×M(n) in the Region (Stage
3), and letL∗ be the number of lines passing through any
M(n) × M(n) tile in toroidal regionTbound. Then, we can
show thatP(L > Θ(

√
n(log n)2)) ≤ 2/n2.

By our scheduling algorithm where each tile of sizeM(n)×
M(n) can be allocated a constant fraction of a time-slot for
collision-free transmissions (the interference graph is afinite
degree graph that can be colored with finite colors [2]) it
follows that every line through a tile can be provided an equal
rate ofΘ̃( 1√

n
) thus providing the same throughput to all routes

in the network. Further, the delayD(n) is the sum of the time
spent by a packet in each hop. Note that the number of hops
is at most3× dist(S −D), and the delay at each hop due to
scheduling is no more thañΘ(

√
n). Thus, delays are no more

than 3
M(n) × Θ̃(

√
n) = Θ̃(nT (n)). Note that this lies on the

optimal throughput delay curve [4], [16].

C. Scaling of Routing Information

A main motivation of geographic routing schemes is the
minimal amount of routing information that each node has to
store. Here, we discuss the scaling of routing information of
our algorithm. The RandHT(n) algorithm can be used in two
ways: (i) The route for each packet to its destination was setup
independently and randomly according to RandHT, or (ii) the
RandHT algorithm is run once initially to setup static routes
(i.e. all packets from aS − D pair follow the same route).

In case (i), the only routing information needed at any node
is the locations of the neighboring nodes, which grows as
Θ(log n). This is due to the fact that the waypoint nodes
are not required to remember the next waypoint, but generate
it randomly, from the information available in the packet. In
case (ii), the waypoint nodes are required to remember the
next waypoint so that the packets are routed along the static
routes. However, we note that a maximum ofn1/2−γ holes
can occur on the path between a source and its destination,
and thus each path may have at least3 × n1/2−γ waypoints,
and with n routes, this implies that each node is a waypoint
for n1/2−γ routes on an average.

We note that while our analysis for the throughput as-
sumed static-routes for tractability, we strongly believethat
the throughput achieved by per-packet routes would be order-
wise unchanged.

IV. N ETWORKS WITH ARBITRARY TRAFFIC PATTERNS

In this section, we consider the problem of routing between
arbitrarily chosen source-destination pairs, with arbitrary traf-
fic demands. Thus, we consider a fairly general network and
traffic model (cf. Section II-B for a description of the model).
A critical issue is to determine if some form of randomized
geographic routing can provide near-optimal throughput. Such
a routing scheme would provide highly distributed networks
(with low computational capabilities) to achieve high datarates
without any route setup overheads. Also, geographic routing
would converge immediately to the near-optimal routes.

In previous work [19], we studied networks with ran-
domly chosen source-destination pairs (such that the source-

destination pairs areΘ(1) distance away from each other,
which corresponds toα = 1/2) with a two-level traffic
demand, and demonstrated a randomized routing algorithm
RANDOMSPREAD that was near-optimal. Here, we gener-
alize the model to allow arbitrary locations of source and
destination (cf. Section II-B).

Typically, upper bounds on network capacity have utilized
cut-set ideas to limit the traffic that can leave any set [12].
Essentially, if we consider any closed region of space, the
amount of traffic that can enter or leave this area is bounded
by the amount of radio resource along the boundary of the
set. However, when sources and sinks can be arbitrarily close
or far, and with widely varying traffic requirements, the cut-
set bound alone is not sufficient to characterize network load
distributions. (The traffic flows that never leave the region
are unaccounted by such cuts.) In this paper, we jointly
utilize transport capacity bounds (bounds that arise due the
interference nature of the channel) along with cut-set based
bounds to characterize the allowable set of source-destination
pairs.

The joint approach is based on the following reasoning.
Every sub-region of the geographic region contains two “re-
sources”: (i) the transport capacity of the sub-region, and
(ii) the amount of traffic that can enter/leave the sub-region
through its boundary (the perimeter cut-capacity). For each
S-D pair, any routing algorithm “uses up” some amount of
each of the two “resources”. For instance, if the S-D pair lies
completely within a sub-region, straight line routing usesup
only the transport capacity within the region. On the other
hand, if the S-D pair decides to route by spreading the load
over the entire geographic region, it will use the perimeter
cut-capacity of the sub-region along with some amount of
the transport capacity of the sub-region. We demonstrate that
any routing scheme has a local conservation property between
these two resources, namely, that using less amount of the
local transport capacity resource, requires it to use more of
the local cut-capacity resource, and vice-versa.

We propose an algorithm RandLLB (Randomized Local
Load Balancing) and demonstrate using the above property
that it is ‘near-optimal’ for arbitrary traffic demands (a finite-
level traffic model is considered for analytical tractability -
this can be readily extended to an arbitrary traffic model). We
describe the algorithm below.

Algorithm RandLLB(n) Consider a source-destination pair
l ∈ {1, · · · , H} demanding a rater ∈ R, and whose
destination isnα−1/2 away from its source1 (with 0 < α∗ <
α ≤ 1/2).

1) The source node choosesnα locations at random from
within a circle of radiusnα−1/2 about the source loca-
tion for its first waypointS′(i), for 1 ≤ i ≤ nα.

2) The source node then choosesnα locations at random
from within a circle of radiusnα−1/2 about the desti-
nation location for its second waypointD′(i).

1For notational simplicity, we suppress the source-destination index l in α

(i.e. αl) with the understanding in the proof that each source-destination pair
has potentially a differentαl.
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Fig. 3. Local load balancing with three-hop routing.

3) Thus, each source constructsnα paths from itself to the
destination, and randomly distributes the traffic load over
a region that is proportional to the square of the distance
between the source and destination.

4) The source splits its rate uniformly over thenα multi-
path routes.

For an illustration of this process, see Figure 3.End of
Algorithm

A. Analysis of RandLLB(n) Algorithm

We show that the above algorithm spreads the local traffic
load in an appropriate manner such that the traffic through any
tile is manageable for any configuration of source-destination
pairs and their traffic demands if they are achievable by any
other scheme. That is, we show the following theorem.

Theorem 4.1:Consider an arbitrary distribution of source-
destination pairs over a random planar network (see Sec-
tion II-B). Let a rate vectorΛ = [λs,d ∈ R] be achievable
by any scheme. Then, the RandLLB(n) achieves a throughput
rate of Θ̃(Λ), i.e, the algorithm is throughput-optimal up to
poly-logarithmic factors.

Proof: The main steps in the proof are as follows:
(i) We assume all the sources require a rater ∈ R.
(ii) We develop two basic spatial constraints (cut-set and

transport capacity based bounds) on the positions of the
S-D pairs that are necessary for all routing schemes.

(iii) We construct a bound on the total traffic that may pass
through any given tile, given the constraints on the
positions of S-D pairs.

(iv) We show that the traffic through any tile (of the size
of the radio range) is no more thanΘ(log(n)) for any
achievable S-D pair configuration and since each tile
of the radio range is capable of supporting a constant
traffic (to its neighboring tiles), we can scale down the
throughput of all sources by a log-factor to achieve near-
optimal throughput.

(v) We repeat the argument for each traffic level in the finite
setR. 2

2Alternately, we can sharpen this bound by considering all rate requirements
that are a multiple of a basic ratêr. By showing achievability for this basic rate
r̂ with arbitrary S- D pairs, we can immediately generalize to rate requirements
that are a multiplêr. This is because any multiple of̂r can be viewed as a
group of sources (destinations) that are co-located in the same tile. However,
we skip a formal proof of this due to space constraints.

Box B i−1

M(n)

M(n)

Any given tile T

Box B i

A source in the
annular region

s

Fig. 4. The traffic load through any arbitrary tile.

Thus, we first assume that all S-D pairs require a rater . Note
that there are three types of traffic - the initial outward-star
traffic, i.e., the routes betweenS and S′

i, (1 < i < nα) (∗-
traffic), the traffic between the 1st and the 2nd waypoints of
each route (routes betweenS′

i and D′
i for 1 < i < nα )

or (#-traffic), and the final inward-star traffic. By symmetry,
the traffic load seen due to the inward-star traffic is same as
the ∗-traffic. Consider any given tile (as in Figure 4) of size
M(n) × M(n), and construct concentric squaresBi

1) Necessary conditions on source-destination pairs:The
following are necessary conditions for any routing scheme:

Condition 4.1: (i) Traffic bound I (transport capacity):
Since any tile can at most support a rate ‘1’, the total traffic
supported inside any boxBi is at most(2i − 1)2. (ii) Traffic
Bound II (perimeter or cut-set): The total traffic leaving (or
entering) boxBi is at most4 × (2i − 1).

Now, consider a source whose destination isnα−1/2 away,
or equivalently, for anM(n) × M(n) tiling of the space,
nα/

√
log n boxes away. Let this source be in the square region

Bi. Then the following holds:

(i) Dist(S−D) < i
3 boxes: In this case, we can show that

an upper bound on the number of sources that can affect
tile T within Box Bi and with distance to destination
less thani/3 cannot be more than32i/r (details in [20]).

(ii) Dist(S−D) > 2
√

2i boxes: The destination lies outside
the box Bi, and hence it uses upr units of capacity
from the perimeter bound (allowable4× (2i−1)). Thus
the total number of such sources is upper bounded by
4(2i − 1) × 1

r .
(iii) Dist(S − D) is between i

3 and 2
√

2i boxes: In this
case, the destination can either lie inside or outside the
box. If the destination was outside, the source uses upr
units from the allowable perimeter capacity of4(2i−1).
If the destination was inside, an arbitrary partrin is
supported completely inside the box, andr− rin leaves
the box. Note that this is true for every routing scheme.
Then the rate inside the box uses up at leastrin × i

3
of the allowable transport capacity(2i − 1)2. The rate
outside the box uses upr − rin of the perimeter bound
4 × (2i − 1). Thus the total number of such sources is
upper bounded by

( (2i−1)2

i/3 + 4(2i − 1)
)

1
r .



Thus, a uniform bound on the number of sources in regionBi

that can affect tileT is given by 32
r (2i− 1), which is greater

than
( (2i−1)2

i/3 + 4(2i − 1)
)

1
r + 32 i

r .

2) Traffic through a tile due to a source:We now provide
a bound on the traffic through tileT due to a sources in
Bi − Bi−1. The bounds arise from two kinds of traffic:

The ∗-traffic: Note that the outward-star traffic is generated
by choosingnα points at random from a circle of radius
nα−1/2 centered at the source node. If the source-destination
separation was less thani/3 boxes, the∗-traffic does not touch
tile T . Else, the number of lines that can go through tileT
(say lines(T, s)),

lines(T, s) ≤ K log n

2i − 1
× nα

with probability 1 − 1
n4 for some K < ∞. (The above

bound can be obtained from standard results on throwing
nα lines randomly at4(2i − 1) boxes, when4(2i − 1) =
O(nα)). Thus, the traffic through a tile due to one source is
r.n−α × lines(T, s) = r × K log n

2i−1 with probability1 − 1
n4 .

The #-traffic: Again, if the source-destination separation
was less thani/3 boxes, the#-traffic does not touch tileT . If
greater, note that the traffic is generated by pickingnα random
lines that have a source in Circle 1 and destination in Circle2
(of Figure 3).

Claim 4: The number of# lines through any given tile is
O(log n) with probability at least1 − 1

n4 .

Thus, the traffic through any “touchable” tile is (number of
lines) × (traffic through each line). Since the rate ofr was
split uniformly amongnα routes, the# traffic through any
tile is upper bounded byK1 log n × rn−α. As nα is at-least
i/3

√
log n for any source whose# traffic can touch tileT ,

the total traffic

K1 log n × rn−α ≤ K1r log n
1

2i − 1
.

We note that the inward-star traffic is symmetric to the∗-
traffic.

3) Maximizing the traffic through any tile:Previously,
we characterized the necessary conditions on the number of
sources in anyBi − Bi−1 annular region, and also provided
an upper bound (that holds with high probability) on the load
seen on a tile due to any source inBi − Bi−1. Thus, to
demonstrate that our algorithm does not overload any tile, we
maximize the traffic on any tile given the constraints on the
source-destination pairs, and show that the maximum trafficis
Θ̃(log n), i.e., is near-optimal.

Let ai be the number of sources in regionBi − Bi−1 that
can affect tileT . Then,

∑i
l=1 al ≤ 32

r (2i − 1) for all 1 ≤
i ≤

√

n/ logn. Hence, the maximum traffic through a tile is
upper bounded by the solution to the following optimization
problem. LetK2 = K1 + K.

max

√
n/ log n
∑

i=1

(

ai × K2
r log n

2i − 1

)

s.t (1)

i
∑

l=1

al ≤
32

r
(2i − 1), ∀{1 ≤ i ≤

√

n/ logn}.

Claim 5: a∗ = 32
r [1, 2, 2, · · · , 2] maximizes the above

problem.
The proof is available in [20].

The traffic through any tile is at most

10

r
rK2 log n

√
n/ log n
∑

i=1

2

2i − 1
= Θ(log2(n)). (2)

Thus, we show that for any allowable source-destination con-
figuration, the traffic through any tile is at mostΘ(log2(n)).
By means of a finite-coloring scheme for the tiles, we can
provide a constant throughput for each tile, and hence, by
reducing the throughput of each source by a poly-logarithmic
factor, we can support̃Θ(Λ). We showed the above proof for
a given rater - the method can be similarly used for other
ratesr∗ from R.

V. D ISCUSSION ANDCONCLUSIONS

In the previous sections, we formally demonstrated that ran-
domized geographic schemes can obtain near-optimal through-
put performance, with low complexity and very little coordi-
nation. Here, we try to address some issues that may arise in
practical networks.

A. Networks with Traffic and Node Non-uniformity

A key property of the RandLLB algorithm that allows it
to achieve optimality is that a source-destination pair that is
separated by a distanced spreads its traffic only over tiles
that are of the same distance from either of them. However,
in networks with holes, it is possible that the shortest path
between a source and its destination is much larger than the
Euclidean distance between them. In such situations, combin-
ing the RandLLB algorithm with the RandHT algorithm may
be sub-optimal, as the hole traversing algorithm introduces a
traffic demand of rater over a region of much larger size than
the source-destination separation. Consider networks with the
following property (in addition to Section II).

Condition 5.1: Let d(x, y) be the Euclidean distance be-
tween nodesx andy. Then, the shortest-distance path between
nodesx andy in the network∼= dN (x, y) ≤ K3d(x, y)∀(x, y).
For such networks, we propose the following scheme.

1) Each sourcex performs RandLLB(n) on its traffic to its
destinationy, spreading over an area(2K3d(x, y))2.

2) A packet on hitting a holeh’s boundary checks if the
|h| is greater thand(SRC-LOC, FINAL-DEST).

3) If greater, the packet is dropped at the hole boundary.
4) If the hole is smaller, it performs a RandHT(n) to

traverse the hole.



Note that the above scheme has the following properties: (i)A
source-destination pair(x, y) only loads tiles that are within
Θ(d(x, y)),and (ii) The shortest path has a tubular region of
width at least∆|h|/2 around it that is not affected by holes.
We expect that the above scheme “optimally” combines the
two algorithms proposed in the paper, namely, RandHT and
RandLLB. We plan to provide a formal proof of the above
claim in a future work.

B. Networks with Arbitrarily Connected Graphs

While in many practical scenarios of ad-hoc wireless net-
works we may model the non-uniformity of the network as
occurrence of holes, the actual network topology can be fairly
complex and not satisfy the hole assumption in Section II-A.
In such cases, constructing greedy routes in a throughput-
optimal manner may require much more complex algorithms.
Moreover, algorithms such as RandHT(n) may fail to construct
a path to the destination in such complex networks.

Although GPSR-like algorithms provide low throughput
even with minimal network non-uniformity, they are capable
of constructing a path to the destination if one exists (however,
with poor load-balancing). To overcome such pathological
networks, practical algorithms could combine the randomized
algorithms proposed in this paper along with determinis-
tic GPSR-like algorithms to provide worst-case performance
guarantees. For example, they could be combined in the
following manner:

1) Each source tries to construct both a GPSR based route
(green) and Randomized route (red) to the destination.

2) In each tile of sizeM(n) × M(n), the channel access
time available at each tile is divided into a fractionβ for
randomized schemes and a fraction1−β for GPSR-like
schemes.

3) Based on the fraction of red and green packets received
at the destination, theβ-factor can be updated (by some
gossip mechanism) to utilize the more efficient of the
two schemes.

This assures that if the network is complex, GPSR-like
schemes guarantee a path to the destination, while if the
network has “manageable” holes, the randomized algorithms
provide much better throughput.

C. Practical Issues

We wish to emphasize here that the focus of these algo-
rithms is on providing a near-optimal performance - there
are some implementation issues that may arise in practical
protocols:

1) Identification of hole perimeter - In our algorithms, we
had assumed that the nodes have knowledge of whether
they are on the hole boundary or not. In practice,
techniques explored in [5] may be used by the nodes
to learn of their membership on a hole-perimeter.

2) Stability of topology updates - With a changing topol-
ogy, where nodes may move in and out of holes and
hole shapes could change significantly over time, an
important issue is if the hole update mechanisms can

still provide a good path to the destination. As a part
of future work, we will investigate such effects of node
mobility.
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