Optimal Geographic Routing for Wireless Networks
with Near-Arbitrary Holes and Traffic

Sundar Subramanian and Sanjay Shakkottai
Department of ECE
The University of Texas at Austin
Email: {ssubrama, shakkgdi®ece.utexas.edu

Abstract—We consider the problem of throughput-optimal
routing over large-scale wireless ad-hoc networks. Gupta ral
Kumar (2000) showed that a throughput capacity (a uniform
rate over all source-destination pairs) ofo( \/nioﬂ_) is achievable
in random planar networks, and the capacity is achieved by
straight-line routes. In reality, both the network model and the
traffic demands are likely to be highly non-uniform. In this paper,
we first propose a randomized forwarding strategy based on
geographic routing that achieves near-optimal throughputover
random planar networks with an arbitrary number of routing
holes (regions devoid of nodes) of varying sizes. Next, weudy a
random planar network with arbitrary source-destination p airs
with arbitrary traffic demands. For such networks, we demon-
strate a randomized local load-balancing algorithm that sygports
any traffic load that is within a poly-logarithmic factor of t he
throughput region. Our algorithms are based on geographic
routing and hence inherit their advantageous properties oflow-
complexity, robustness and stability.
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Typically, throughput optimal routing schemes over non-
uniform networks and traffic demands are based on (i) solving
a global optimization problem [1] (setting up routes sucét th
the traffic balanced over the wireless links) or (ii) adaptiv
schemes [21], [18] that converge to an optimal set of routes
(or a per-packet route) over time. While global optimizatio
requires co-ordination and heavy computation by the nodes,
adaptive schemes may take a long time to converge to good
paths and also have issues of stability.

In this paper, we are interested in developing distributed
routing algorithms that are “near-optimal” (close to théesa
obtained by a global optimization) over non-uniform netkgor
with arbitrary traffic demands, but are still low-complegxit
distributed and stable.

A. Main Contributions

We consider a random planar network withnodes arbi-
trarily distributed over a unit region, with each node havan

We study the problem of throughput-optimal routing in large
wireless networks such as ad-hoc and sensor networks. in st
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large networks, there is a need for scalable, low-complext’ > —=- This scaling ensures that the resultant graph is
and distributed routing algorithms that can provide goothdaconnected [7].
rates for the traffic flows. The work in [8], [6] has shown (a) We first consider non-uniform networks with large

that a throughput-capacity &¥( %) is achievable iruniform
networkswith uniform traffic demands, and that the capacity
achieving routes are straight-line paths. In many praktica
networks, both the network and the traffic distribution may
be highly non uniform. Non-uniformities may arise due to
factors such as network holes (regions devoid of any living
nodes), the arbitrary locations of source-destinatiomspar
due to variations in the required data rates.

In recent studies [9], [10], [17], [11], [5], geographic
forwarding based protocols have been suggested as a stable
routing (providing fixed routes that do not flip) technique
over large non-uniform networks as they are scalable, low{b)
complexity and highly distributed. However, in recent work
[19], it was demonstrated that network non-uniformities ca
cause significant losses in throughput (rates could be as low
asO(1/n)) while employing such schemes. A critical issue is
that conventional “shortest-path” (such as straight)lioeites
are oblivious to the distribution of other routes (between
other source-destination pairs) and may cause heavy losses
in throughput due to spatial congestion.

number of routing holes and/2 uniformly randomly
distributed source-destination pairs. In contrast toiearl
work [19], with finite number of holes of constant
area, we allow for an arbitrary number of holes of
varying sizes. Over such networks, we demonstrate that
a near-optimal throughput capacity@(\/g) is achiev-
able (up to poly-logarithmic factors) by our algorithm
RandHT(n). Unlike the RANDOMWAY algorithm [19],
the new algorithm does not overload the network with
increasing number of holes, and is also oblivious to the
number of holes in the network.

Next, we consider networks with arbitrary number

of source-destination pairs withrbitrary locationsand
varying rate requirements. We assume that the net-
work however has no routing holes. Conventionally, cut-
set bounds (amount of traffic that can enter/leave the
boundary of any sub-region of the network) have been
used to characterize upper bounds on network capacity
[14], [12]. However, when sources and sinks can be
arbitrarily close or far, and with widely varying traffic



requirements, cut-set bounds alone are insufficient ¢oordination and the high complexity of solving the optiesiz
characterize network loads. This is because traffic flovtion. On the other hand, while adaptive schemes that use only
that never leave the region are unaccounted by such clidgal coordination have been developed [21] (and more tecen
In this paper, we jointly utilize transport capacity boundfllow-ups [18], [13]), these algorithms have to contendhwi
(bounds that arise due to the interference nature of thlesues of stability, slow convergence to optimality (esplgc
channel) along with cut-set based bounds to characterindarge-scale networks) and long packet delays.

the allowable set of source-destination pairs. That is, Randomized approximations to throughput optimal routing
we demonstrate thatll routing scheme have a localhave been studied since the classical paper of [22], where th
conservation property, where using less amount of theaffic flow is distributed equally over the entire networkdan
local cut capacity requires it to use more of the limitedecombined at the destination. We used an extension of this
local transport-capacity, and vice-versa. Using this kagiea in [19] to provide near-optimal throughput in networks
property, we demonstrate that locally load balancing thvehere the source-destination pairs were randomly chosen.
traffic by means of a low-complexity randomized algoFurther, in [19] we assumed networks with a finite number
rithm (RandLLB) is optimal up to a poly-logarithmic of routing holes (whose size was comparable to the network
factor. Unlike RANDOMSPREAD [19], this algorithm size), and randomly distributed source-destination pinss
does not assume that the source-destination pairs #re typical distance between a source and its destinatian wa
O(1) away from each other, and distributes the trafficomparable to the network diameter). For such networks,
over an appropriate area rather than over the whale proposed scalable and distributed algorithms based on
network as performed in RANDOMSPREAD. geographic schemes that were near throughput-optimal.

Finally, we discuss some considerations when implement-In this paper, we allow for (i) a more complex network
ing these algorithms in practical deployments. These geelutoPology and (ii) an arbitrary number of arbitrarily locdte
combining RandHT and RandLLB algorithms over mixe§ource-destination pairs with variable traffic requiretsei/e

networks and incorporating GPSR-like algorithms [9], [551_0te. thgt Valiant-like schemes (as used earlier in [19]) for
into RandHT in order to guarantee (low-rate) connectivity idistributing traffic over the whole network are provably sub
“worst-case” network topologies. optimal as they require packets to be unnecessarily tratespo

over long distances. Such networks require new routing-algo
rithms as well as different proof techniques to demonstrate
optimality, as we shall show in the rest of this paper.

Routing in large wireless networks has been widely studied
in the past decade (see [15] for an overview). Many of these Il. SYSTEM DESCRIPTION
algorithms are derived from Internet routing protocolsdan We initially consider a random planar network whete
do not scale well (in terms of route setup, routing tableodes are randomly and uniformly thrown over a unit torus (a
complexity) in large networks. Recently, geography baseduare region with wrap-around at the edges). We allow for a
routing algorithms [9], [10], [17], [11], [5] have been irste  uniform circular radio range} (n) = Cy/logn/n, to ensure
gated for providing low-complexity routing protocols thae connectivity and a non-zero number of nodes in any tile of
scalable and stable. In these schemes, packets are greegiilg M (n) x M (n).
routed towards the location of the destination node and if . )
the greedy routes are trapped in a routing “local minima®- Networks with Routing Holes
techniques such as planarization and face-traversal atetas  In the first part of the paper, we consider a random traffic
route around these “holes”. However, in recent work [19], weattern wheren/2 source-destination pairs are chosen uni-
demonstrated that traditional shortest path schemes (@siciformly randomly from the torus. Further, we allow for an
DSDV or AODV) and greedy geographic schemes (with facerbitrary number of holes to occur on the network. We ignore
traversal) can cause heavy throughput losses in the pesethe traffic generated by any source or destination node teat a
of network non-uniformities or unbalanced traffic demandsemoved by the occurrence of a hole. We assume the following
As source-destination pairs setup routes without knowdedgonditions on the holes. (After the occurrence of holes with
of other flows in the network, greedy or shortest path routingese assumptions, the connectivity and the non-zero rindes
can cause spatial congestion. Certain randomized steateginy tile M (n) x M (n) outside the hole is preserved.)
to route around holes were suggested in [3]. However, suchAssumption 2.1: Hole placement®t §, be the side of the
schemes may fail in networks with typical hole configurasionsmallest unique axis-parallel square that contains the hol
and even when working, may provide low throughput. ande, = §,.(1 + A) be the side of a larger concentric square

Traditionally, throughput-optimal schemes have eitherbearound the hole. Then, no other halecan be placed such
based on a global optimization [1] (the routes are centralligat itse; outer square can intersect with that of heleThis
chosen to balance the flows over the network) or on adapteesures that each hole is separated from any other hole by a
schemes where the packets are routed according to curmistance proportional to its diameter.
gueue/traffic states (e.g., back-pressure algorithms). fain Assumption 2.2: Hole shape€onsider the tiling of the
drawbacks of global schemes are the need for network-wideit region by square tiles of dimensignx p for some small

B. Related Work



Tl esons to illustrate our proof method clearly. We can extend it tg an

f rate model by assuming a non-integral number of sources of
the basic rate that are collocated, and our proof method can
be used to show this result.

Non-interfering Holes

NS )E' / C. Interference Model and Standard Definitions

Definition 2.1: The throughput capacity’(n) of a network
is defined as the maximum data-rate that is simultaneously
CE achievable by all surviving source-destination pairs.
Also, we assume the following to model the interference
effects of simultaneously transmitting nodes which arenimit
each other’s radio range.
Fig. 1. Assumptions on holes in wireless networks. Definition 2.2 (Protocol Model, [8]):A transmission be-

tween a nodeA and its receiving nodeB is assumed to

12 be successful ifd(A,B) < M(n) and d(C,B) > (1 +
p > n? for some0 < ~ < 1/2. Then the holes are d)M (n), for somed > 0, for all other transmitting nodes
composed by the union of contiguous tiles. Further, any no@e# A

A'in the interior of thes-square can reach any point in therpis syccessful transmission occurs at rate ‘1’ WLOG. We
annular region between theand thes-squares by straight line yofine the packet delay)(n) as the maximum time taken

not intersecting the hole. For an illustration, see figuréHus, by the routing algorithm to travel from the source to its
any surviving nodes inside thiésquare are easily reachabléyasiination over all source-destination pairs.

from outside the hole. This assumption essentially disallo o define f(n) = ©(g(n)) if f(n) = O(g(n)(logn)*)
the formation of holes with complex topologies that hou dg(n) = O(f(n)(log n)**) for somek, k; < oo, and thus

surviving nodes that are extremelly hard to reach by loc&"throughpuﬂ“(n) is near-optimal if it achieveé(T*(n)),
search methods. The holes can still be concave. whereT™(n) is the optimal throughput.

Holes can be chosen arbitrarily to occur over the network
subject to the above assumptions. These assumptions are I1l. ROUTING WITH NETWORK HOLES
similar to [19] - however, we now allow for a large number of | this section, we consider the problem of routing over
holes of varying sizes to occur on the network. Thus, the halenetwork with a large number of holes - in particular, we
sizes are decoupled from the network size. We note that tishsider networks in which the number of holes may be
allows f_or a significantly larger class of non-uniform netwo comparable to the number of nodes in the network. An impor-
topologies. We also note that after the removal of nodes dygt question is to determine if geographic forwarding Hase
to holes, the number of surviving source-destination p@ies gchemes can provide routing strategies that are througimglit
O(n) (w.h.p. delay optimal.
B. Networks with Arbitrary Traffic Geography based routing s_chemes are preferred for routing
over large networks predominantly for two reasons. Firstly
In the second part, we are concerned with the issue of traffig: routing information is scalable, i.e., the amount oftiroy
non-uniformity in networks. Here, the random planar networinformation that a node needs to remember is proportional to
is without any routing holes, but with arbitrarily chosemsme the number of its neighbors and does not increase signifjcant
and destination pairs from the network. with the network size. Secondly, the routing strategy iblsta
Formally, we allow for H source-destination pairs, withlow complexity and scalable - the routes are chosen in a greed
0 < H < n? and with [-th source-destination paifl (¢ geographic manner, and hence the routes are easily computed
{1,2,---,H}) at a distancea®~'/2 away from each other, and do not flip/switch due to the loss or the addition of a few
for0 < a* < q < % The algorithms and proofs describedextra nodes.
immediately extend to any constant scaling of the distanceln earlier work [19], we studied a network with a finite
model described above. However for notational simpligity, number of holes, and demonstrated that pure greedy forward-
keep the constant as unity. The rate required by any flowiigy strategies such as GPSR can cause the throughput gapacit

assumed to be from a finite S& = {557, "+, ==y}, of the network to be considerably reduced. We also proposed
with 0 < ~; < oo. Thus, for a given source-destinatiora randomized forwarding algorithm (RANDOMWAY) that
configuration, a rate vector= [r1,--- ,rg], r; € R describes was throughput optimal (while inheriting the nicer propest

the traffic demand. In other words, the S-D pairs may lef geographic routing schemes) for networks with a finite
arbitrarily close to each other (compared to network di@met number of constant area ‘holes’. While the routing scheme wa
Ana = % signifies source-destinations that are a unit distanoélivious to the actual location of the holes, a drawbackhef t
away from each other, and an= 0 a distance ofin, the proposed scheme was (i) an exponential drop in throughput
average distance between nearest neighbors in a randoar plavith increasing number of network holes, (ii) the algorithm
network. Further, we assume the finite-level rate model onlgquired a knowledge of the number of holes in the network.



Field Name Functionality Region (Stage 3)

TOPOLOGY or DATA | Toggle bit - Topology information or Data Packeft. S swges oo
TOPOLOGY DATA Information about Hole location and dimensior] } - I
SRC-LOC The ID and location of source Stage2 | PUUF
STAGE The stage of routing
NEXT-DEST Location of the next waypoint
SEC-DEST Location of next+1 waypoint “Stage 0 | |
FINAL-DEST Location and ID of the original destination Stage 0
DATA Message to the destination node RS O R
Boxil | ! i ox
TABLE | S I
,,,,,,,, i [ —

FIELDS IN THE HEADER OF THE PACKET

Fig. 2. RandHT algorithm - Routing around a hole.

In this section, we propose a randomized routing algo-
rithm based on greedy forwarding that provides near-optima 3) f STAGE = 2, it picks a random locatiof from the
throughput and delay even in the presence of a more com- A?Sq(h) Box 3 and sets NEXT-DEST B, STAGE =
plicated network topology (an arbitrary number of network 3 and forwards packet greedily towards
holes), and operates without the knowledge of the number of4) |f STAGE = 3, it picks a random locatiof’ from the

holes. We also characterize the scaling laws for its thrpugh AQSQ(@ Box 4 and sets NEXT-DEST = the intersection

delay and routing information at each node. The network ©Of BB’ and the line joining source and destination,

model is as described in Section II-A. sets STAGE = 4, and greedily forwards towards NEXT-
DEST.

A. The RandHT) Algorithm 5) If STAGE = 4, it sets NEXT-DEST = FINAL-DEST,

. ) , STAGE = 0, and greedily forwards towards NEXT-
We first define a packet structure to provide a common DEST

communication scheme between nodes. See Table . ) )

The source node while sending out a data packet sets thdf it does lie on a hole,
data flag bit, and sets its SRC-LOC and FINAL-DEST. It sets 1) it generates two random point#$ and A from A%Sq(h)
STAGE = 0, NEXT-DEST = FINAL-DEST and other fields to boxes 1 and 2 respectively, and sets NEXT-DEST =the

a NULL symbol. intersection of A A’ and the line joining source and
We shall initially assume that the nodes that are on the destination, sets STAGE = 1, SEC-DEST 4 and

boundary of a holé, know the dimensions and location of the greedily forwards towards NEXT-DEST.

smallest (up to an order) axis-parallel square that costiia ~ 2) It also updates the TOPOLOGY DATA field to provide

hole h, i.e., they know the paifxmin(h),ymazx(h)} which theaxmin(h), ymaxz(h) of the holeh that it is bordering.

are the end points of the diagonal of the containing squargis provides the nodes the information about the holes’
We denote this square a8;(h). We will shortly describe an dimensions to compute random points from appropriate boxes
update scheme by which the nodes on the hole boundary ¢@te that the SEC-DEST is modified only by a node that is
obtain this data. The randomized hole traversing algorithgh the boundary of a hol&nd of Algorithm
(RandHTn)) is defined as follows (See Figure 2.) Calculation of the Hole’s dimensions:
Algorithm RandHT (n): _ ~ A node on the hole perimeter (at locatiof,y) re-
A node on receiving a packet with the data flag set ('-Gbeiving a packet with the topology flag set (i.e., signify-
signifying that it is a data packet) checks if the FINAL-DES'Ii'ng that it is a topology packet) computesmin(h) =
id is identical to its own. If yes, it accepts the packet. Hise min(zmin(h),z), ymaz = maz(ymaz(h),y) and passes
checks if it is on the boundary of a hole. it to the clock-wise closest neighbor that is on the hole
If the node is not on the bOUndary of a hOIe, it first CheCl@oundary_ A periodic update of such messages, a|ong with
if its node location ‘matches’ (within a radio-range hopg ththeir respective timeout mechanisms can be used to generate
NEXT-DEST. If that does not match its own |Ocati0n, |ta know'edge of hole dimensions at the boundaries.
forwards the packet greedily towards NEXT-DEST. If it is  More informally, our algorithm constructs a random path (as
the NEXT-DEST, shown in Figure 2) in the annular region around the hole, and
1) The node checks the STAGE to see what stage of routitigen continues on in its straight-line path once it leaves th-
the packet is in. If STAGE = 0, NEXT-DEST is alwaysA)Sq(h) region around the hole. In our algorithm, we choose
FINAL-DEST. The node would have already acceptethe hole traversal algorithm to go above the hole for anzdyti
the packet. simplicity. In practice one can randomize this choice (to go
2) If STAGE =1, it updates STAGE = 2, and sets NEXTabove or below) to perform better load balancing although th
DEST = SEC-DEST and clears SEC-DEST to nulkesults would be order-wise the same. We note that the above
and forwards the packet to neighbor closest to the nedgorithm can be either used to initialize static routes tizen
NEXT-DEST. be remembered, or each packet can be independently routed.



For the following analysis, we assume that RandHT is run fmass through it. The stage 0 lines may pass through a tilésin th
setup static routes. region if a randomly chosen destination is on the other sfde o
. ) the hole. If a stage 0 packet hits a hole, it leaves the regyon b
B. Analysis of RandH) Algorithm using the reverse path (Stage 1 packet) to a random pbint

In this section, we provide a quantitative analysis of thge annular region (Figure 2). Thus, for every stage 0 packet
throughput-capacity achievable in networks with holes (arough a tile, there is at most one stage 1 packet passing
defined in Section II-A) and random source-destinationgpaithrough it. Since the stage 0 of any route is an exact subset of
Before we begin our analysis, we show the following uppeéhe straight-line between the random source-destinati&n p
bound on the best achievable throughput capacity. In thistage 1 is a subset as well, but with flows in the opposite
section, we skip the proofs of the claims and refer to [2@irection), the total load on a tile in thsy (/) region is again
for details. upper bounded by (y/n).

Claim 1: In networks with holes and a random distribution CASE 3: Note that all stages of packets may pass through
of source-destination pairs the best achievable throughpthe annular region. But as the traffic due to stages 0 and 1

capacityT'(n) = O(ﬁ)- have been shown to &(,/n), w.h.p, we restrict our attention
Theorem 3.1:Consider networks as defined in Section Il-Ato Stage 3 of any route. This is because, stage 2 routes are
The S|multaneously achievable throughput capafity) = subsets ofAA’ and stage 4 routes are subsetsRB’ and
Further, the delayD(n) = ©(nT'(n)). both AA’ and BB’ are symmetric toAB (in the sense that
'Ifus we show that our routing scheme achieves nedgieir distribution is identical toAB over the corresponding

optimal throughput & delay (at the maximum capacity), antbctangular arm - Region (Stage 3)). Thus, if we show the
the routing information at nodes does not grow significantload due to stage 3 of routes is no more tian,/n) with
Proof: We shall make use of the following result (whos@robability 1 — -1, our claim on the achievable throughput
proof is similar to Lemma 4.13 of [8] and is skipped forcapacity follows. First, we show a bound on the number of
brevity). stage 3 routes that are generated for any fgland let|h]|
Result 3.1:Consider a torus of dimensions’ /2, with be the side of the smallest square containing the hole.
0 < v < 1/2. We pick Rn” logn random source destination Claim 2: The number of stage 3 routes around any Hole
pairs and connect them with straight-lines. Then, in edeh tis O(n|h|logn).
of size M(n) x M(n), there areO(\/nlogn) lines through  Now, we consider a tile in the rectangular region where
any tile, with high probability. stage 3 routes are active (See Figure 2). The distribution of
We begin by considering a tiling of the unit torus by squarstage 3 routes over this region is not uniform for standard
tiles of the sizeM (n) x M(n) and showing that the numberbounds to apply. We upper bound this system by the following
of lines through any arbitrary tile chosen from the tiling isiniform system.
O©(y/n) w.h.p. Note that a route may pass through the same Consider a toroidal regioffy,.,q of side2(1 + A)|h|. In
tile more than once - each time using a different straighé-li this region we throw2(1+ A)?|h| x Kn(logn)? (we choose a
path. Then, based on standard coloring arguments in [8], [8]fficiently largeK') random source-destination pairs. Noticing
we can show that the constant bandwidth available at a tile adat this network is a smaller analog of the uniform network
be uniformly split among alinespassing through it to provide considered in the proof of Lemma 4.13 of [8], we apply our
a throughputl'(n) = @(f) for all routes There are three standard bounds on uniform networks to show the following
kinds of tiles: (i) Tiles that lie outside th@ + A) Sq(h) of all  claim.
holesh, (ii) Tiles that lie within Sq(h) for someh, (iii) Tiles Claim 3: The number of lines through any tile is no more
that lie in the annular regiofll + A) Sq(h) — Sq(h) of some than©(y/n(logn)?) with probability at leastl — ;.
h. We show the above bound for each of these possibilitiedn this toroidal region, we pick two boxeB8s, Bs of size
CASE 1: If a tile is outside the annular region, the tile i$A|h|)? that are a distancg:| apart from each other, i.e., a
exactly equivalent to a tile in a network without holes whereegion similar to Region(stage 3) in Figure 2. We show that th
©(n) random source-destination pairs are chosen. This is duember of source destination pairs such that the sourcénlies
to the fact that outside the annular regions, the number lméx B, and destination in bo¥s is greater than the number
lines that go through a tile is unchanged if the routing wewaf stage 3 routes of the original network, and further as edch
according to our scheme or my a direct straight-line paté.; i. these lines are independently and identically distribagthe
our stage 0 routes and the straight-line paths from sourcelitee segmentd B. Now, as we throv(1+ A)?|h| x Knlogn
destination are exactly the same on regions outside therregover (1 + 1/A)? tiles of size(A|h|)?, the number of sources
(1+ A) Sq(h) of any h. From standard results on throwingover box 2 is at leasd (n|h|(logn)?) with probability 1 — .
n/2 random lines due to random choice of source-destinatiéarther, each of these sources picks a random destinatien. W
pairs on a unit torus (Lemma 4.13 of [8] or Claim 2 of [19])count the number of destinations that would fall in box 3. As
we know that the maximally loaded tile is at ma8(y/n) we throwO(n|h|(logn)?) over (14 1/A)? boxes, there exist
with probability 1 — . at leastO(n|h|(logn)) source-destination pairs that have a
CASE 2: If a tile is inside the square regidty(h), for random source in boB, and a random destination in bd
some hole regiorh, it is clear that packets of only 2 stagegthis is with probability at least — #). Let L be the number



of lines over a tile of sizél/(n) x M (n) in the Region (Stage destination pairs aré®(1) distance away from each other,
3), and letL* be the number of lines passing through anwhich corresponds tax = 1/2) with a two-level traffic
M(n) x M(n) tile in toroidal regionT},.nq- Then, we can demand, and demonstrated a randomized routing algorithm
show thatP(L > ©(y/n(logn)?)) < 2/n?. RANDOMSPREAD that was near-optimal. Here, we gener-
By our scheduling algorithm where each tile of sizén)x alize the model to allow arbitrary locations of source and
M (n) can be allocated a constant fraction of a time-slot fafestination (cf. Section 11-B).
collision-free transmissions (the interference graph fmite Typically, upper bounds on network capacity have utilized
degree graph that can be colored with finite colors [2]) itut-set ideas to limit the traffic that can leave any set [12].
follows that every line through a tile can be provided an équ&ssentially, if we consider any closed region of space, the
rate ofé(ﬁ) thus providing the same throughput to all routeamount of traffic that can enter or leave this area is bounded
in the network. Further, the deldy(n) is the sum of the time by the amount of radio resource along the boundary of the
spent by a packet in each hop. Note that the number of hdgigd. However, when sources and sinks can be arbitrarilgclos
is at most3 x dist(S — D), and the delay at each hop due t®r far, and with widely varying traffic requirements, the -cut
scheduling is no more tha®(y/n). Thus, delays are no moreset bound alone is not sufficient to characterize networld loa
than —2— x O(,/n) = ©(nT(n)). Note that this lies on the distributions. (The traffic flows that never leave the region

. M(n . .
optimal throughput delay curve [4], [16]. m are unaccounted by such cuts.) In this paper, we jointly
) ) ) utilize transport capacity bounds (bounds that arise dee th
C. Scaling of Routing Information interference nature of the channel) along with cut-set dase

A main motivation of geographic routing schemes is theounds to characterize the allowable set of source-dé¢isiina
minimal amount of routing information that each node has feairs.
store. Here, we discuss the scaling of routing informatibn o The joint approach is based on the following reasoning.
our algorithm. The RandHT(n) algorithm can be used in twievery sub-region of the geographic region contains two “re-
ways: (i) The route for each packet to its destination waspsetsources”: (i) the transport capacity of the sub-region, and
independently and randomly according to RandHT, or (i) th@) the amount of traffic that can enter/leave the sub-region
RandHT algorithm is run once initially to setup static rautethrough its boundary (the perimeter cut-capacity). Forheac
(i.e. all packets from & — D pair follow the same route). S-D pair, any routing algorithm “uses up” some amount of

In case (i), the only routing information needed at any nodach of the two “resources”. For instance, if the S-D pas lie
is the locations of the neighboring nodes, which grows &empletely within a sub-region, straight line routing usgs
©(logn). This is due to the fact that the waypoint nodesnly the transport capacity within the region. On the other
are not required to remember the next waypoint, but generf@nd, if the S-D pair decides to route by spreading the load
it randomly, from the information available in the packet. 10ver the entire geographic region, it will use the perimeter
case (i), the waypoint nodes are required to remember thgt-capacity of the sub-region along with some amount of
next waypoint so that the packets are routed along the stdtie transport capacity of the sub-region. We demonstrate th
routes. However, we note that a maximum+g¥2—" holes any routing scheme has a local conservation property betwee
can occur on the path between a source and its destinatitvg¢se two resources, namely, that using less amount of the
and thus each path may have at leaist n'/2~7 waypoints, local transport capacity resource, requires it to use mére o
and withn routes, this implies that each node is a waypoirthe local cut-capacity resource, and vice-versa.
for n'/2=7 routes on an average. We propose an algorithm RandLLB (Randomized Local

We note that while our analysis for the throughput ad-0oad Balancing) and demonstrate using the above property
sumed static-routes for tractability, we strongly belighat that it is ‘near-optimal’ for arbitrary traffic demands (aife
the throughput achieved by per-packet routes would be ordigvel traffic model is considered for analytical tractetilt

wise unchanged. this can be readily extended to an arbitrary traffic modeg. W
describe the algorithm below.
IV. NETWORKS WITHARBITRARY TRAFFIC PATTERNS Algorithm RandLLB(n) Consider a source-destination pair
In this section, we consider the problem of routing betweén € {1,---,H} demanding a ratee € R, and whose

arbitrarily chosen source-destination pairs, with adsitrtraf- ~ destination isn®~1/2 away from its sourcé (with 0 < o <
fic demands. Thus, we consider a fairly general network and< 1/2).

traffic model (cf. Section 1I-B for a description of the mogel 1) The source node choose$ locations at random from
A critical issue is to determine if some form of randomized within a circle of radius»®~1/2 about the source loca-

geographic routing can provide near-optimal throughputhS tion for its first waypointS’ (i), for 1 < i < n®.
a routing scheme would provide highly distributed networks 2) The source node then choose$ locations at random
(with low computational capabilities) to achieve high dattes from within a circle of radius:®~'/2 about the desti-

without any route setup overheads. Also, geographic rgutin nation location for its second waypoifY' ().
would converge immediately to the near-optimal routes. N _ N _ _
For notational simplicity, we suppress the source-deitinandex! in «

In previous work [19]' .We . StUd'e.d networks with ran'(i.e. «;) with the understanding in the proof that each source-oletsdin pair
domly chosen source-destination pairs (such that the eeurkas potentially a differeny;.
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i . A source in the
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Any given tile T

Circle 1 Circle 2

Containing Torus ~ for analysis

Fig. 3. Local load balancing with three-hop routing.

Fig. 4. The traffic load through any arbitrary tile.

3) Thus, each source construet$ paths from itself to the _ _ _
destination, and randomly distributes the traffic load ovdihus, we first assume that all S-D pairs require a rat&lote

a region that is proportional to the square of the distan#igat there are three types of traffic - the initial outwarairst
between the source and destination. traffic, i.e., the routes betwee$i and S’;, (1 < i < n®) (x-

4) The source splits its rate uniformly over the multi- traffic), the traffic between the 1st and the 2nd waypoints of
path routes. each route (routes betweeft; and D’; for 1 < i < n®)
For an illustration of this process, see Figure Bad of Of (#-traffic), and the final inward-star traffic. By symmetry,
Algorithm the traffic load seen due to the inward-star traffic is same as
) . the x-traffic. Consider any given tile (as in Figure 4) of size
A. Analysis of RandLLB(n) Algorithm M (n) x M(n), and construct concentric squarBs

We show that the above algorithm spreads the local traffic1) Necessary conditions on source-destination paiFse
load in an appropriate manner such that the traffic through ag|iowing are necessary conditions for any routing scheme:
tile is manageable for any configuration of source-destinat Condition 4.1: (i) Traffic bound | (transport capacity):

pairs and their traffig demands if they are .achievable by adyce any tile can at most support a rate ‘1', the total traffic
other scheme. That is, we show the following theorem. supported inside any boR; is at most(2i — 1)2. (ii) Traffic

Theor.em 4.1.:C0n5|der an arbitrary distribution of source,und Ii (perimeter or cut-set): The total traffic leaving (0
destination pairs over a random planar network (see S (h'tering) boxB; is at mostd x (2i — 1)
3 .

tion II-B). Let a rate vectorh = [),4 € R] be achievable Now, consider a source whose destinationafs /2 away,

by any §chem_e. Then, the _Rand_LLB(n) aChleveSathrough%LrRequivalently, for anM(n) x M(n) tiling of the space,

rate of ©(A), i.e, the algorithm is throughput-optimal up to” J/Togn b Let thi be in th .

poly-logarithmic factors. n®/+/logn boxes away. Let this source be in the square region
Proof: The main steps in the proof are as follows:

B;. Then the following holds:

(i) We assume all the sources require a rate R.

(i) We develop two basic spatial constraints (cut-set and
transport capacity based bounds) on the positions of the
S-D pairs that are necessary for all routing schemes.

(iii) We construct a bound on the total traffic that may pass(ii)
through any given tile, given the constraints on the
positions of S-D pairs.

(iv) We show that the traffic through any tile (of the size
of the radio range) is no more th&(log(n)) for any

(i) Dist(S—D) < & boxes: In this case, we can show that
an upper bound on the number of sources that can affect
tile T within Box B; and with distance to destination
less than /3 cannot be more thadei/r (details in [20]).
Dist(S—D) > 2+/2i boxes: The destination lies outside
the box B;, and hence it uses up units of capacity
from the perimeter bound (allowablex (2i —1)). Thus

the total number of such sources is upper bounded by
4(2i—1) x L.

achievable S-D pair configuration and since each tiléiii)
of the radio range is capable of supporting a constant
traffic (to its neighboring tiles), we can scale down the
throughput of all sources by a log-factor to achieve near-

Dist(S — D) is betweeni and 2y/2i boxes: In this
case, the destination can either lie inside or outside the
box. If the destination was outside, the source uses up
units from the allowable perimeter capacity4g®: —1).

optimal throughput.
(v) We repeat the argument for each traffic level in the finite
setR. 2

If the destination was inside, an arbitrary paft, is
supported completely inside the box, and r;,, leaves
the box. Note that this is true for every routing scheme.
Then the rate inside the box uses up at legstx %
of the allowable transport capacit@i — 1)2. The rate
outside the box uses up— r;, of the perimeter bound
4 x (2i — 1). Thus the total number of such sources is

upper bounded b)((mz;—gl)z +4(2i — 1)) .

2Alternately, we can sharpen this bound by considering #l requirements
that are a multiple of a basic rate By showing achievability for this basic rate
7 with arbitrary S- D pairs, we can immediately generalizedte requirements
that are a multiple’. This is because any multiple @f can be viewed as a
group of sources (destinations) that are co-located in aheegtile. However,
we skip a formal proof of this due to space constraints.



Thus, a uniform bound on the number of sources in redipn

that ca2n_ alffzect tilel" is given by%(% — 1), which is greater Jn/logn

than ((Zz% +4(2i - 1))% +327. max Z (ai X K27’1’ogn) st (1)
2) Traffic through a tile due to a sourcéMe now provide i=1 2i—1

a bound on the traffic through til&" due to a source in i 39

B; — B;_1. The bounds arise from two kinds of traffic: Zaz < 7(21' —1), W1<i<y/n/logn}.
The «-traffic: Note that the outward-star traffic is generated =1

by choosingn® points at random from a circle of radius cClaim 5: o* = 3_7?[172,27... ,2] maximizes the above

n®=1/2 centered at the source node. If the source-destinatigfbblem.
separation was less thafs boxes, thex-traffic does not touch The proof is available in [20].

tile T'. Else, the number of lines that can go through #ile  The traffic through any tile is at most
(saylines(T, s)),

NorT
K1 10, K logn > 2 O(log(n)). (2)
— 2 A = .
lines(T, s) < 2.og1n x n® T —~ 2i-1
i —

Thus, we show that for any allowable source-destinationr con
with probability 1 — - for some K < oo. (The above figuration, the traffic through any tile is at ma8t(log?(n)).

bound can be obtained from standard results on throwily means of a finite-coloring scheme for the tiles, we can
n® lines randomly at4(2; — 1) boxes, whend(2i — 1) = provide a constant throughput for each tile, and hence, by
O(n®)). Thus, the traffic through a tile due to one source Kke¢ducing the throughput of each source by a poly-logarithmi

=% x lines(T, s) = r x Kzzl,ggln with probability 1 — n%l factor, we can suppoé)(A). We showed the above proof for

The #-traffic: Again, if the source-destination separatio/® giveiw rater - the method can be similarly used for other
was less than/3 boxes, thej-traffic does not touch tilg". If ~ ratesr” from . u
greater, note that the traffic is generated by pickifgandom

lines that have a source in Circle 1 and destination in Cigcle ) )
(of Figure 3). In the previous sections, we formally demonstrated that ran

Claim 4: The number of# lines through any given tile is domized geographlg schemes can qbtam near-optlmal throgg
put performance, with low complexity and very little coordi

o(1 with probability at leastl — ;. : . C
(logn) P i y Coomt nation. Here, we try to address some issues that may arise in
Thus, the traffic through any “touchable” tile is (number OBracticaI networks

lines) x (traffic through each line). Since the rate ofwas
split uniformly amongn® routes, the# traffic through any A. Networks with Traffic and Node Non-uniformity
tile is upper bounded by logn x rn~*. As n® is at-least 5 yey property of the RandLLB algorithm that allows it
i/3v/logn for any source whoseg traffic can touch tileT’, , achieve optimality is that a source-destination pait tha
the total traffic separated by a distance spreads its traffic only over tiles
that are of the same distance from either of them. However,
in networks with holes, it is possible that the shortest path
between a source and its destination is much larger than the
) o ) Euclidean distance between them. In such situations, aombi
We note that the inward-star traffic is symmetric to the jng the RandLLB algorithm with the RandHT algorithm may
traffic. be sub-optimal, as the hole traversing algorithm introduze
3) Maximizing the traffic through any tile:Previously, traffic demand of rate over a region of much larger size than
we characterized the necessary conditions on the numberttd source-destination separation. Consider networks tivé
sources in anyB; — B;_; annular region, and also providedfollowing property (in addition to Section II).
an upper bound (that holds with high probability) on the load Condition 5.1: Let d(z,y) be the Euclidean distance be-
seen on a tile due to any source By — B;_;. Thus, to tween nodes andy. Then, the shortest-distance path between
demonstrate that our algorithm does not overload any tike, wodest andy in the networke dy (z,y) < Ksd(z,y) ¥(x,y).
maximize the traffic on any tile given the constraints on thiéor such networks, we propose the following scheme.
source-destination pairs, and show that the maximum tiaffic 1) Each source performs RandLLB(n) on its traffic to its

V. DISCUSSION ANDCONCLUSIONS

Kilogn x rn™% < Kyrlogn— .
2t —1

O(logn), i.e., is near-optimal. destinationy, spreading over an ardaKsd(z, y))>2.
Let a; be the number of sources in regidh — B; _; that ~ 2) A packet on hitting a holé’s boundary checks if the
can affect tileT. Then,Y;_,a; < 22(2i — 1) for all 1 < |h| is greater tharl(SRC-LOC, FINAL-DEST).

1 < 4/n/logn. Hence, the maximum traffic through a tile is 3) If greater, the packet is dropped at the hole boundary.
upper bounded by the solution to the following optimization 4) If the hole is smaller, it performs a RandHT(n) to
problem. LetK, = Ky + K. traverse the hole.



Note that the above scheme has the following properties (i)
source-destination pafr, y) only loads tiles that are within
O(d(z,y)),and (ii) The shortest path has a tubular region of
width at leastA|h|/2 around it that is not affected by holes.
We expect that the above scheme “optimally” combines the

still provide a good path to the destination. As a part
of future work, we will investigate such effects of node
mobility.
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B. Networks with Arbitrarily Connected Graphs

While in many practical scenarios of ad-hoc wireless netHl
works we may model the non-uniformity of the network as
occurrence of holes, the actual network topology can béfair
complex and not satisfy the hole assumption in Section 11-Al3]
In such cases, constructing greedy routes in a throughput-
optimal manner may require much more complex algorithmggj
Moreover, algorithms such as RandHT(n) may fail to construc
a path to the destination in such complex networks.

Although GPSR-like algorithms provide low throughput
even with minimal network non-uniformity, they are capablel6]
of constructing a path to the destination if one exists (hare
with poor load-balancing). To overcome such pathologicgl)
networks, practical algorithms could combine the randeahiz
algorithms proposed in this paper along with determinis-
tic GPSR-like algorithms to provide worst-case perforneancis)
guarantees. For example, they could be combined in the
following manner: 9

1) Each source tries to construct both a GPSR based route

(green) and Randomized route (red) to the destinatiof-%!

2) In each tile of sizeM (n) x M(n), the channel access
time available at each tile is divided into a fracti@rior
randomized schemes and a fraction 3 for GPSR-like
schemes. [12]
Based on the fraction of red and green packets received
at the destination, thé-factor can be updated (by soméd13l
gossip mechanism) to utilize the more efficient of the
two schemes. [14]
This assures that if the network is complex, GPSR—Iikﬁ5
schemes guarantee a path to the destination, while if the
network has “manageable” holes, the randomized algorithfA8]
provide much better throughput.

[11]

3)

C. Practical Issues (17

We wish to emphasize here that the focus of these algig—
rithms is on providing a near-optimal performance - the
are some implementation issues that may arise in practiga
protocols:

1) Identification of hole perimeter - In our algorithms, weyq
had assumed that the nodes have knowledge of whether
they are on the hole boundary or not. In practicerl]
techniques explored in [5] may be used by the nodes
to learn of their membership on a hole-perimeter.
Stability of topology updates - With a changing topol-22
ogy, where nodes may move in and out of holes and
hole shapes could change significantly over time, an
important issue is if the hole update mechanisms can

2)

] L. G. Valiant and G. J. Brebner.

Darpa CBMANET and ITMANET programs.
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