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Abstract— We consider a finite-field model for the wireless
broadcast and additive interference network (WBAIN), both in
the presence and absence of fading. We show that the single-
source unicast capacity (with extension to multicast) of a WBAIN
with or without fading can be upper bounded by the capacity
of an equivalent broadcast erasure network. We further present
a coding strategy for WBAINs with i.i.d. and uniform fading
based on random linear coding at each node that achieves a rate
differing from the upper bound by no more than O(1/q), where
q is the field size. Using these results, we show that channel fading
in conjunction with network coding can lead to large gains in
the unicast (multicast) capacity as compared to no fading.

I. INTRODUCTION

While network coding for broadcast networks has been the
subject of much recent study [1], [2], [3], there remains a
need to capture the interference nature of the wireless channel.
In this work, we examine how network coding improves the
throughput in a channel model that operates over a finite field
but which incorporates both the interference and broadcast
aspects of the wireless channel.

We consider a heterogeneous network composed of nodes
that are connected by links that are either wireline or wire-
less. Unlike packets (symbols) traversing the wireline links,
symbols that are transmitted by a wireless node are subject to
the broadcast constraint that all links carry the same symbol.
Further, if two or more wireless nodes transmit symbols to
a particular wireless receiver node, the symbols being sent
over the air are subject to both channel fading and additive
interference, where all channel and network operations are
assumed to occur over an appropriate finite field.

The finite-field channel model without fading has been used
in [5], [6] to investigate the appropriateness of source-channel
separation in various networks. Popular multiple access inter-
ference models include the collision multiple-access channel
(MAC) such as Aloha [8], [9], where, when two or more
transmit messages collide none of them get through, and
Aloha with multi-packet reception [10], where the receiver
can successfully decode one or more packets in a slot with
some probability distribution. In this work, we consider an
intermediate stance where the interference of two signals in
a MAC, both of which are elements of a particular finite
field, is modelled as the sum of the signals in the same
finite field. Symbol loss due to noise is modelled by allowing
random complete erasure of the received signal. Practical
implications of such finite-field additive interference (for non-
fading channels) are discussed in [6].

A. Main Contributions

(i) We consider a heterogeneous (wireline/wireless) net-
work (directed graph) comprising of finite-field uniformly
and independently distributed fading channels subject to
broadcast and interference constraints, as well as random
symbol erasure. We consider a single-source unicast, and
discuss extensions to a multicast network. We derive
an achievable rate using a random linear coding (RLC)
strategy at each of the nodes, as well as an upper bound
on the network capacity. We show that the bounds are
tight asymptotically in the field size (i.e., the difference
between the upper bound and the achievable rate scales
as O(1/q), where q is the field size).

(ii) We present example networks for which we explicitly
compute the achievable rate with channel fading, as well
as a tighter upper bound without fading. We show that the
capacity with channel fading can be considerably larger
(depending on the network topology) than that of the
identical network graph but without fading.

We finally comment that the aim of employing the afore-
mentioned finite-field model is to take a step in determining
the capacity region of wireless networks operating over a
general Gaussian channel with fading. The latter, as is well
known, is a very challenging problem – for even simple
network configurations, such as the single-relay channel or the
interference channel, the capacity regions are not yet known.
Hence, we consider a finite-field approximation of the general
model, whose limit (under an appropriate distribution remap-
ping) as the field size grows is the fading Gaussian channel.
Even this simplification is not enough, as the capacity of a
network of binary symmetric channels is not known, which
is a special case of the finite-field approximation. Hence, we
consider a further simplification of the model: instead of the
additive noise term, we allow random complete erasure of the
received signal. For this case, we are indeed able to obtain
asymptotically tight bounds on the unicast (multicast) capacity.
We expect that the insights obtained from the simplified model
will aid in the understanding of the more general model.

II. SYSTEM MODEL AND NOTATION: WBAIN

We model a wireless network as a directed graph G =
(V,E), where V , |V | = N , is the set of all nodes in the net-
work, and for each vi, vj ∈ V such that node vi can transmit
to vj , there is a directed edge (link) (vi, vj) ∈ E. In this work,



Fig. 1. Model of a wireless channel with broadcast and interference
constraints in the presence of fading coefficients hij ∈ Fq . Node vi, i = 1, 2,
is constrained to send the same codeword (chosen from Fq) on its outgoing
links. Receiver vj , j = 3, 4 decodes the symbol Yj = h1jX1 +h2jX2 with
probability 1− εj and erasure symbol E with probability εj .

we restrict ourselves to directed acyclic graphs. Let vs ∈ V
be the source node that wishes to transmit to destination
vd ∈ N, vd 6= vs. Further, let ΓO(vi)

∆={(vi, vj)|(vi, vj) ∈ A}
be the set of edges that leave node vi. Correspondingly,
ΓI(vj)

∆={(vi, vj)|(vi, vj) ∈ A} is the set of edges incident
on vj . Hence, the out-degree and in-degree of any node vj are
δO(vj)

∆=|ΓO(vj)| and δI(vj)
∆=|ΓI(vj)|, respectively.

Also, we model varying power constraints at various trans-
mitters in the network by varying the entropy of the transmitted
codewords at each transmitter. Let Ri be the rate at which
vi ∈ V can inject packets. Then, we consider all codes to be
subsets of the field Fq for any log q ≥ maxi{Ri}. Thus, each
codeword Xi transmitted by vi ∈ V must be an element of a
subfield of Fq, such that H(Xi) = Ri, Ri ≤ log q.

We assume that independent erasures occur at each receiver
in the network. The broadcast nature of the wireless channel
is modelled by constraining all outbound edges ΓO(vi) to
carry the same symbol Xi ∈ Fq. After [5], [6], we model
interference as addition in the field Fq as follows. Consider
the simplest multiple access network where two wireless
nodes vi, vj transmit simultaneously to receiver vr such that
ΓI(vr) = {(vi, vr), (vj , vr)}. Let Xi, Xj ∈ Fq be the
codewords transmitted by vi and vj , respectively. Then, vr

receives Xi + Xj , where addition is in Fq, with probability
1− εr, and the erasure symbol E with probability εr. Erasure
events are assumed to be independent across receivers. We also
consider an extended model where we allow fading as well. In
this model, each wireless link (vi, vj) in G has channel-gain
coefficient hij , which are uniform i.i.d. over Fq. Hence, for the
simple MAC network above, vr receives hirXi + hjrXj with
probability 1− εr and E with probability εr and all arithmetic
is performed in Fq.

III. ASYMPTOTICALLY TIGHT BOUNDS ON CAPACITY OF
WBAIN WITH FADING

We next derive an upper bound and lower bound on the
single-source unicast capacity of WBAIN. Let vs and vd

denote the source node and the destination node, respectively.
Also, let Cq denote the unicast capacity of WBAIN from vs

to vd when operations and channel coefficients are in Fq.

A. Upper bound

We first derive an upper bound on Cq. To do so, we first we
define the following graph transformation. Given a heteroge-
neous network graph G = (V,E) we define the transformation
T : (V,E) → (V ′, E′) as follows. Initialize V ′ = V and
E′ = E. For each node vr ∈ V that receives messages along
wireless links in ΓI(vr) ⊂ E, create a node v′r ∈ V ′ and add
a link (v′r, vr) of rate Rr = (1− q−δI(vr)) log q to E′. Set the
erasure probability of edge (v′r, vr) as that of vr in G, i.e.,
εr. Also, replace each wireless (vi, vr) ∈ ΓI(vr) by an edge
(vi, v

′
r) ∈ E′ with capacity Ri and erasure 1/q corresponding

to the event that the edge may be in deep fade, viz. hij = 0.
Each receiver v′r in T (G) receives separate signals over its
incoming links, i.e., T (G) has broadcast constraints but no
interference.

Note that in the above, all wireline links in E can be con-
sidered to be wireless links with only one outgoing node. This
capacitated broadcast erasure network T (G) will be referred
to as the broadcast equivalent network (BEN) corresponding
to G.

The capacity of broadcast erasure networks has been shown
to be given by a generalized min-cut value [1], [3]. We apply
these results to the BEN T (G) to derive an upper bound on
Cq. Specifically, for a cut (S, S̄) in T (G), we define its value
VT (G)(S) as

VT (G)(S)∆=
∑

{i:vi∈S,vj∈S̄,(vi,vj)∈E′}

ri

1−
∏

j∈ΓO(vi)

εij

 .

Theorem 1: The unicast capacity from source vs to desti-
nation vd in the directed acyclic network G consisting of links
that are subject to broadcast and additive interference over the
finite field Fq, Cq, is upper bounded by C̄q, where

C̄q = min
(S,S̄)∈S(s,d)

VT (G)(S)

is the min-cut max-flow capacity of the BEN T (G), with
VT (G)(S) being the cut value for cut S.

We note that the capacity of a similarly constructed BEN
provides an upper bound for the non-fading case as well.

B. Achievability

We next lower bound the unicast capacity of WBAIN with
i.i.d. and uniform fading by constructing a coding strategy
to achieve a rate of Rq

∆=C̄q(1 − δ)(1 − O(1/q)), for any
δ > 0 in the network. For brevity, we discuss the results for
networks formed entirely of wireless links; they also hold for
wireless/wireline heterogeneous networks in general.

To do so, we consider the BEN T (G) and derive the min-
cut max-flow allocation on it using the approach of Lun et.
al [3]. Then, it suffices to demonstrate that for any cut in the
BEN, the WBAIN achieves the same flow rates at each of the
input and output nodes with a loss of at most O(1/q) from
the corresponding flow on the BEN.
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More specifically, we derive a flow allocation fP over each
s-d path P , P = 1, 2, . . . ,Λ where Λ is the total number of
s-d paths in T (G). Using the conformal realization theorem,
for any δ > 0, there exists a flow allocation [7] that satisfies

C̄q(1− δ) =
∑

p

fP (1)∑
P :vi∈fP

fP /(1− εη(vi,P )) ≤ Ri(1− δ)

where η(vi, P ) is the next hop from i on path P.
We employ the same coding scheme as Lun et al. [3],

[7]. Consider a coding epoch of ∆ time units. Suppose
that the source gets message packets at rate C̄q(1 − δ).
Given a collection of messages {a1, a2, . . . , am}, we define
Random Linear Combining (RLC) of these messages by
RLC({a1, a2, . . . , am})

∆=
∑m

i=1 αiai where each αi, ai ∈ Fq

and αi’s are chosen uniformly i.i.d. from Fq. The source
now generates such RLCs, and injects these RLCs at a
Bernoulli process at total rate

∑
P fP /(1− εη(vs,P ))), where

the rate on each path P is fP /(1 − εη(vs,P ))). Similarly,
each node vi injects RLCs of its received messages at rate∑

P :vi∈fP
fP /(1− εη(vi,P )).

Since each coded packet x is ultimately an RLC of the
a′is, we can express x =

∑m
i=1 βiai where βi ∈ Fq. This

vector β = (βi)m
i=1 is called the auxiliary encoding vector for

packet x. We can now think of each node in the network to be
forwarding innovative packets (i.e. new linear combinations of
messages that were not in the span of the existing codewords
at each receiver) and hence, as done in [3], [7], it suffices to
track the flow of innovative packets through the network.

In the following, we will construct a scheme whereby the
flow of innovation f̃ over the edges of the WBAIN will be (up
to a difference of O(1/q)) equal to the information theoretic
flow f over the BEN. Specifically, for any δ > 0, we define
f̃i

∆=fi(1− δ)(1−O(1/q)), i = 1, 2, . . . ,Λ. Observe from the
definition of Rq and (1) that Rq =

∑Λ
i=1 f̃i. To formalize the

notion of an innovation, we will need to specify an ordered
sequence of cuts which be proceed to do in the following
paragraphs.

Since G is a Directed Acyclic Graph (DAG), without loss
of generality, we can arrange the nodes in topological order
with vs = v0, vd = vN , and for each (vi, vj) ∈ E, i < j.
Each node vi – starting with v0 – creates RLC’s of the all
the data packets that it possesses (i.e. it has received over the
edges in ΓI(vi) for a node i > 0, whereas the packets am in
case of node v0) and sends them out over the edges ΓO(vi)
to the nodes in the next topological order.

To apply a min-cut max-flow, we next analyze flow across
cuts in the the network. Since the nodes are arranged topo-
logically, it suffices to considered N cuts defined as follows:
A cut partitions the DAG, and is denoted by (Si, S̄i), i =
0, 1, . . . , N − 1, where for each i Si = {v0, v1, . . . vi}, and
S̄i = {v0, v1, . . . , vN}\Si. Since vs and vd are separated by
these cuts, then, we require that each of these cuts transmit
innovative packets on an average of Rq per time-slot. To show

this, we will induce over the sequence of partitions (Si, S̄i) and
show that if C̄q(1−δ)(1−O(1/q))∆ innovative packets appear
on the nodes at the left edges of each cut over an interval of
∆ time slots, then we can transfer C̄q(1 − δ)(1 − O(1/q))
packets to the right edge of the cut in ∆ time-slots. Now,
we can simply pipeline the packets to see that a steady state
rate of C̄q(1− δ)(1−O(1/q)) packets between source vs and
destination vd is achievable.

Let Svj
(τ) be the subspace formed by the auxiliary en-

coding vectors at node vj up to (and not including) time τ .
Given a cut, we can now formally associate the notion of an
innovative packet as follows.

Definition 1: Innovative Packet: Consider a cut
(S, S̄). Suppose a packet x with auxiliary encoding
vector β is received by node vj ∈ S̄ at time τ . Let
Uτ (vj)

∆=
⋃

k∈S̄,k<j span(Svk
(∞)) ∪

⋃
k≥j span(Svk

(τ)).
Then, x is innovative across cut (S, S̄) if β /∈ Uτ (vj).

Further, observe that the rate of information across any cut
in the WBAIN G is subject to the fading occurring at the edges
that cross the cut. Due to the broadcast constraint imposed on
the outgoing edges, it is also necessary for packets from each
of the outgoing nodes to mix independently at the receiver
nodes. For instance, if in a 2× 2 cut of Figure 1, all hij’s are
the same non-zero value, it can be seen that the rate across
the cut is limited to log q. However, if the vectors (h11, h21)
and (h12, h22) are linearly independent, a rate of 2 log q is
achievable across the cut.

In the following lemma (which is a generalization of Lemma
1 in [4]), we will first consider the transmission of one
innovation at one time-slot at a single receiver with multiple
inputs. Subsequently, in Lemma 2, we will extend this result
to consider innovations at multiple receivers on one side of a
cut.

Lemma 1: Let each ui ∈ ΓI(vj) transmit messages Xi

to node vj over fading links hij ∈ Fq in a WBAIN, such
that P (hij = 0) = 1/q. Further, let Sui

be the subspace
spanned by each ui and Svj

be the subspace spanned by vj .
Let S+

vj
be the subspace spanned by the linear combinations

in vj after the transmission is complete, then P (span(S+
vj

) >

span(Svj
)|

⋃
ui∈ΓI(vj)

Sui
* Svj

) ≥ (1− 2
q ).

To extend this result to a cut with more than one receiver
on the right edge of the cut, we consider once again, the
topological ordering of the nodes. For a cut (S, S̄) with
nodes ui, i = 1, 2, . . . m on the left edge of the cut and
vj , j = 1, 2, . . . , n on the right edge of the cut, consider
the transfer matrix H = {hij}m,n

i=1j=1 where hij are the
channel coefficients chosen uniformly at random from Fq if
(ui, vj) ∈ E, hij = 0 otherwise.

Note that since H is a random matrix whose elements
change with each time-slot τ , rank(H(τ)) is a random vari-
able. Further, for any fixed τ let us define H as the event that
for each (ui, vj) ∈ E, hij 6= 0.

Lemma 2: Consider a cut (S, S̄) in G, with nodes labelled
ui, i = 1, 2, . . . ,m on the left edge of the cut and nodes vj ,
j = 1, 2, . . . , n on the right edge such that i < l if ui appears
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before ul topologically, or vi appears before vl topologically
(clearly all ui’s are topologically ordered before any vj).

Further, let B denote the event that innovative packets are
present at some distinct m0 among the ui’s which are destined
for m0 distinct vj’s on the right of the cut. Formally, let us
define the event B as follows: There exists a m0 > 0, (with
m0 ≤ min(m,n)), topologically ordered collection of indices
J = {j1, j2, . . . , jm0}, and the corresponding collection
nodes {vj1 , vj2 , . . . , vjm0

}, along with an (unordered) index
set K = {k1, k2, . . . , km0}, and the corresponding distinct
collection of nodes US = {uk1 , uk2 , . . . , ukm0

}, such that
(i) ukl

∈ ΓI(vjl
), for all l = 1, 2, . . . ,m0, and (ii) Sukl

*[⋃
x<l S

+
vjx

] ⋃ [⋃
x≥l Svjk

]
for all l = 1, 2, . . . ,m0.

Then, we have P (
⋂m0

l=1{vjl
receives an innovative packet

after transmission}|B ∩ H) ≥ 1−O(1/q).
Sketch of Proof: Let us renumber the nodes {ul, l =

1, 2, . . . ,m} as {uk1 , uk2 , . . . , ukm0
, ukm0+1 , . . . , ukm},

where the first m0 nodes correspond to those in US and
the rest are arbitrarily assigned indices. Let each uki

have
auxiliary coefficient vectors g

(i)
w , w = 1, 2, . . . li. Of these,

for each uki
∈ US , let l̃i be the number of coefficient vectors

that are innovative and not in span(
⋃m0

l=1 vjl
), and let the

corresponding coefficient vectors be g
(i)
w,⊥, w = 1, 2, . . . l̃i.

Similarly, let g
(i)
w,‖, w = 1, 2, . . . , l

‖
i be the codeword vectors

that are not innovative. Then we can write the codeword Xi

broadcast by node uki ∈ US as Xi = Xi,⊥ + Xi,‖ where

Xi,⊥
∆=

∑l̃i
w=1 αi,wg

(i)
w,⊥ for coefficients αi,wg

(i)
w,⊥ chosen

i.i.d. with uniform distribution on Fq. It can be shown that

P (Xi,⊥ > 0|H ∩ B) > 1−O(1/ql̃i) > 1−O(1/q) (2)

since l̃i ≥ 1 for all uki
∈ US . Further, since by the definition

of innovation, g
(i)
w,⊥ are different for uki

6= ukj
, uki

, ukj
∈ US ,

each Xi,⊥ ⊥ Xj,⊥.
Recall that the nodes {vj1 , vj2 , . . . , vjm0

} are topologically
ordered. We note that for the case of ΓI(vj1) transmitting
and additively interfering at vj1 , conditioned on H ∩ B, the
probability that the auxiliary coefficient vector received at vj1 ,
Yj1 /∈ span(Svj1

) can be bounded below by 1 − O(1/q) by
using Lemma 1.

Similarly, by considering the additive interference MAC
from ΓI(vj2) to vj2 and using Lemma 1, P (Yj2 /∈
span(vj2)) = 1 − O(1/q). However, by our definition of
innovation in Definition 1, Yj2 will be innovative at vj2 only if
Yj2 /∈ span(Svj2

∪S+
vj1

). Since span(S+
vj1

) = span(Svj1
)∪Yj1 ,

we also require that Yj1 ⊥ Yj2 .
Let us define Yj,⊥

∆=
∑

i∈ΓI(vj)
hijXi,⊥. Then, it suffices to

show that Yj1,⊥ ⊥ Yj2,⊥. Conditioning on the event H∩B∩A,

where A∆={Xi,⊥ > 0, uki
∈ US},

P (Yj1,⊥ ⊥ Yj2,⊥|H ∩ B)
≥ P (Yj1,⊥ ⊥ Yj2,⊥|H ∩ B ∩ A))P (A|H ∩ B)
= P (Yj1,⊥ ⊥ Yj2,⊥|H ∩ B ∩ A)(1−O(1/q))

where the last relation follows from (2).

Also, since Xi,⊥ ⊥ Xk,⊥, therefore conditioned on H∩B∩
A, Yj1,⊥ ⊥ Yj2,⊥ if and only if the row vectors (hi,j1)i∈ΓI(vj1 )

and (hi,j2)i∈ΓI(vj2 ) of H are linearly independent. Using
arguments similar to [4], [3] this can be shown to occur with
probability 1 − O(1/q). Thus P (Yj1,⊥ ⊥ Yj2,⊥|H ∩ B) ≥
(1−O(1/q))2 = 1−O(1/q). Therefore,

P (Yj2 is not innovative at vj2 |H ∩ B)
= P (

{
Yj2 ∈ Svj2

} ∪ {Yj1 ⊥ Yj2}c|H ∩ B
)

≤ P (
{
Yj2 ∈ Svj2

}|H ∩ B
)

+ P ({Yj1 ⊥ Yj2}c|H ∩ B)
≤ O(1/q).

This immediately leads to the result that

P (
2⋃

i=1

{Yji is not innovative at vji}|H ∩ B) ≤ O(1/q)

We similarly progress inductively over the right edge by
considering vj3 where the additional requirement is that
Yj3,⊥ ⊥ {Yj1,⊥, Yj2,⊥} and so on for all vjk

, k =
4, 5, . . . ,m0. This leads the desired result.

Observe that in Lemma 2, in the presence of sufficient
innovation rate at the left edge of the cut, the achievable rate
across a cut is conditioned on the event H.

Also, note that in the limit of large field Fq, the probability
that the transfer matrix H = {hij}m,n

i=1,j=1 will have full rank
tends to 1.

Proposition 1: P (H) = 1−O(1/q).
Therefore, unconditioning on H and using the union bound,

Proposition 1 implies that any innovative packet arriving at the
right edge of a cut will be lost with probability at most O(1/q).

Theorem 2: The rate Rq can be achieved over WBAIN with
i.i.d. and uniform fading.

The following corollary now follows immediately from
the above theorem and the definition of Rq and noting that∑Λ

i=1 fi = C̄q(1− δ) due to the max-flow min-cut theorem.
Corollary 1: (i) Rq ≤ Cq ≤ C̄q

(ii) (C̄q − Cq)/C̄q ≤ O(1/q).
We now provide a sketch of the proof for Theorem 2.
Let us define the sum-flow into a node vi ∈ V ′ in the BEN

T (G) as f∗i
∆=

∑
P :(v′

i,vi)∈P fP . For the corresponding node

vi ∈ V , let f̃∗i
∆=

∑
P :(v′

i,vi)∈P f̃P . be the total innovative flow
arriving at vi.

Now using the per-time-slot innovation arguments from
Lemma 2, we induce over the sequence of cuts (Si, S̄i). At
each cut, we compare the net flow flows arriving at each node
on the right edge of (Si, S̄i), with the net innovative flow
arriving at the corresponding node on G, and in the following
show that at each node, difference is O(1/q).

Lemma 3: Given any cut (Sm, S̄m), m = 0, 1, 2, . . . , N−1
in the BEN T (G), let f∗i be the flow arriving at each vi ∈ S
and let f∗j be the flow arriving at each vj ∈ S̄m under the min-
cut max-flow allocation f on T (G). Then, for the same cut
in the WBAIN, given that innovative packets are transmitted
at rate f̃∗i = f∗i (1−O(1/q)) for all vi ∈ S, each node vj ∈ S̄
receives the innovation rate of f̃∗j where f̃∗j = f∗j (1−O(1/q)).
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This implies that if C̄q(1 − δ) is the total flow supported
across the cut (S, S̄) in the BEN T (G), the corresponding
cut in the WBAIN will support an innovative flow of Rq =
C̄q(1− δ)(1−O(1/q)).
Sketch of Proof: We will induce over the sequence (Sr, S̄r),
r = 0, 1, 2, . . . , N − 1.
Step 1 Consider cut (S0, S̄0), S0 = {vs}, S̄0 = (V \vs) in
the BEN T (G). Note that a rate of Rq is supported by flow f
in T (G). Let flows fj be directed along each (vs, vj), ∀vj ∈
ΓO(vs), such that

∑
fj = C̄q. This is a pure broadcast case

with no interference. Thus, for the cut (S0, S̄0), the WBAIN
performs exactly like the BEN with an additional 1/q erasure
on each edge to account for the time-slots when hsj = 0.
Hence, the input flows are reduced by a (1−O(1/q)) fraction
at each vi ∈ ΓO(vs) in the WBAIN. Thus f̃∗i = f∗i (1 −
O(1/q)).
Step 2 For cuts (Sr, S̄r), r ≥ 1, let f∗i be the flow into a
node vi on the left edge of the cut as part of the max-flow
min-cut solution over T (G), and let f̃∗i be the corresponding
flow into a node ui in G such that f̃∗i = f∗i (1−O(1/q)). We
will denote nodes on the left edge by ui, i = 1, 2, . . . ,m and
on the right edge by vj , j = 1, 2, . . . , n.

Now, from the conformal realization theorem [7] applied to
T (G), we arrive at a schedule Σ(τ), τ = 1, 2 . . . , ∆ for cut
(Sr, S̄r), where new packets arrive at m0(τ) nodes at the left
edge of (Sr, S̄r) and an appropriate set of m1(τ) nodes on the
right receive a new packet, such that if {f∗i } are the average
rates of flow to nodes {ui} on the left edge of (Sr, S̄r), then
each vj on the right edge of the cut will receive an average
flow of f∗j .

Employing a probabilistic coupling, we arrive at a schedule
Σ′(τ) for the WBAIN. Next applying Lemma 2 and Proposi-
tion 1 at each time instant τ = 1, 2, . . . ,∆ it can be shown
that the net average rates of flow at each vj on the right edge
of the cut will be f̃∗j (1−O(1/q)).

Recall from our hypothesis that f̃∗i = f∗i (1 − O(1/q)) at
each ui. Thus the net average rates of flow at the right edge
will be thinned by another 1 − O(1/q) factor resulting in a
net average flow rate of f̃∗j (1−O(1/q))2 = f̃∗j (1−O(1/q)).
The induction hypothesis is thus proved.

To prove Theorem 2, observe that since f is a feasible and
optimal (max) flow on T (G) and we have from the Lemma 3
that the rate across any cut in T (G) can be achieved across
the corresponding cut in the WBAIN G.

Hence, if C̄q(1 − δ) is the max-flow min-cut capacity
achievable in T (G), a flow rate of Rq = C̄q(1−δ)(1−O(1/q))
is achievable in the WBAIN G.

IV. CAPACITY GAIN DUE TO FADING

We illustrate the gain in network capacity due to fading
diversity by analyzing the capacity of the heterogenous net-
work given in Figure 2 under fading and non-fading cases.
Specifically, we compare the unicast capacity from S1 to D1

under fading with an upper bound for the non-fading case.
The source S1 is connected to each of its outgoing nodes with
wireline links of rate R1, the nodes on the left edge of the cut

Fig. 2. Capacity across the cut in the DAG above, RS = 10R1 < log q
Nodes are labelled with erasure probabilities εi.

(S, S̄) transmit over wireless links to the nodes on the cut’s
right edge, and the latter transmit to D1 over wireline links,
each of rate R1.

Suppose that R1 and q are such that the cut (S, S̄) is the
bottleneck cut (for instance, R1 = log q). Then, from Corollary
1, the capacity of the unicast from S1 to D1 under uniform
i.i.d. fading is R1

∑5
i=1(1 − εi)(1 − O(1/q)). In contrast, if

the links crossing the cut have no fading, direct computation
yields the capacity of the cut to be R1(1−

∏5
j=1 εi).

Thus, for small erasure probabilities, approximately 5-fold
increase in the capacity is afforded by fading diversity in the
example network. Clearly, gains will be higher for graphs with
larger bottleneck bipartite subgraphs embedded in them.
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