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Abstract—Markov Random Fields (MRFs), a.k.a. Graphical
Models, serve as popular models for networks in the social
and biological sciences, as well as communications and signal
processing. A central problem is one of structure learning or
model selection: given samples from the MRF, determine the
graph structure of the underlying distribution. When the MRF
is not Gaussian (e.g. the Ising model) and contains cycles,
structure learning is known to be NP hard even with infinite
samples. Existing approaches typically focus either on specific
parametric classes of models, or on the sub-class of graphs
with bounded degree; the complexity of many of these methods
grows quickly in the degree bound. We develop a simple new
‘greedy’ algorithm for learning the structure of graphical models
of discrete random variables. It learns the Markov neighborhood
of a node by sequentially adding to it the node that produces the
highest reduction in conditional entropy. We provide a general
sufficient condition for exact structure recovery (under conditions
on the degree/girth/correlation decay), and study its sample and
computational complexity. We then consider its implications for
the Ising model, for which we establish a self-contained condition
for exact structure recovery.

I. INTRODUCTION

Markov Random Fields (MRF) are undirected graphical
models which are used to encode conditional independence
relations between random variables. At a more abstract level,
a graphical model captures the dependencies between a col-
lection of entities. Thus the nodes of a graphical model may
represent people, genes, languages, processes, etc., while the
graphical model illustrates certain conditional dependencies
among them (for example, influence in a social network,
physiological functionality in genetic networks, etc.). Often
the knowledge of the underlying graph is not available be-
forehand, but must be inferred from certain observations of the
system. In mathematical terms, these observations correspond
to samples drawn from the underlying distribution. Thus, the
core task of structure learning is that of inferring conditional
dependencies between random variables from i.i.d samples
drawn from their joint distribution. The importance of the
MRF in understanding the underlying system makes structure
learning an important primitive for studying such systems.

More specifically, an MRF is an undirected graph G(V,E),
where the vertex set V = {v1, v2, . . . , vp} corresponds to
a p-dimensional random variable X = {X1, X2, . . . , Xp}
(whereby each vertex i is associated with variable Xi), and
the edges encode the conditional dependencies between the
random variables (this is explained in detail in Section II).
A structure learning algorithm takes as input, samples drawn

from the distribution of X , and outputs an estimate Ĝ of
the underlying MRF. There are three primary yardsticks for a
structure learning algorithm:- correctness, sample complexity
and computational complexity. The three are interdependent,
and in a sense an ideal structure learning algorithm is one
which can learn any underlying graph on the nodes with high
probability (or with probability of error less than some given
δ, analogous to the PAC model of learning) with associated
sample complexity and computational complexity polynomial
in p and 1

δ . However, it is known that the general structure
learning problem is a difficult problem, both in terms of sample
complexity [1], [2] and computational complexity [3], [4].
Inspite of this, the practical importance of the problem has
motivated a lot of work in this topic, and there are several
approaches in the literature that, although not optimal, perform
well (both in practice, and also theoretically) under some
stronger constraints on the problem.

There are two fundamental ways to perform structure
learning, corresponding to two different interpretations of
a graphical model. Under certain conditions (given by the
Hammersley-Clifford theorem [5]), the conditional indepen-
dence view of a graphical model leads to a factorization of
the joint probability mass function (or density) according to
the cliques of the graph. Parameter estimation techniques [6]
[7] utilize such a factorization of the distribution to learn the
underlying graph. These techniques assume a certain form of
the potential function, and thereby relate the structure learning
problem to one of finding a sparse maximum likelihood
estimator of a distribution from its samples. On the other hand,
algorithms based on learning conditional independence rela-
tions between the variables, which we refer to as comparison
tests, are potential agnostic, i.e., they do not need knowledge
of the underlying parametrization to learn the graph. These
methods are based on comparing all possible neighborhoods
of a node to find one which has the ‘maximum influence’
on the node. In both cases, in order to learn the underlying
graph accurately and efficiently, the algorithms need some
assumptions on the underlying distribution and graph structure.
There are several existing comparison test based methods [8]
[9] [10], each with associated conditions under which they can
learn the graph correctly.

In addition to the difference in underlying assumptions,
there is another fundamental difference in the philosophy of
the two approaches. The parameter estimation techniques tend
to be ‘bottom-up’ approaches, whereby the algorithm is pro-



posed first, based on some intuition regarding the system, and
then subsequently it is analyzed and conditions are found for
correctness and efficiency. On the other hand, the comparison-
test techniques in literature tend to be designed with the
aim of achieving some correctness requirements. As a result,
comparison-test algorithms usually involve a computationally
expensive search over all potential neighborhoods of a node,
and this increases their computational complexity. In addi-
tion, although these algorithms make no assumptions on the
parametrization of the distribution, they need to assume some
properties of the graph in order to succeed (for example, the
algorithm of Bresler et. al. [8] needs to know the maximum
degree of the graph in order to learn it). Our contribution in this
work is to propose a simple ‘greedy’, comparison-test based
algorithm for learning MRF structure. As in any sub-optimal
greedy algorithm, we can not always guarantee correctness, but
are guaranteed low computational complexity. However, we
are able to provide general sufficient conditions for the success
of the algorithm for any graphical model, and show that these
conditions are in fact satisfied by one specific graphical model
of significance in literature: the pairwise symmetric binary
model, or the Ising model.

Greedy comparison-tests for exact structure learning are
however not completely new, and in fact one of the early
successes in the field was in the form of a greedy algorithm.
In their seminal paper, Chow and Liu [10] showed that if
the MRF was a tree, then it could be learnt by a simple
maximum spanning tree algorithm. However their method is
crucially dependent on the underlying graph being a spanning
tree (although recent results [11] have shown how it can be
modified to learn general acyclic graphs), and fails as soon as
the graph has loops. Our algorithm, in some sense, generalizes
the Chow and Liu algorithm to a richer class of graphs.
This is in spirit similar to the manner in which loopy belief
propagation extends the dynamic programming paradigm from
trees to loopy graphs. One notes however that unlike the
Chow and Liu algorithm which searches for a globally optimal
graph, ours is a locally greedy algorithm, whereby we learn
the neighborhood of each node separately in a greedy manner.

The remaining paper are organized as follows. In Section II,
we review graphical models and some results from information
theory, and set up the structure learning problem. Our new
structure learning algorithm, GreedyAlgorithm(ε), is given
in Section III. Next, in Section IV, we develop a sufficient
condition for the correctness of the algorithm for general
graphs. To demonstrate the applicability of this condition, we
translate it into equivalent conditions for learning an Ising
model in Section V. We discuss future work and conclude
in Section VI.

II. PRELIMINARIES

In this section, we formally define a graphical model and
set up the structure learning algorithm. In addition, as a
foreshadow to our structure learning algorithm, we define
conditional entropy, and state some of its properties which

we use later. We also define a notion of ‘empirical’ condi-
tional entropy which we later use as our test function, and
state an important lemma from information theory that helps
relate empirical entropy and empirical measures. For more
details regarding graphical models, refer to [5], and for the
information theoretic definitions, refer to [12].

First we establish some notation that we use throughout.
We assume in this paper that the random vector X whose
graph we are trying to learn is discrete valued. More specif-
ically, we assume that X is an n-dimensional random vector
{X1, X2, . . . , Xn}, where each component Xi of X takes
values in a finite set X . We use the shorthand notation P (xi)
to stand for P(Xi = xi), xi ∈ X , and similarly for a set A ⊆
{1, 2, . . . , n}, we define P (xA) , P(XA = xA), xa ∈ X |A|,
where XA , {Xi|i ∈ A}.

A. Graphical Models and Structure Learning

As mentioned before, an undirected graphical model cor-
responding to a probability distribution is specified by an
undirected graph G = (V,E), with each vertex vi ∈ V
corresponding to a random variable Xi which is a component
of a p-dimensional random vector X (for ease of notation,
henceforth when we mention a node, we refer to the physical
node in the graph, and the associated random variable. The
exact meaning should be clear from the context). The edges
E ⊆ V × V of a graphical model can be viewed as encoding
the probability distribution of X in several ways, all of which
are equivalent under certain conditions. For the purposes of
structure learning, an important interpretation is the local
Markov property, stated below.

Definition 1. (Local Markov) Given G(V,E), let N(i) =
{j ∈ V |(i, j) ∈ E} denote the neighborhood of node i.
Then a random vector X is said to obey the local Markov
property with respect to the graph G if for every Xi ∈ V ,
conditioned on the nodes in the neighborhood of i, the
node i is independent of the remaining nodes in the graph.
Mathematically, this means that for any set B ∈ V \ {i} ∪
N(i), we have that P (xi|xN(i), xB) = P (xi|xN(i)) for all
(xi, xN(i), xB) ∈ X 1+|N(i)|+|B|. We henceforth write this as

Xi

XN(i)

⊥⊥ XV \{i}∪N(i).

Finally, the structure learning problem is stated formally as
follows: given n i.i.d. samples drawn from a random variable
X with MRF G, give a learning algorithm and associated
conditions such that the hypothesis of the algorithm, Ĝ, is
equal to the true MRF G with probability greater than 1− δ.

B. Conditional Entropy Tests

As we described before in the introduction, a comparison-
test based method of structure learning is based on using a
test function to compare candidate graphs. Although there are
several different implementations, they are all based on the
local Markov interpretation of the graph. More specifically,
most comparison-test algorithms try to learn the neighborhood
of each individual node by comparing potential neighborhoods



using a test function. Following the approach of Abbeel et.
al. [9], we use conditional entropies as our test function for
selecting nodes. In this section, we provide the necessary
definitions, and also state some results from information theory
that underlies our approach.

First we need to define a few quantities which we use
throughout this paper. Given a discrete-valued random variable
Y taking values in a finite set Y such that P(Y = y) = py ≥
0 ∀ y ∈ Y , and given n i.i.d samples {Y (i)}ni=1, the empirical
probability mass function P̂ (y), y ∈ Y is defined as,

P̂ (y) =
1
n

n∑
i=1

1{Y (i)=y}, ∀ y ∈ Y.

The empirical entropy Ĥ(Y ) is defined as the entropy of the
empirical distribution P̂ .

Next, given two variables Y1, Y2, both taking values in Y ,
we can extend this notation to define empirical conditional
measures of the form

P̂ (y1|y2) =
1
n

n∑
i=1

1{Y (i)
1 =y1|Y (i)

2 =y2}
, ∀ (y1, y2) ∈ Y2.

Finally, for fixed y2 ∈ Y we define empirical conditional
entropy

Ĥ(Y1|Y2 = y2) = −
∑
y1∈Y

P̂ (y1|y2) log P̂ (y1|y2),

and using this we define,

Ĥ(Y1|Y2) =
∑
y2∈Y

P̂ (y2)Ĥ(Y1|y2)

Given samples, we use the empirical conditional entropies as
given above as the proxy for the actual conditional entropy.
Note also that we can define set based versions of all the above
statements in a similar manner.

The use of conditional entropies as a test function is
motivated by two reasons:

1) By the local Markov property, the conditional en-
tropy for a node is minimized by sets which contain
the true neighborhood, and hence (under some weak
non-degeneracy conditions), the smallest cardinality set
which minimizes the conditional entropy is the true
neighborhood.

2) Entropy and measure are related in the sense that two
probability measures on a set are close if their entropies
are close and vice versa.

The first point is the main reason behind using conditional
entropies as a test function, as it reduces the problem of finding
a neighborhood to that of finding a set which minimizes
an appropriate function, and also indicates a natural greedy
sequential approach to selecting the neighbors. We encode
this notion in the following proposition, which can be easily
derived from the Data Processing Inequality, see [12].

Proposition 1. For any node i ∈ V , we have that,

H(Xi|XN(i)) ≤ H(Xi|XA),

for any set A ⊆ V \ {i}.

The second point can be thought of as indicating that no
information is lost if we use entropies instead of measures
to learn the structure. This notion can be quantified in terms
of the following proposition, which we get by combining
Theorem 16.3.2 and Lemma 16.3.1 from [12].

Proposition 2. Let P and Q be two probability mass functions
in a finite set X , with entropies H(P ) and H(Q) respectively,
and with total variational distance ||P −Q||1 given by:

||P −Q||1 =
∑
x∈X
|P (x)−Q(x)|.

Then

|H(P )−H(Q)| ≤ −||P −Q||1 log
||P −Q||1
|X |

. (1)

Further, if the relative entropy between them is given by
D(P ||Q), then

D(P ||Q) ≥ 1
2 log 2

||P −Q||21. (2)

We use this proposition in several places in subsequent
proofs. At a high level, (1) allows us to leverage results of
convergence of empirical measures to the true measure to
obtain similar guarantees on the empirical entropy, while (2) is
used to convert entropy conditions to equivalent conditions on
the measure (in particular, this allows us to state our non-
degeneracy conditions directly in terms of the conditional
entropy, instead of more complicated statements in terms of
probability distributions usually found in literature [8]).

III. THE GREEDYALGORITHM(ε) STRUCTURE LEARNING
ALGORITHM

In this section, we present our greedy structure learning al-
gorithm, which we henceforth refer to as GreedyAlgorithm(ε).
We also argue that it always has a low worst-case computation
complexity, owing to its greedy nature. The challenge however
is to find conditions that guarantee correctness, and this
question is addressed in subsequent sections.

At a high level, our algorithm considers each node sepa-
rately, and adds nodes to its neighborhood sequentially in a
greedy manner. In particular, at each step we find the node that
provides the highest reduction in conditional entropy when
added to the existing set. We stop when this reduction is
smaller than ε.

More specifically, GreedyAlgorithm(ε) takes as input the n
samples and a single ‘threshold’ value ε. Given any node i, the
candidate neighborhood N̂(i) of the node is initially set to φ
and is learnt in a sequential manner. In the first stage, the node
j 6= i which minimizes the conditional entropy H(Xi|Xj)
is chosen as a candidate neighbor, and is added to N̂(i) if
conditioning on the node j reduces the entropy by at-least ε/
2. In any subsequent stage, a candidate node k ∈ V \ N̂(i)
is chosen as one which minimizes H(Xi|Xk, H bN(i)), and is
added if it reduces the conditional entropy by at-least ε/2. At



any stage when this condition is not satisfied, the algorithm
outputs N̂(i) and moves on to the next node.

GreedyAlgorithm(ε) for structure learning is formally pre-
sented in Algorithm 1.

Algorithm 1 GreedyAlgorithm(ε)
1: for i ∈ V do
2: complete ← FALSE
3: N̂(i)← Φ
4: while !complete do
5: j = argmin

k∈V \ bN(i)

Ĥ(Xi | X bN(i), Xk)

6: if Ĥ(Xi | X bN(i), Xj) < Ĥ(Xi | X bN(i))−
ε
2 then

7: N̂(i)← N̂(i) ∪ {j}
8: else
9: complete ← TRUE

10: end if
11: end while
12: end for

Since the algorithm is greedy, we can characterize its worst
case computational complexity independent of its correctness
guarantees.

Proposition 3. The running time of Algorithm 1 is O(np4)
where n is the number of samples and p is the number of
random variables.

Proof: The outer for loop is executed O(p) times. For
every iteration of the outer for loop, the while loop (lines 4-
11) is run O(p) times. In every iteration of the while loop, line
5 calculates the empirical entropy conditioned on each of the
nodes in N̂(i). Thus, in the worst case, the algorithm performs
O(p3) comparison tests (empirical conditional entropy calcu-
lation from samples). Even assuming a naive implementation
of a single comparison test that takes O(np), the overall time
taken by the algorithm is O(np4).

This shows that GreedyAlgorithm(ε) always has low com-
putational complexity for any graph (and in particular, in Sec-
tion IV, we show that for a large class of graphs, the algorithm
has running time of O(np2)). The tradeoff is however in
correctness guarantees. The problem arises in the fact that
unlike other comparison-test algorithms which are designed
to ensure certain correctness guarantees, our algorithm is
designed more from the point of view of simplicity and low
computational costs. Therefore to derive theoretical guarantees
for the algorithm, it is first important to understand the failure
mechanism of the algorithm.

IV. SUFFICIENT CONDITIONS FOR GENERAL DISCRETE
GRAPHICAL MODELS

In this section, we provide guarantees for general discrete
graphical models, under which GreedyAlgorithm(ε) recovers
the graphical model structure exactly. First, using an example,
we build up intuition for the sufficient conditions, and define
two key notions: non-degeneracy conditions and correlation
decay. Our main result is presented in Section IV-B, wherein

we give a sufficient condition for the correctness of the
algorithm in general discrete graphical models.

A. Non-Degeneracy and Correlation Decay

Before analyzing the correctness of structure learning from
samples, a simpler problem worth considering is one of algo-
rithm consistency, i.e., does the algorithm succeed to identify
the true graph given the true conditional distributions (or in
other words, given an infinite number of samples). It turns
out that the algorithm as presented in Algorithm 1 does not
even possess this property, as is illustrated by the following
counter-example

Let V = {0, 1, · · · , D,D + 1}, Xi ∈ {−1, 1}∀i ∈ V
and E = {{0, i}, {i,D + 1} | 1 ≤ i ≤ D}. Let P (xV ) =
1
Z

∏
{i,j}∈E

eθxixj , where Z is a normalizing constant (this is

the classical zero-field Ising model potential). The graph is
shown in Fig. 1.

0

1

2

D

D+1

Fig. 1. An example of adding spurious nodes: Execution of
GreedyAlgorithm(ε) for node 0 adds node D + 1 in the first iteration, even
though it is not a neighbor.

Suppose the actual entropies are given as input to Algorithm
1. It can be shown in this case that for a given θ, there
exists a Dthresh such that if D > Dthresh, then the output
of Algorithm 1 will select the edge {0, D + 1} in the first
iteration. This is easily understood because if D is large, the
distribution of node 0 is best accounted for by node D + 1,
although it is not a neighbor. Thus, even with exact entropies,
the algorithm will always include edge (0, D+ 1), although it
does not exist in the graph.

The algorithm can however easily be shown to satisfy
the following weaker consistency guarantee: given infinite
samples, for any node in the graph, the algorithm will return
a super-neighborhood, i.e., a superset of the neighborhood of
i. This suggests a simple fix to obtain a consistent algorithm,
as we can follow the greedy phase by a ‘node-pruning’ phase,
wherein we test each node in the neighborhood of a node
i returned by the algorithm (to do this, we can compare the
entropy of i conditioned on the neighborhood with and without
a node, and remove it if they are the same). However the
problem is complicated by the presence of samples, as pruning
a large super-neighborhood requires calculating estimates of
entropy conditioned on a large number of nodes, and hence this
drives up the sample complexity. In the rest of the paper, we



avoid this problem by ignoring the pruning step, and instead
prove a stronger correctness guarantee: given any node i, the
algorithm always picks a correct neighbor of i as long as
any one remains undiscovered. Towards this end, we first
define two conditions which we require for the correctness
of GreedyAlgorithm(ε).

Assumption 1 (Non-degeneracy). Choose a node i. Let N(i)
be the set of its neighbors. Then ∃ε > 0 such that ∀ A ⊂ N(i),
∀ j ∈ N(i) \A and ∀ l ∈ N(j) \ {i}, we have that

H(Xi | XA)−H(Xi | XA, Xj) > ε and (3)

H(Xi | XA, Xl)−H(Xi | XA, Xj , Xl) > ε (4)

Assumption 1 is illustrated in Fig. 2.

A

i
j l

Fig. 2. Non-degeneracy condition for node i: (i) Entropy of i conditioned
on any sub-neighborhood A reduces by at-least ε if any other neighbor j is
added to the conditioning set, (ii) Entropy of i conditioned on A and a two
hop neighbor l reduces by at-least ε if the corresponding one hop neighbor j
is added to the conditioning set

Assumption 2 (Correlation Decay). Choose a node i. Let
N1(i) and N2(i) be the sets of its 1-hop and 2-hop neighbors
respectively. Choose another set of nodes B. Let d(i, B) =
min
j∈B

d(i, j), where d(i, j) denotes the distance between nodes

i and j. Then, we have that ∀xi, xN1(i), xN2(i), xB∣∣P (xi, xN1(i), xN2(i) | xB)− P (xi, xN1(i), xN2(i))
∣∣

< f(d(i, B))

where f is a monotonic decreasing function.

Assumption 1 (or a variant thereof) is a standard assumption
for showing correctness of any structure learning algorithm,
as it ensures that there is a unique minimal graphical model
for the distribution from which the samples are generated.
Although the way we state the assumption is tailored to
our algorithm, it can be shown to be equivalent to similar
assumptions in literature [8]. Informally speaking, Assumption
1 states that for node i, any 2-hop neighbor captures less infor-
mation about node i than the corresponding 1-hop neighbor.
In the case of a Markov Chain, Assumption 1 reduces to a
weaker version of an ε−Data Processing Inequality (i.e., DPI
with an epsilon gap), and in a sense, Assumption 1 can be
viewed as a generalized ε−DPI for networks with cycles.

On the other hand, Assumption 2 along with large girth
implies that the information a node j has about node i is
‘almost Markov’ along the shortest path between i and j. This
in conjunction with Assumption 1 implies that for any two
nodes i and k, the information about i captured by k is less
than that captured by j where j is the neighbor of i on the
shortest path between i and k.

B. Guarantees for the Recovery of a General Graphical Model

We now state our main theorem, wherein we give a suf-
ficient condition for correctness of GreedyAlgorithm(ε) in a
general graphical model.

The counter-example given in Section IV-A suggests that the
addition of spurious nodes to the neighborhood of i is related
to the existence of non-neighboring nodes of i which somehow
accumulate sufficient influence over it. The accumulation of
influence is due to slow decay of influence on short paths
(corresponding to a high θ in the example), and the effect
of a large number of such paths (corresponding to high D).
Correlation decay (Assumption 2) allows us to control the first.
Intuitively, the second can be controlled if the neighborhood
of i is ‘locally tree-like’. To quantify this notion, we define
the girth of a graph Girth(G) to be the length of the smallest
cycle in the graph G. Now we have the following theorem.

Theorem 1. Consider a graphical model G where the random
variable corresponding to each node takes values in a set X
and satisfies the following:
• Non-degeneracy (Assumption 1) with parameter ε,
• Correlation decay (Assumption 2) with decay function
f(·),

• Maximum degree D.

Define h , h(ε,D) , ε2|X |−(D+1)4

256 and suppose f−1(h)
exists. Further suppose G obeys the following condition:

Girth(G) , g > 2
(
f−1 (h) + 1

)
. (5)

Then, given δ > 0, GreedyAlgorithm(ε) recovers G exactly
with probability greater than 1 − δ with sample complexity
n = ξ

(
ε−4 log p

δ

)
, where ξ is a constant independent of p, ε

and δ.

The proof follows from the following two lemmas. Lemma
1 implies that if we had access to actual entropies, Algorithm 1
always recovers the neighborhood of a node exactly. Lemma 2
shows that with the number of samples n as stated in Theorem
1, the empirical entropies are very close to the actual entropies
with high probability and hence Algorithm 1 recovers the
graphical model structure exactly with high probability even
with empirical entropies.

Lemma 1. Consider a graphical model G in which node i
satisfies Assumptions 1 and 2. Let the girth of the graph be
g > 2

(
f−1 (h) + 1

)
. Then, ∀ A ⊂ N(i), u /∈ N(i), ∃ j ∈

N(i) \A such that

H(Xi | XA, Xj) < H(Xi | XA, Xu)− ε+ ε̂ (6)

where ε̂ = |X |(D+1)2
√
h, and h is as defined in Theorem 1.



Proof: If A separates i and u in G then P (xi|xA, xu) =
P (xi|xA) and hence H(Xi | XA, Xu) = H(Xi | XA). Then,
the statement of the lemma follows from (3).

Now suppose A does not separate i and u in G. Then,
∃j ∈ N(i) \ A and l ∈ N(j) \ {i} such that the shortest
path between i and u in the induced sub graph on V \ A
passes through j and l. Assumption 1 implies that H(Xi |
XA, Xl)−H(Xi | XA, Xj , Xl) > ε. Now, choose a subset B
of nodes such that A ∪B ∪ {j} separates i and l in graph G
and d(i, B) ≥ g−2

2 , where g is the girth of the graph. Note
that such a B (possibly empty) exists since the girth of the
graph is g. From Assumption 2, we know that

|P (xi, xN(i)∪N2(i))− P (xi, xN(i)∪N2(i) | xB)| < f
(
g
2 − 1

)
⇒

∑
xi,xA,xj

|P (xi, xA, xj)− P (xi, xA, xj | xB)|

< |X |(D+1)2f
(
g
2 − 1

)
∀ xB

⇒ H(Xi, XA, Xj)−H(Xi, XA, Xj | XB)
< −|X |(D+1)2f

(
g
2 − 1

) (
log f

(
g
2 − 1

))
, ε̂

⇒ (H(Xi | XA, Xj) +H(XA, Xj))−
(H(Xi | XA, Xj , XB) +H(XA, Xj | XB)) < ε̂

⇒ H(Xi | XA, Xj)−H(Xi | XA, Xj , XB) < ε̂,

where the first implication follows from marginalizing irrel-
evant variables and the second implication follows from (1).
Using this we have that,

H(Xi | XA, Xj , Xl)
≥ H(Xi | XA, Xj , Xl, XB)

= H(Xi | XA, Xj , XB) since Xi

XA,Xj ,XB

⊥⊥ Xl

> H(Xi | XA, Xj)− ε̂

Using a similar argument, we also have,

H(Xi | XA, Xl, Xu) > H(Xi | XA, Xl)− ε̂

Combining the two inequalities, and using the fact that under
the given conditions ε̂ < ε

8 , we get

H(Xi | XA, Xj) ≤ H(Xi | XA, Xu)− 3ε
4
.

Lemma 2. Consider a graphical model G in which each
node takes values in X . Let the girth of the graph be
g > 2

(
f−1 (h) + 1

)
and the number of samples be n >

218ε−4
(
(D + 2) log 2|X |+ log p

δ

)
. Let P̂ and Ĥ denote the

empirical probability and empirical entropy as defined in
Section II-B.

Then ∀ i ∈ G such that Assumptions 1 and 2 are satisfied,
with probability greater than 1 − δ

p , we have that ∀ A (
N(i), u /∈ N(i), ∃ j ∈ N(i) \A such that

Ĥ(Xi | XA, Xj) < Ĥ(Xi | XA, Xu)− ε

2
(7)

and ∀ i, A ⊂ N(i), j ∈ N(i) \A, we have that

Ĥ(Xi | XA, Xj) < Ĥ(Xi | XA)− ε

2
(8)

Due to lack of space, we only provide a proof outline. The
complete proof can be found in [13].

First, we use the fact that given sufficient samples, the
empirical measure is close to the true measure uniformly in
probability. Specifically, given any subset A ⊆ V of nodes and
any fixed xA ∈ X |A|, we have by Azuma’s inequality after n
samples,

P
[∣∣∣P (xA)− P̂ (xA)

∣∣∣ > γ
]
< 2e−2γ2n.

The crux of the proof lies in the fact that given the above
sample complexity, this statement holds uniformly over all
the sets we are interested in (by union bound). Finally using
Proposition 2, we can translate this statement to conditional
entropies.

Proof (Theorem 1): The proof is based on mathematical
induction. The induction claim is as follows: just before
entering an iteration of the WHILE loop, N̂(i) ⊂ N(i).
Clearly this is true at the start of the WHILE loop since
N̂(i) = Φ. Suppose it is true just after entering the kth

iteration. If N̂(i) = N(i) then clearly ∀j ∈ V \ N̂(i), H(Xi |
X bN(i), Xj) = H(Xi | X bN(i)). Since with probability greater

than 1 − δ
p ,
∣∣∣Ĥ(Xi | X bN(i), Xj)−H(Xi | X bN(i), Xj)

∣∣∣ < ε
8

and
∣∣∣Ĥ(Xi | X bN(i))−H(Xi | X bN(i))

∣∣∣ < ε
8 , we have that∣∣∣Ĥ(Xi | X bN(i), Xj)− Ĥ(Xi | X bN(i))

∣∣∣ < ε
4 . So control ex-

its the loop without changing N̂(i). On the other hand, if
∃j ∈ N(i) \ N̂(i), then from (8) of Lemma 2, we have that
Ĥ(Xi | X bN(i)) − Ĥ(Xi | X bN(i), Xj) > ε

2 . So, a node is
chosen to be added to N̂(i) and control does not exit the loop.
Now suppose for contradiction that a node u /∈ N(i) is added
to N̂(i). Then we have that Ĥ(Xi | X bN(i), Xu) < Ĥ(Xi |
X bN(i), Xj). But this contradicts (7) from Lemma 2. Thus,
a neighbor j ∈ N(i) \ N̂(i) is picked in the iteration to be
added to N̂(i), proving that the neighborhood of i is recovered
exactly with probability greater than 1− δ

p . Using union bound,
it is easy to see that the neighborhood of each node (i.e., the
graph structure) is recovered exactly with probability greater
than 1− δ.

Remark 1. The proof for Theorem 1 can also be used to
provide node-wise guarantees, i.e., for every node satisfying
Assumptions 1 and 2, if the number of samples is sufficiently
large (in terms of its degree, and the length of the smallest
cycle it is part of), its neighborhood will be recovered exactly
with high probability.

Remark 2. Any decreasing correlation-decay function f suf-
fices for Theorem 1. However, the faster the correlation decay,
the smaller the girth in the sufficient condition for Theorem 1
needs to be.

And finally we have a corollary for the computational
complexity of GreedyAlgorithm(ε).

Corollary 1. The expected run time of Algorithm 1 is
O
(
δnp4 + (1− δ)Dnp2

)
. Further, if δ is chosen to be



O(p−2), the sample complexity n is O(log p) and the expected
run time of Algorithm 1 is O(np2 log p).

Proof: For the second part, note that with probability
greater than 1 − δ, the algorithm recovers the correct graph
structure exactly. In this case, the number of iterations of the
while loop is bounded by D for each node and hence the total
run time is O(Dnp2). Using the previous worst case bound
on the running time, we get the result.

V. GUARANTEES FOR THE RECOVERY OF AN ISING
GRAPHICAL MODEL

In this section, we show how Theorem 1 can be used
to efficiently learn Ising graphical models satisfying cer-
tain conditions. The zero field Ising model is a pairwise,
symmetric, binary graphical model which is widely used in
statistical physics to model the alignment of magnetic spins
in a magnetic field. It is defined as follows:

Definition 2. A set of random variables {Xv | v ∈ V } are
said to be distributed according to a zero field Ising model if

1) Xv ∈ {−1, 1} ∀v ∈ V and

2) P (xV ) = 1
Z

∏
i,j∈V

exp(θijxixj)

where Z is a normalizing constant. The graphical model of
such a set of random variables is given by G(V,E) where
E = {{i, j} | θij 6= 0}.

It is easy to verify that this satisfies the local Markov
property. Another very useful property of zero-field Ising
models is that they are symmetric with respect to −1 and
1. Formally, if P is the probability distribution function over
a set of zero-field Ising distributed random variables, then,
P (xV ) = P (−xV ).

The main contribution of this section is in the form of the
following theorem, which translates the sufficient conditions
from Section IV to equivalent conditions for an Ising model.

Theorem 2. Consider a zero-field Ising model on a graph
G with maximum degree D. Let the edge parameters θij be
bounded in the absolute value by 0 < β < |θij | < log 2

2D .
Let ε , 2−7e−6γD sinh2(2β). If the girth of the graph sat-
isfies g > 215

log 2

{
D2 log 2− log (sinh 2β)

}
then with samples

n = ξε−4 log p
δ (where ξ is a constant independent of ε, δ, p),

GreedyAlgorithm(ε) outputs the exact structure of G with
probability greater than 1− δ.

The proof of this theorem consists of showing that an Ising
graphical model satisfies Assumptions 1 and 2 if the graph has
large girth and the parameters on the edges satisfy certain con-
ditions. In Section V-A, we show that under certain conditions,
an Ising model has an almost exponential correlation decay.
Then in Section V-B, we use the correlation decay of Ising
models to show that under some further conditions, they also
satisfy Assumption 1 for non-degeneracy. Combining the two,
we get the above sufficient conditions for GreedyAlgorithm(ε)
to learn the structure of an Ising graphical model with high
probability.

A. Correlation Decay in Ising Models

We will start by proving the validity of Assumption 2 in
the form of the following proposition.

Proposition 4. Consider a zero-field Ising model on a graph
G with maximum degree D. Let the edge parameters θij be
bounded in the absolute value by 0 < β < |θij | < γ where
β < γ < log 2

2D . Then, for any node i, its neighbors N1(i), its
2-hop neighbors N2(i) and a set of nodes A, we have∣∣P (xi, xN1(i), xN2(i) | xA)− P (xi, xN1(i), xN2(i))

∣∣ <
c exp

(
− log 2

3
min

(
d(i, A),

g − 1
2

))
∀ xi, xN1(i), xN2(i) and xA (where c is a constant indepen-

dent of i and A).

We give an overview of the proof, quoting the necessary
lemmas as we go. The proofs of the lemmas are omitted due
to lack of space, but can be found in [13].

The outline of the proof of Proposition 4 is as follows. First,
we show that if a subset of nodes is conditioned on a Markov
blanket (i.e., on another subset of nodes which separates them
from the remaining graph), then their potentials remain the
same. For this we have the following lemma.

Lemma 3. Consider a graphical model G(V,E) and the
corresponding factorizable probability distribution function P .
Let A,B and C be a partition of V and B separate A and
C in G. Let G̃(A ∪ B, Ẽ) be the induced subgraph of G on
A ∪ B, with the same edge potentials as G on all its edges
and P̃ be the corresponding probability distribution function.
Then, we have that P (xD | xB) = P̃ (xD | xB) ∀ xD, xB
where D ⊆ A.

Now, for any node i, the induced subgraph on all nodes
which are at distance less than g

2 − 1 is a tree. Thus we
can concentrate on proving correlation decay for a tree Ising
model. We do this through the following steps:

1) Without loss of generality, the tree Ising model can be
assumed to have all positive edge parameters

2) The worst case configuration for the conditional proba-
bility of the root node is when all the leaf nodes are set
to the same value and all the edge parameters are set to
the maximum possible value

3) For this scenario, correlation decays exponentially

The following three lemmas encode these three steps.

Lemma 4. Consider a tree Ising graphical model T . Let the
corresponding probability distribution be P . Replace all the
edge parameters on this graphical model by their absolute
values. Let the corresponding probability distribution after this
change be P̃ . Then, there exists a set of bijections
{Mv : {−1, 1} → {−1, 1} | v ∈ V \ {r}} where V is the set
of vertices and r is the root node such that, ∀xr, xV \r we have
that P (xr, xV \r) = P̃ (xr,Mv(xv), v ∈ V \ r).



Lemma 5. For a tree Ising graphical model T with root r
and set of leaves L, we have

(xr = 1, xL = 1) ∈ arg max
xr,xL

|P (xr | xL)− P (xr)|

And finally we have the following lemma.

Lemma 6. In a tree Ising model, suppose |θij | < γ < log 2
2D

where D is the maximum degree of the graph. Then we have
exponential correlation decay between a node i, its neighbors
N1(i), its 2-hop neighbors N2(i) and the set of leaves
L i.e.,

∣∣∣P̃ (xi, xN1(i), xN2(i) | xL)− P̃ (xi, xN1(i), xN2(i))
∣∣∣ <

c exp(− log 2
3 d(i, L)) where c is a constant independent of the

nodes considered.

B. Non-degeneracy in Ising Models with Correlation Decay
Now using the results from the previous section, we turn our

attention to the question of correlation decay. In particular,
we have the following lemma which says that if an Ising
graphical model has almost exponential correlation decay and
its edge parameters satisfy certain conditions, then it also
satisfies Assumption 1. For the proof, refer to [13].

Lemma 7. Consider an Ising graphical model with potentials
θij bounded by 0 < β < |θij | < γ, max degree D, and having
correlation decay as follows∣∣P (xi, xN1(i), xN2(i))− P (xi, xN1(i), xN2(i)|xB)

∣∣
< c exp

(
−αmin

(
d(i, B), g−2

2

))
∀ i, B, xi, xN1(i), xN2(i). If the girth g > 2

α

{
(D + 8) log 2 +

log c + log
(
1 + 2De2γ

)
+ 2γ(D + 2) − log (sinh 2β)

}
,

then this graphical model satisfies Assumption 1 with ε =
2−7e−6γD sinh2(2β).

Finally, the proof of Theorem 2 follows directly by com-
bining Theorems 1 and 4 and Lemma 7. For complete details,
refer to [13].

VI. DISCUSSION

We developed a simple greedy algorithm for Markov struc-
ture learning. The algorithm is simple to implement and has
low computational complexity. We then showed that under
some non-degeneracy, correlation decay, maximum degree and
girth assumptions on the MRF, our algorithm recovers the
correct graph structure with O(ε−4 log p

δ ) samples. We then
specialize our conditions to prove a self-contained result for
the most popular discrete graphical model - the Ising model.

The success of our algorithm can be further improved by
post-processing via pruning. In particular, as mentioned, the
neighborhood of a node as estimated by our algorithm always
includes the true neighborhood – but it may also include
spurious nodes. The latter can be then identified by checking
each node of the estimated neighborhood, to see if it actually
provide a reduction in conditional entropy over and above all
the other nodes. Analysis of the improvement achieved by
such a procedure is more challenging, but it may be likely
that doing so will reveal an algorithm that can handle much
larger degrees and smaller girths.
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