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Abstract—We study routing and scheduling algorithms for
relay-assisted, multi-channel downlink wireless networks (e.g.,
OFDM-based cellular systems with relays). Over such networks,
while it is well understood that the BackPressure algorithm is
stabilizing (i.e., queue lengths do not become arbitrarily large), its
performance (e.g., delay, buffer usage) can be poor. In this paper,
we study an alternative – the MaxWeight algorithm – variants
of which are known to have good performance in a single-hop
setting. In a general relay setting however, MaxWeight is not
even stabilizing (and thus can have very poor performance).

In this paper, we study an iterative MaxWeight algorithm
for routing and scheduling in downlink multi-channel relay
networks. We show that, surprisingly, the iterative MaxWeight
algorithm can stabilize the system in several large-scale instan-
tiations of this setting (e.g., general arrivals with full-duplex
relays, bounded arrivals with half-duplex relays). Further, using
both many-channel large-deviations analysis and simulations, we
show that iterative MaxWeight outperforms the BackPressure
algorithm from a queue-length/delay perspective.

Index Terms—Wireless Scheduling and Routing, Downlink
Relay Networks.

I. INTRODUCTION

We consider OFDM (Orthogonal Frequency Division Mul-
tiplexing) based multichannel multihop downlink networks
consisting of a base-station, relays and users. OFDM based
networks are widely being deployed in commercial cellular
networks (e.g., LTE [1]); looking forward, it is well recognized
that wireless relays are envisioned to be an integral part
of the solution for next generation cellular systems (e.g.,
LTE-Advanced [12]). The setting here – multichannel OFDM
wireless networks – is the de-facto standard for 4G cellular
communications. These systems have several tens of parallel
channels (e.g., WiMax over 20 MHz bandwidth has about 50
channels, with each channel having 25 OFDM sub-carriers
grouped together) [3], [4]. A key challenge here is to design
good routing and scheduling algorithms that provide good user
performance (e.g., small buffer usage, low delay, etc.)

The obvious candidate for scheduling and routing in this
scenario is the BackPressure algorithm [20], which routes and
schedules packets based on differential backlogs (i.e., queue-
length differences from a one-hop downstream node). This
algorithm is known to be stabilizing; however, it is known
that it can have poor delay performance [24], [6], [19]. An
alternative, which simply looks at backlogs and not differential
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Fig. 1. A relay network (Example 1) illustrating that MaxWeight
algorithm is not stabilizing. There are four links (l1, l2, l3, l4) with
capacities being (10, 1, 1, 10) packets/slot respectively. The source
node is A and the destination is D.

backlogs is the MaxWeight algorithm [21]. The MaxWeight
algorithm assigns a weight of (queue-length × channel-rate),
and schedules a collection of links that maximizes the to-
tal weight (max-weight independent set). This algorithm is
however, not stabilizing in general, and thus results in very
poor performance. As a simple example, we study the 4-node
network in Figure 1, where the source node (A) needs to
deliver packets at rate 1.5 packets/slot to the destination (D).
The only scheduling constraint is that links l1 and l2 cannot
be activated together. It is clear that with the MaxWeight
algorithm, the source node A always routes packets along
link l1 (with capacity of 10 packets/slot) and does not utilize
the lower path (see figure) due to the scheduling constraint
(because the weight of the link l1 is always 10 times larger
than the weight of l2). This results in the buffer at node
B becoming arbitrarily large (as the corresponding outgoing
link can only support 1 packet/slot). This example seems to
indicate that MaxWeight is not a good candidate for relay
network scheduling and routing. Surprisingly, in this paper,
we show that the above intuition is not true in large-scale
downlink networks. We show that for large enough multi-
channel downlink relay networks, MaxWeight type algorithms
do stabilize the system and have better buffer-usage perfor-
mance than the BackPressure algorithm. Such smaller buffer
usage leads to a corresponding smaller packet delay. The
intuition that leads to these results is that in networks with a
large number of channels (multiple OFDM channels), (i) there
is sufficient flexibility due to the degrees of freedom that the
channels provide that can compensate for routing inefficiencies
in MaxWeight, and (ii) by not considering downlink backlogs,
upstream nodes with the MaxWeight algorithm are more
aggressive in using good channels to “push” packets closer
toward the destination, and thus resulting in better overall
performance than BackPressure.
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A. Related Work

Performance with MaxWeight and BackPressure algorithms
has been studied in many settings over the last decade. With
fixed routing (including single-hop flows), delay and buffer-
size performance has been studied for mean delay [15], [7] and
large buffer asymptotes [25], [22], [16], [18], [23]. Also, from
a network stability viewpoint for MaxWeight, work includes
[9] where the authors show that the network is stable if the
routes are fixed, and nodes are “decoupled” by means of
“measuring” arrival rates [11]. In this work, we focus on
properties (stability and queue-length/delay performance) of
variants of the BackPressure and MaxWeight algorithms for
networks which require dynamic routing.

With dynamic routing and BackPressure like algorithms,
modifications have been proposed to queue structures (e.g,
shadow queue [6], virtual queues [8], per-hop queues [24])
that empirically result in lower end-to-end delay. Closer to our
setting with multiple channels (but only single-hop downlink),
large deviation analysis provides buffer-size [3], [4], [5] or
delay [17], [10] performance bounds for iterative algorithms.

Our focus here is on downlink multi-hop networks – in
this setting, MaxWeight algorithms for routing have not been
studied (either in single-channel or multi-channel settings) as
these algorithms are believed to be not even stabilizing.

B. Contributions

We propose four routing and scheduling algorithms called
the Server Side Greedy (SSG) BackPressure algorithm, the
SSG MaxWeight algorithm, the Iterative Longest Queue First
(ILQF) BackPressure algorithm and the ILQF MaxWeight
algorithm in Section IV. We show the following:

1) BackPressure Algorithm:
• We prove that the BackPressure algorithm does not have

good small-queue performance. We show that rate func-
tion of the maximum queue length is zero for i.i.d. ON-
OFF channels, i.i.d. Bernoulli arrivals, and linear scaling
of the number of relays.

2) SSG BackPressure Algorithm:
• The algorithm is throughput optimal for the 2-hop net-

works we consider under general arrival processes, and
bounded channel processes.

3) SSG MaxWeight Algorithm:
• For 2-hop downlink networks, for arrival rate vectors

strictly in the interior the stability region of the system
that satisfy some additional constraints, if the system
scale is large enough, the algorithm keeps the system
stable (see Section V for specific details).

• For i.i.d. ON-OFF channels, i.i.d. Bernoulli arrivals and
linear scaling of the number of relays, we show that the
maximum queue length rate function is strictly positive
(i.e., exponential decay in queue length tails).

4) ILQF MaxWeight and ILQF BackPressure Algorithms:
• For i.i.d. ON-OFF channels, i.i.d. Bernoulli arrivals and

linear scaling of the number of relays, we show that the
maximum queue length rate function is strictly positive
(i.e., exponential decay in queue length tails).
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Fig. 2. An illustrative example of a 2-hop relay network with 2 relays
and 3 users.

We compare the lower bounds on the rate functions of the
SSG MaxWeight algorithm, the ILQF MaxWeight algorithm
and the ILQF BackPressure algorithm and compare their delay
performance via simulations. In particular, the bounds for the
MaxWeight based algorithms are greater than the bounds for
the BackPressure based algorithm and our simulations verify
these results.

We finally note that while we have stated and proved the
results in the context of 2-hop networks, the results can be
easily extended to any k-hop downlink network (i.e., multiple
“layers” of relays). We skip the details to keep notation
manageable.

II. SYSTEM MODEL: 2-HOP DOWNLINK COMMUNICATION
NETWORKS

We consider a multiuser, multichannel 2-hop downlink
communication system. The system consists of a base-station
(BS), R(n) relays and n users and n channels, the base-station
and the relays maintain n queues each, one for each user in
the system as shown in Figure 2.

Our results can be generalized to the case where the two
quantities (number of users and number of channels) are not
equal, but scale linearly with respect to each other. We consider
the case when the two are equal to keep the notation simple.

We study a discrete time queuing system. We build on the
notation used in [3], [4], [5]. All queue lengths below (i.e., at
the BS and relays) are measured at the end of a time-slot t,
and arrivals occur at the beginning of the time-slot.
• Qi = Queue number i at the base-station.
• Rri = Queue number i at relay r.
• Si = Channel number i.
• Qi(t) = The queue length of user i at the BS (measured

at the end of the time-slot).
• Q(t) = {Qi(t) : 1 ≤ i ≤ n}: The vector of queue lengths

at the base-station.
• Rri(t) = The queue length of user i at relay r (measured

at the end of the time-slot).
• R(t) = {Rri(t) : 1 ≤ r ≤ R(n), 1 ≤ i ≤ n}: The vector

of queue lengths at the relays.
• Ai(t) = The number of arriving packets to Qi at the base-

station.
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• A(t) = {Ai(t) : 1 ≤ i ≤ n}: The vector of the number
of arriving packets at the base-station at the beginning of
time-slot t .

• Ari (t) = The number of arriving packets to Rri (measured
at the beginning of the time-slot).

• Xi,j(t) = The number of packets in Qi that can be
transmitted by the BS to user i on channel j in time-
slot t.

• XB,r
i,j (t) = The number of packets in Qi that can be

transmitted by the BS to relay r on channel j in time-slot
t.

• Xr
i,j(t) = The number of packets in Rri that can be

transmitted by the relay r to user i on channel j in time-
slot t.

Note that arrivals to the base-station queues are external and
the arrivals to the relay queues are intermediate, i.e., packets
sent from the base-station to the relays. We design algorithms
that assign channels to the base-station and relay queues
in every time-slot, and execute their allocation through the
variables Y B,ri,j (t), Y ri,j(t) and Yi,j(t) for 1 ≤ i ≤ n, 1 ≤ j ≤ n
and 1 ≤ r ≤ R(n) . These variables are defined as follows:
• Yi,j(t) is 1 if channel j is scheduled for transmission

from Qi to user i in time-slot t and 0 otherwise.
• Y B,ri,j (t) is 1 if channel j is scheduled for transmission

from Qi to Rri in time-slot t and 0 otherwise.
• Y ri,j(t) is 1 if channel j is scheduled to serve the queue

for user i at relay r in time-slot t and 0 otherwise.
The dynamics of the individual queues in the system is
described below:

Qi(t) =

(
Qi(t− 1) +Ai(t)

−
n∑
j=1

R(n)∑
r=1

XB,r
i,j (t)Y B,ri,j (t)−

n∑
j=1

Xi,j(t)Yi,j(t)

)+

,

Rri(t) =

(
Rri(t− 1) +Ari (t)−

n∑
j=1

Xr
i,j(t)Y

r
i,j(t)

)+

,

where

Ari (t) = the number of packets for user i received by relay
r at the beginning of time-slot t.

We consider the following Interference Models:
1) Full Duplex: In the full duplex model, each relay has

two transceivers and therefore, can receive and transmit
on the same channels simultaneously.

2) Half Duplex: In the half duplex model, the relays can
either receive or transmit in a time-slot.

Using these two interference models, it is possible to construct
multiple types of Multihop relay networks. For instance:

1) Full Duplex without Direct Link (FD-w/oDL)
In this model, we assume that the relays are full duplex
and there is no direct communication link between
the base-station and the users. We assume that the
interference graph for the relays is a complete graph,

i.e., only one of the relays can transmit on a particular
channel in a give slot.

2) Full Duplex with Direct Link (FD-wDL)
In this model, we assume that the relays are full duplex
and there is a direct communication link between the
base-station and the users. We assume that the interfer-
ence graph for the relays is a complete graph.

3) Half Duplex with Direct Link (HD-wDL)
In this model, we assume that the relays are half duplex
and there is a direct communication link between the
base-station and the users. We assume that the interfer-
ence graph for the relays is a complete graph.

For our results, the interference graph of the relays being
a complete graph is the most restrictive condition that can
be imposed on interference among the relays. We can show
that the same results apply for less restrictive interference
constraints. However, we skip the details for brevity. In this
paper, we look at the FD-w/oDL and HD-wDL Models in
detail. The results and proofs for FD-w/oDL similarly extend
to the FD-wDL Model.

III. BACKGROUND: THE SSG SCHEDULING ALGORITHM

In this section we discuss the Server Side Greedy (SSG)
algorithm proposed in [4] which is known to have good delay
performance for single hop downlink networks.
The Server Side Greedy (SSG) algorithm was defined in [4]
for a single hop downlink system. This algorithm sequentially
allocates channels to queues within each time-slot. It first
allocates channel S1 to the maximum weight queue, i.e., the
queue with largest (Qi(t)Xi,1(t)). It updates the queue length
based on the number of packets that are drained due to this
allocation, and proceeds sequentially to the next channel (and
so on). The key point is that even within a time-slot, queue
lengths are updated during the allocation process, and future
channel allocations within the time-slot take the accumulated
queue length drains into account. For a formal definition of the
SSG algorithm (and proofs that this has quadratic complexity
in n), please refer to [4], Definition 3.

IV. PROPOSED SCHEDULING AND ROUTING ALGORITHMS
FOR 2-HOP DOWNLINK NETWORKS

The SSG algorithm discussed in Section III was designed
for single hop networks and therefore designed only for
scheduling packets. In this section, we build on the SSG
algorithm to design scheduling and routing algorithms for
multihop downlink networks. We describe the algorithms in
the context of 2-hop networks for simplicity, but, they can be
extended to k-hop downlink networks.

A. FD-w/oDL Model

Input:
• The queue lengths Qi(t−1) and Rri(t−1), for 1 ≤ i ≤ n,

1 ≤ r ≤ R(n).
• The arrival vectors Ai(t) and Ari (t), for 1 ≤ i ≤ n,

1 ≤ r ≤ R(n).
• The channel realizations Xr

i,j(t) and XB,r
i,j (t) for 1 ≤ i ≤

n, 1 ≤ j ≤ n, 1 ≤ r ≤ R(n).
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1) SSG BackPressure for FD-w/oDL: The allocation for
relay queues is carried out first using the SSG rule (tie breaking
rule: highest priority is the smallest relay index followed by
the smallest user index). The updated relay queue lengths are
used for allocation of channels at the BS using the SSG rule
with the weight of each link being the backpressure-channel
product of that link (tie breaking rule: highest priority is the
smallest relay index followed by the smallest user index at
each relay).

2) SSG MaxWeight for FD-w/oDL: The allocation for relay
queues is carried out first using the SSG rule (tie breaking rule:
highest priority is the smallest relay index followed by the
smallest user index). The allocation for the BS queues is also
done using the SSG rule with the weight of each link being
the queue-length-channel product of that link, breaking ties in
a cyclic order as follows. We initialize the priority order of
the relays as {1, 2, .., R(n)}. In each round of the allocation
process, the relay that is allocated that particular channel is
then removed from its current position in the priority order
and inserted at the last position to get the new priority order.

B. HD-wDL Model

Input:
• The queue lengths Qi(t−1) and Rri(t−1), for 1 ≤ i ≤ n,

1 ≤ r ≤ R(n).
• The arrival vectors Ai(t) and Ari (t), for 1 ≤ i ≤ n,

1 ≤ r ≤ R(n).
• The channel realizations Xr

i,j(t), XB,r
i,j (t) and Xi,j(t) for

1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ r ≤ R(n).
1) SSG BackPressure for HD-wDL Model: Let

∆ξB(t− 1) = max
1≤i≤n,1≤r≤R(n)

(Qi(t− 1)−Rri(t− 1) +Ai(t)),

ξR(t− 1) = max
1≤i≤n,1≤r≤R(n)

(Rri(t− 1) +Ari (t)).

If ∆ξB(t−1) > ξR(t−1), the base-station queues transmit in
slot t, else the relay queues transmit in slot t. The allocation
for relay queues is carried out using the SSG rule (tie breaking
rule: highest priority is the smallest relay index followed by
the smallest user index). The allocation for the BS queues is
done using the SSG rule with the weight of each link being the
backpressure-channel product of that link (tie breaking rule:
highest priority is the smallest relay index followed by the
smallest user index).

2) SSG MaxWeight for HD-wDL Model: Initialize

Amax = max
1≤i≤n

Ai(0).

In each time-slot t, update

Amax = max

{
Amax, max

1≤i≤n
Ai(t)

}
.

Let

ξB(t− 1) = max
1≤i≤n

(Qi(t− 1) +Ai(t)),

ξR(t− 1) = max
1≤i≤n,1≤r≤R(n)

(Rri(t− 1) +Ari (t)).

If ξB(t− 1) > ξR(t− 1), the base-station queues transmit in
slot t, else the relay queues transmit in slot t. The allocation
for relay queues is carried out using the SSG rule (tie breaking
rule: highest priority is the smallest relay index followed by
the smallest user index). The allocation for the BS queues is
also done using the SSG rule till all queues have queue length
less than ξB(t− 1)−Amax − 1 or we run out of channels to
allocate.

V. MAIN RESULTS AND DISCUSSION

We now state our main results, and discuss their implica-
tions.

A. Stability
Assumption 1: We use similar Assumptions to [7], [4],

described below for completeness.
1) The channel process:

• The channel state process is assumed to have a
stationary distribution π = [π]i∈I , with πi > 0
for all i ∈ I where I is the collection of possible
channel states.

• Denote s[m] to be the channel state in time-slot m.
We assume that for any ε > 0, there exists an integer
M0 > 0 such that for all M ≥ M0, all i ∈ I , and
all k, we have

E

[∣∣∣∣πi − 1

M

k+M−1∑
m=k

1s[m]=i

∣∣∣∣] < ε.

• There exists Xmax > 0 such that

max
i,j,t

Xij(t) ≤ Xmax.

2) The arrival process:
• The arrival process to each node ni in the network

is a stationary process with mean λi.
• The arrival rates which lie in the interior of the

system’s throughput region.
• Given any ε > 0, we assume that there exists an

integer M1 > 0 such that for all M ≥M1, and for
all k, i,

E

[∣∣∣∣λi − 1

M

k+M−1∑
m=k

Ai(m)

∣∣∣∣] < ε.

• The second moment of the number of arrivals per
time-slot is bounded.

For the following theorem, we consider the SSG BackPressure
algorithm for any of the models described so far (i.e., FD-
w/oDL, FD-wDL, HD-wDL). This theorem continues to hold
for any multi-channel network with independent sets based
scheduling constraints (in this case, the SSG BackPressure
algorithm sequentially allocates max-weight independent sets).

Theorem 1 (Throughput Optimality of SSG BackPressure).
Under Assumption 1, the SSG BackPressure rule results mean-
stable queues, i.e.,

lim sup
T→∞

1

T

T∑
t=1

√√√√ n∑
i=1

Q2
i (t) +

n∑
i=1

R(n)∑
r=1

R2
ri(t) <∞.
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As the name suggests, this algorithm takes into account
previous channel and user allocations (and the changes in
queue lengths due to such allocations) for each successive
new channel allocation. The proof of this builds on techniques
in [4], [7]. This result shows that the SSG BackPressure
algorithm keeps the queues stable, and thus is a candidate for
studying other performance measures such as buffer usage or
delay. Please refer to [14] for the proof of this theorem.

Assumption 2: (FD-w/oDL: Stability)
• Assumption 2(a):

Arrivals and Bounded Channels
– We assume that A(t) (the vector of arrivals in a

time-slot across users) is an aperiodic, irreducible,
finite state Markov chain (independent of the channel
process).

– We define λ =
1

n
E

[ n∑
i=1

Ai(0)

]
. Then,

P

( n∑
i=1

Ai(t) ≥ n(λ+ δ)

)
≤ e−nk(δ),

where k(δ) > 0 is a function of δ and independent
of n.

– Ai(t) ≤ k1n for all t and i and some constant k1.
– The channel processes are i.i.d. across time-slots.
– XB,r

i,j (t) ≤ Smax <∞.
– Xr

i,j(t) ≤ Smax <∞.
– For every i, j, r and t,

P (Xr
i,j(t) = Smax) = q(i, j, r) > 0.

• Assumption 2(b):
Consider the event E that there exists a set of channels
J such that |J | = nk2 for some constant k2 < 1 and
XB,r
i,j < Smax for all j ∈ J and 1 ≤ r ≤ R(n). Then,

P (E) = o

(
1

n6

)
.

The event E as described above is equivalent to saying
that in a given time-slot, there exists a constant fraction of
the channels which cannot be used at Smax by the base-
station. If the channels are i.i.d. Bernoulli with parameter
q across relays and time, we have that

P (E) = 2nH(k2)(1− q)nk2R(n) = o

(
1

n6

)
,

where H(k2) = −(k2 log(k2)+(1−k2) log(1−k2)). We
can show that another sufficient condition is the α mixing
condition defined in [2]. The condition implies that even
though the channel variables are not independent,
the correlation between them decays over space and
time and, α captures the rate at which correlation decays.

• Assumption 2(c):
Let I be a set of relays such that |I| ≥ δR(n), for some

constant δ < 1. Consider the event G that for a channel
j and for every relay r ∈ I , Xr

i,j(t) < Smax, ∀i. Then,

P (G) ≤ o
(

1

n4

)
.

If the channels are i.i.d. Bernoulli with parameter q across
relays and time, for δ = 0.5, we have that

P (G) ≤ (1− q)0.5R(n).

Therefore, for i.i.d. channels, we need R(n) >

− 6

log(1− q)
log n. The event G as described above is

that given a set of relay which includes δ fraction of all
the R(n) relays, none of them can use a channel j at
Smax in a given time-slot.

• Assumption 2(d):
Let I be a set of relay queues such that that |I| = k3R(n)
for some constant k3 < 1 and let J be a set of channels
such that |J | = 2k3R(n)

qmin
, where

qmin = min
r,i,j,t

q(i, j, r, t) > 0.

Consider the event W that for every relay in I there exist
k3R(n) channels in J such that Xr

i,j(t) = Smax. Since
|J | = 2k3R(n)

qmin
, for every relay, the expected number of

channels in J such Xr
i,j(t) = Smax is at least 2k3R(n).

Therefore W is the event that for all relays, the number
of channels which have rate Smax is at least half of its
expected value. Then,

P (W c) = o

(
1

n3

)
.

If the channels are i.i.d. Bernoulli with parameter q across
relays and time, we have that

P (W c) = k3R(n)e−
2k3R(n)

q H( q
2 |q).

This assumption, we can show, is also satisfied by the
α mixing condition defined in [2] and discussed in
Assumption 2(b).

Lemma 1. Under Assumption 2, if
1

n
E

[ n∑
i=1

Ai(0)

]
= λ >

Smax, no scheduling algorithm can stabilize the system.

Therefore, λ ≤ Smax is a necessary condition for an arrival
vector to lie in the stability region of the system.

Theorem 2. Under Assumption 2, for arrival processes with
λ < Smax, the SSG MaxWeight algorithm stabilizes the FD-
w/oDL system, i.e., the markov chain {Q(t),R(t),A(t)} is
positive recurrent for n > n0 where n0 is a function of λ.

This is one of the key results of this paper: For each possible
arrival rate vector with mean λ < Smax (so that it is strictly
within the stability region of the system), if the system scale
is large enough, this result shows that the SSG MaxWeight
algorithm (that does not use downlink queue lengths) keeps
the system stable. As we discussed earlier in Example 1,
this is not true in general. The proof leverages the fact that
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the degrees of freedom resulting from the large number of
channels compensates for any possible routing errors due to a
lack of knowledge of downlink queues.

This result follows from channel diversity since under
Assumption 2(a), the system is stable even if only a finite
number of users have non-zero arrival rates.

As mentioned before, this result can be extended to k−hop
networks. Please refer to Appendix C for the details.

Assumption 3: (HD-wDL: Stability)
• Assumption 3(a):

Arrivals and Bounded Channels
– We assume that the arrival process is stationary,

ergodic and i.i.d. across time-slots. We define λ =
1

n
E

[ n∑
i=1

Ai(0)

]
. Then,

P

( n∑
i=1

Ai(t) = n(λ+ δ)

)
≤ e−nk(δ).

– Ai(t) ≤ k1nα for some α < 1, all t and i and some
constant k1.

– The channel processes are i.i.d. across time-slots.
– XB,r

i,j (t) ≤ Smax <∞.
– Xr

i,j(t) ≤ Smax <∞.
– Xi,j(t) ≤ Smax <∞.
– For every i, j, r and t,

P (Xi,j(t) = Smax) = q(i, j, r) > 0.

• Assumption 3(b):
Let I be a set of users such that that |I| ≥ k2n for some
k2 < 1. Consider the event G that for a channel j and
for every user i ∈ I , Xi,j(t) < Smax. Then,

P (G) ≤ o
(

1

n3

)
.

If the channels are i.i.d. Bernoulli with parameter q across
relays and time, we have that

P (G) ≤ (1− q)k2n.

This assumption, we can show, is also satisfied if the
α mixing condition defined in [2] and discussed in
Assumption 2(b) holds true for the channel variables.

• Assumption 3(c):
Let I be a set of users such that that |I| = k3n and let
J be a set of channels such that |J | = 2k3n

qmin
, where

qmin = min
i,j,t

q(i, j, t) > 0.

Consider the event W that for every user in I there exist
k3n channels in J such that Xi,j(t) = Smax. Then,

P (W c) = o

(
1

n2

)
.

If the channels are i.i.d. Bernoulli with parameter q across
relays and time, we have that

P (W c) = nk3e
− 2k3n

q H( q
2 |q).

This assumption, we can show, is also satisfied if the
α mixing condition defined in [2] and discussed in
Assumption 2(b) holds true for the channel variables.

Lemma 2. Under Assumption 3, if
1

n
E

[ n∑
i=1

Ai(0)

]
= λ >

Smax, no scheduling algorithm can stabilize the system.

Therefore, λ ≤ Smax is a necessary condition for an arrival
vector to lie in the stability region of the system.

Theorem 3. Under Assumption 3, for any arrival process with
mean λ < Smax, the SSG MaxWeight algorithm stabilizes the
HD-wDL system, i.e., the markov chain {Q(t),R(t),A(t)} is
positive recurrent for n > n0 where n0 is a function of λ.

Theorems 2 and 3 together form one of the two key mes-
sages of this paper which is that even though MaxWeight type
algorithms are not throughput optimal for multihop networks
in general, in the setting we consider i.e. large-scale multi-
channel downlink networks with relays, they stabilize the
system.

The proofs of Theorems 2 and 3 differ from the classical
methods of proving stability because of the coupling between
the base-station and relay queues. Please refer to Appendix A
for the details of the proofs.

We note that the main difference between Assumptions 2
and 3 is that Assumption 2 (FD-w/oDL) is satisfied by all
arrival processes such that the mean arrivals for each user is
≤ kn for any constant k (specifically, any k < Smax works)
whereas, Assumption 3 (HD-wDL) only allows arrival process
which have mean ≤ k′nα for any constant k′ and α < 1.
In particular, this implies that the SSG MaxWeight algorithm
with Full Duplex relays can support any point that lie within
the interior of the stability region, for n large enough1. This
follows because the peak channel rate is Smax; thus, the
maximum rate per user that can be supported by any algorithm
is no more than Smaxn.

On the other-hand, for the Half Duplex system with a direct
link, Assumption 3 restricts the per-user arrival process (both
mean and peak) to scale no more than ≤ k′nα. This implies
that in this setting, we can provably stabilize systems for which
the arrival rates (across users) are more balanced, specifically,
no single user can use the entire capacity.

B. Performance Analysis

Assumption 4: (FD-w/oDL: Performance Analysis)
• Bernoulli Arrivals and ON-OFF Channels

– Ai(t) = Bernoulli(p) i.i.d. across users and time-
slots.

– XB,r
i,j (t) = Bernoulli(q2) i.i.d. across channels and

time-slots.
– Xr

i,j(t) = Bernoulli(q3) i.i.d. across channels and
time-slots.

• Linearly Scaling Relays

R(n) = R̃n, R̃ > 0.

1Further, we can show that even with a Direct Link between the base-station
and the Users, the analogous result goes through.
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Our proofs work for any value of R̃, however we focus
on the more realistic case of R̃ < 1.

For the case of Bernoulli Arrivals and ON-OFF Channels, in
addition to the BackPressure and SSG MaxWeight algorithms
we also analyze two other algorithms derived from the Iterated
Longest Queue First (ILQF) algorithm introduced in [3] which
is known to be buffer-usage rate-function optimal for single
hop networks (and thus is a good baseline for comparison).

This algorithm operates iteratively, where, in each iteration
the algorithm determines a maximum size matching between
the collection of longest queues and ON unallocated chan-
nels. After doing so, the queue lengths are updated, and the
matching process repeats. The complete description of the
algorithm is available in [3], Definition 3. We build on the
ILQF algorithm to design scheduling and routing algorithms
for multihop downlink networks.

1) ILQF BackPressure for FD-w/oDL: The allocation for
relay queues is carried out first using the ILQF rule (tie
breaking rule: highest priority is the smallest relay index
followed by the smallest user index). The updated relay queue
lengths are used for allocation of channels at the BS using the
ILQF rule with the weight of each link being the backpressure
of that link (tie breaking rule: highest priority is the smallest
relay index followed by the smallest user index at each relay).

2) ILQF MaxWeight for FD-w/oDL: The allocation for
relay queues is carried out first using the ILQF rule (tie
breaking rule: highest priority is the smallest relay index
followed by the smallest user index). The allocation for the
BS queues is also done using the ILQF rule with the weight
of each link being the queue length of that link (tie breaking
rule: highest priority is the smallest relay index followed by
the smallest user index at each relay).

We now analyze the performance of algorithms of the
4 algorithms for the FD-w/oDL system for the restricted class
of arrival and channel processes characterized in Assumption
4. The performance metric we are interested in is the small
buffer overflow probability which is the probability that the
maximum queue length in the system (both at the base-station
and the relays) is greater than a positive integer b. Formally,
for each of these algorithms, we are interested in computing
c(b) where

c(b) =
1

b+ 1
min

{
lim inf
n→∞

−1

n
logP

(
max
i,r

Rri(0) > b

)
,

lim inf
n→∞

−1

n
logP

(
max
1≤i≤n

Qi(0) > b

)}
,

for any fixed non-negative integer b.

Theorem 4. Under Assumption 4, for the BackPressure algo-
rithm,

c(b)(BP ) = 0.

This theorem shows that even though the BackPressure
algorithm is throughput optimal, it performs poorly when it
comes to keeping the queue lengths small. This empirically
holds even in the non-asymptotic region as seen in Figure 3.

Theorem 5. Under Assumption 4, for the SSG MaxWeight
algorithm, for any ε ∈ (0, 1− p) and

δ ∈
(

0,
q3(1− p− ε)

2− q3

)
,

c(b)(SMW ) ≥ min

(
H
(
p|p+ ε

)
, δ log

1

1− q3
,

2δH
(
q3| q32

)
q3

)
.

This is the second key result of this paper. This theorem
shows that for the setting that we consider in Assumption 4,
the SSG MaxWeight algorithm not only stabilizes the system
for n large enough, but also performs well when it comes to
keeping the queue lengths small.

Theorem 6. Under Assumption 4, for the ILQF MaxWeight
algorithm,

c(b)(IMW ) ≥ min

(
R̃ log

1

1− q2
,

1

2
log

1

1− q3

)
.

Theorem 7. Under Assumption 4, for the ILQF BackPressure
algorithm,

c(IBP )(b) ≥ min

(
1

d 2
R̃
e

log
1

1− q2
,

1

d 2
R̃
e+ 1

log
1

1− q3

)
.

Since
⌈

2

R̃

⌉
≥ 2

R̃
>

1

R̃
and

⌈
2

R̃

⌉
+ 1 ≥ 2 for all positive

values of R̃, we observe from Theorems 6 and 7 that we get
better bounds on the rate function for the ILQF MaxWeight
algorithm than the ILQF BackPressure algorithm. The intuition
for the improvement is clear: by not considering downlink
backlogs, upstream nodes with the ILQF MaxWeight algo-
rithm are more aggressive in using good channels to “push”
packets closer toward the destination, and thus we expect,
will result in a better performance than ILQF BackPressure.
We further observe that the bound for the SSG MaxWeight
algorithm in Theorem 5 is independent of R̃. Therefore for
small enough values of R̃, i.e. for a small number of relays, we
get better bounds on the performance of the SSG MaxWeight
algorithm than the ILQF BackPressure algorithm. However,
formally since these are bounds, we compare their relative
delay performance through simulations in Section VI, which
verify the intuition from the bounds.

To prove Theorems 5, 6 and 7 we use technical results
on Markov Chain coupling from [5]; however, our algorithm
performance analysis substantially differs from [5] as we need
to deal with two hops (and can generalize to any finite number
of hops), thus introducing coupled queues across hops. This
entails a different proof technique.

The good performance of the iterative algorithms comes
from the interplay between the large number of channels as
well as users.

Please refer to Appendix B for the details.

VI. SIMULATION RESULTS

We compare the end-to-end delay performance of four
algorithms (BackPressure, SSG MaxWeight, ILQF MaxWeight
and ILQF BackPressure) for a FD-w/oDL system. The end-to-
end delay of a packet is defined as the number of time-slots it
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Fig. 3. End-to-end delay performance of BackPressure, SSG
MaxWeight, ILQF MaxWeight and ILQF BackPressure algorithms
for a FD-w/oDL system consisting of 50 users and channels with 2
relays for load = 0.74 and ON-OFF channels with parameters 0.5 and
0.1 for the base-station to relay channels and relay to user channels
respectively.

spends in the system before reaching the intended user. This
includes the time-slot at the beginning of which the packet
arrives at the base-station. We consider end-to-end delay as
the metric in the simulations because minimizing delay is
important for several real-time applications (e.g., video, voice-
over-IP). It is well known that delay is closely related to
the queue-length at the base-station and the relays where the
packets are temporarily stored on their way to the intended
users. Therefore, we expect that algorithms which have good
buffer-usage/queue-length performance, also have good end-
to-end delay performance.

For this particular experiment, we assume that the system
has 50 users, 50 channels and 2 relays. In addition, we assume
that p = 0.74, q2 = 0.5, q3 = 0.1. We ran the system for
10000 time-slots. Figure 3 shows the delay performance of all
4 algorithms and Figure 4 is the same plot, but zoomed in to
get a closer look at the difference in the performance of the
three iterative algorithms. We see that the iterative algorithms
perform much better than the non-iterative versions. The SSG
MaxWeight algorithm seems to be doing better than ILQF
BackPressure confirming our intuition that upstream nodes are
more aggressive in the SSG MaxWeight algorithm because
of the lack of downlink queue length information, leading
to better delay performance. This result also validates the
difference in the bounds obtained in Theorems 5, 6 and 7.

VII. CONCLUSIONS

We proved that variants of the MaxWeight algorithm are
stabilizing for large scale relay networks under appropriate
models. We compared the performance of Iterative MaxWeight
algorithms and Iterative BackPressure algorithm and found
that the Iterative MaxWeight algorithms have better perfor-
mance. Given that the complexity of these algorithms are
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Fig. 4. End-to-end delay performance of SSG MaxWeight, ILQF
MaxWeight and ILQF BackPressure algorithms for a FD-w/oDL sys-
tem consisting of 50 users and channels with 2 relays for load = 0.74
and ON-OFF channels with parameters 0.5 and 0.1 for the base-station
to relay channels and relay to user channels respectively.

not significant (low-degree polynomial, please see [4] for
discussion on the complexity of SSG-like algorithms), they
can be considered for implementation in practical settings.
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APPENDIX A
LARGE SYSTEM STABILITY OF ITERATIVE MAX WEIGHT

We consider the FD-w/oDL and HD-wDL models described
in Section II separately. We first provide a proof outline for
the FD-w/oDL model.

A. FD-w/oDL

1) We first prove that if λ > Smax, no scheduling policy
can stabilize the system.

2) We then show that the base-station queues are stable
for any λ < Smax. This proof uses the fact that since
there are R(n) relays, for large n, every channel can be
used at Smax to send packets to at least one of these
relays with very high probability. As λ < Smax, with
high probability, fewer packets come into the system in
a time slot than the number that can be served, thus
ensuring that the base-station queues are stable.

3) Since the arrival process at the base-station queues is
stationary and ergodic, and the base-station queues are
stable, the arrival process at the relay queues (which is
the departure process of the base-station queues) is also
stationary and ergodic. By Theorem 5 in [4], we know
that the SSG algorithm is throughput optimal for the
system consisting of just the relay queues. Therefore, to
prove that the MaxWeight SSG algorithm stabilizes the
relay queues, we need to show that the arrival process at
the relays is inside the throughput region of the relays
queues.

4) Since the throughput region of the relays queues is not
known, to do this, we propose an algorithm called the
Arrival Prioritized-SSG (AP-SSG) algorithm and show
that this algorithm can stabilize the relay queues for
the arrival process which is the departure process of
the base-station queues. This shows that the departure
process of the base-station queues lies in the throughput
region of the relay queues and therefore, the relay queues
will also be stabilized by the throughput optimal SSG
algorithm.

5) The AP-SSG algorithm stores 2 values corresponding to
each relay queue. Before allocation for slot t begins, the
first value Ar(0)i is initialized to the number of arrivals
to that queue at the beginning of slot t and the second
value R(0)

ri is initialized to the queue length of the queue
for user i at relay r at the end of time-slot t− 1.
The allocation proceeds in n rounds. In round k, the
algorithm finds a queue with the highest Ar(k−1)i Xr

i,k

value. If this value is greater than 0, channel k is
allocated to queue i at relay r and Ar(k)i is updated to
(A

r(k−1)
i − Xr

i,k)+. If Ar(k−1)i Xr
i,k = 0, the algorithm

finds a queue with the highest R(k−1)
ri Xr

i,k value and
serves it. It updates R(k)

ri to (R
(k−1)
ri −Xr

i,k)+.
The AP-SSG algorithm therefore, gives the first priority
to queues which have packets that arrived at the begin-
ning of that slot and then to queues which are the most
backlogged. For the AP-SSG algorithm, we prove the
following key lemma.
Lemma 3. Let Sri be the service allocated to queue i
at relay r by the AP-SSG algorithm. Let E4 be the event
that

∩r,i{Ari ≤ Sri} ∩ {Sr∗i∗ ≥ Ar
∗

i∗ + Smax},

where {r∗, i∗} ∈ arg maxr,iRri(t − 1). The event E4

implies that all the arrivals to the relay queues at the
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beginning of slot t are served in slot t and the at least
one of the longest relay queues is served by at least 1
additional channel at Smax. Then, under Assumption 2,

P (Ec4) = o

(
1

n

)
.

The above lemma essentially shows a negative drift of at
least RmaxSmax, where Rmax is the maximum queue
length of the relay queues at the end of time-slot t −
1. We then show that there exists an n0 such that this
algorithm stabilizes the relay queue system with n >
n0 channels via the quadratic lyapunov function. This
proves that the arrival process at the relay queues which
is the departure process of the base-station queues lies
inside the throughput region of the relay queues and
therefore, the relay queues will be stabilized by the SSG
algorithm.

The following Lemma generalizes Theorem 4 in [5]. The-
orem 4 in [5] was restricted to computing the stationary
distribution of Markov Chains such that in each time-slot, the
value of the Markov random variable could increase by at most
a constant number (k0) with exponentially small probability
(e−cn). This lemma generalizes the theorem to markov chains
which increase by at most χ(n) in a given slot with probability
at most f(n) such that χ(n)3f(n) = o(1/n2).

Lemma 4. Consider a discrete time Markov Chain
Y (n) ∈ {0, 1, 2, ...}. Let f(n) = o

(
1
n6

)
and χ(n) such

that χ(n)3f(n) = o(1/n2). Suppose that the transition
probabilities are as follows:

If Y (n)(t) > 0,

P (Y (n)(t+ 1) = Y (n)(t)− 1) = 1/2

P (Y (n)(t+ 1) = Y (n)(t) + χ(n)) = f(n)

P (Y (n)(t+ 1) = Y (n)(t)) = 1/2− f(n).

If Y (n)(t) = 0,

P (Y (n)(t+ 1) = χ(n)) = f(n)

P (Y (n)(t+ 1) = 0) = 1− f(n).

Let π(m) = P (Y (n)(t) = m). For this Markov Chain, we
have that,

1− π(0) ≤ 4χ(n)3f(n) = o

(
1

n2

)
.

Proof: Consider the Lyapunov function Lyap(x)=x. For n
large enough, we have

E(Y (n)(t+ 1) − Y (n)(t)|Y (n)(t), Y (n)(t) > 0)

≤ χ(n)f(n)− 1

2

≤ −1

3
,

so the Lyapunov function has negative drift outside the set
{0} and therefore the Markov Chain is positive recurrent. The
Markov Chain is also irreducible and aperiodic and therefore

has a unique stationary distribution. We prove the following
statement by induction about π(m) by induction

π(m) ≤ π(0)(2χ(n))2dm/χ(n)ef(n)dm/χ(n)e.

For n large enough, 2χ(n)2f(n) < 1.

Case I: 1 ≤ m ≤ χ(n)

π(m) = 2

m∑
r=1

π(m− r)
m∑
j=r

f(n)

≤ 2m2π(0)f(n)

≤ 2(χ(n))2π(0)f(n).

Case II: (k − 1)χ(n) < m ≤ kχ(n)

π(m) = 2

χ(n)∑
r=1

π(m− r)
χ(n)∑
j=r

f(n)

≤ 2(χ(n))2π(m− χ(n))f(n)

≤ 2χ(n)2π(0)2k−1(χ(n))k−1f(n)k−1f(n)

= (2χ(n))2kπ(0)f(n)k,

thus completing the proof by induction.

Let n be large enough such that W = 2χ(n)3f(n) < 1/2,
then, by adding the values of π(m) for m = 0 to ∞ and
equating it to 1, we get that,

1− π(0) ≤ W

1−W
≤ 2W

= 4χ(n)3f(n).

�

In the following lemma, we prove that if on average, more
than nSmax packets come into the system in every slot, no
scheduling policy can stabilize the system.

Lemma (1). Under Assumption 2, if
1

n
E

[ n∑
i=1

Ai(0)

]
=

λ > Smax, then the system is unstable under any scheduling
algorithm.

Proof: If λ > Smax, then the mean number packet arrivals
to the system in a given time-slot is more than the maximum
number of packets that can be served by the base-station or
the relays in a given time-slot (= nSmax). Hence the system
is unstable under any scheduling algorithm.

�

We now prove that if λ < Smax, the SSG MaxWeight
algorithm stabilizes the system. To handle coupled queues
across hops (and the routing induced by muliple hops and
paths), our proof is iterative across hops. We first look at the
base-station queues.

Lemma 5. Under Assumptions 2 and the SSG MaxWeight
algorithm, given any arrival process such that λ < Smax, the
markov chain (Q(t),A(t)) is positive recurrent for n large
enough.
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Proof: We say that the base-station queue are stable if the
SSG MaxWeight algorithm makes the base-station queues an
aperiodic Markov Chain with a single communicating class
which is positive recurrent.

Consider the Markov chain (Q(t),A(t)) and the lyapunov
function Q(t) where Q(t) =

∑n
i=1Qi(t).

Consider the finite set F = {Q : max
1≤i≤n

Qi ≤ nSmax}. In this
set,

E[Q(t+ 1)−Q(t)|Q(t),A(t)]

= E

[ n∑
i=1

Qi(t+ 1)−
n∑
i=1

Qi(t)

∣∣∣∣Q(t),A(t)

]
≤ nλ <∞,

by Assumption 2(a). Outside the set F ,

E[Q(t+ 1)−Q(t)|Q(t),A(t)]

= E

[ n∑
i=1

Qi(t+ 1)−
n∑
i=1

Qi(t)

∣∣∣∣Q(t),A(t)

]
= E

[ n∑
i=1

(
Qi(t) +Ai(t+ 1)−

n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

)+

−Q(t)

∣∣∣∣Q(t),A(t)

]
(a)
= E

[ n∑
i=1

Ai(t+ 1)

−
n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

∣∣∣∣Q(t),A(t)

]

= E

[ n∑
i=1

Ai(t+ 1)

∣∣∣∣Q(t),A(t)

]
−E
[ n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

∣∣∣∣Q(t),A(t)

]

= nλ− E
[ n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

∣∣∣∣Q(t),A(t)

]
.

Where (a) follows from the fact that outside the set F , since
max1≤i≤nQi > nSmax the base station always has packets
to send on all channels, therefore, no capacity is wasted. Let
3ε = Smax−λ

Smax
. Consider the event E that there exists a set J

of channels such that |J | = 2nε and XB,r
i,j < Smax for all

j ∈ J and 1 ≤ r ≤ R(n).

E

[ n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

∣∣∣∣Ec] ≥ (1− 2ε)Smaxn,

E

[ n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

∣∣∣∣E] ≥ 0.

Therefore,

E

[ n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

]

= E

[ n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

∣∣∣∣E]P (E)

+E

[ n∑
j=1

XB,r
i,j (t+ 1)Y B,ri,j (t+ 1)

∣∣∣∣Ec]P (Ec)

≥ (1− 2ε)SmaxnP (Ec).

By Assumption 2(b), P (Ec) = o

(
1

n6

)
and therefore, for

λ < Smax and n large enough,

E[Q(t+ 1)−Q(t)|Q(t),A(t)]

≤ nλ− (1− 2ε)SmaxnP (Ec)

≤ −1/2.

Therefore, by Foster’s theorem, the Markov Chain Q(t) is
positive recurrent.
Now consider the Markov Chain Q(t). We need to compute
P (Q(t) > 0) to prove that the relay queues are stable. To this
end, we study the Markov Chain Y (n)(t) defined in Lemma 4
for f(n) = o(1/n6) and χ(n) = k1n

2. Note that by Theorem
3 in [5], Q(t) ≤st Y (n)(t) where Q(t) ≤st Y (n)(t) ⇒
P (Q(t) > x) ≤ P (Y (n)(t) > x), ∀x. By Lemma 4 we have
that, for n large enough, for the Markov Chain Y (n)(t),

1− π(0) ≤ W

1−W
≤ 2W

= 4(k1n
2)2P (Ec).

Therefore, P (Q(t) > 0) ≤ 4k1
2n4P (Ec) = o

(
1

n2

)
.

�

We now look at the relay queues. We note that the departure
process of the base-station queues is the arrival process of
the relay queues. Since the arrival process of the base-station
queues is stationary and ergodic and the base-station queue
system is stable, the departure process is also stationary and
ergodic and therefore, the arrival process of the relay queues
is stationary and ergodic. Additionally, if we prove that the
departure process of the base-station queues is inside the
throughput region of the relay queues, then we have that the
SSG algorithm will stabilize the relay queues. Since the SSG
algorithm is throughput optimal for the system consisting of
just the relay queues and users by Theorem 5 in [4].

To prove that the departure process of the base-station
queues is inside the throughput region of the relay queues,
we prove that there exists an algorithm that can stabilize the
relay queues for the arrival process which is the departure
process of the base-station queues. We call this algorithm the
Arrival Prioritized-SSG (AP-SSG) algorithm.
Definition: The AP-SSG algorithm allocates channels to
queues in time-slot t according to the following procedure.
Input:
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1) The queue lengths Rri(t − 1), for 1 ≤ i ≤ n, 1 ≤ r ≤
R(n).

2) The arrival vector Ari (t), for for 1 ≤ i ≤ n, 1 ≤ r ≤
R(n).

3) The channel realizations Xr
ij(t), for 1 ≤ i ≤ n, 1 ≤ r ≤

R(n), 1 ≤ j ≤ n.
Steps:

1) Initialize k = 1 and Y rij(t) = 0, R(0)
ri (t) = Rri(t),

A
r(0)
i (t) = Ari (t) for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n),

1 ≤ j ≤ n.
2) In the kth round of allocation, search for the relay and

queue index

{r∗, i∗} ∈ arg max
1≤i≤n,1≤r≤R(n)

A
r(k−1)
i Xr

ij(t),

breaking ties in the favor of the smaller relay index, fol-
lowed by the smaller queue index. If Ar(k−1)i∗ Xr∗

i∗j(t) >
0, goto step 3. Else goto step 4.

3) Allocate channel k to serve Rr∗i∗ , define Y r
∗

i∗k(t) = 1

and update the value of Ar
∗(k)
i∗ to (A

r∗(k−1)
i∗ −Xr∗

i∗j(t))
+.

Goto Step 5.
4) Search for the relay and queue index

{r∗, i∗} ∈ arg max
1≤i≤n,1≤r≤R(n)

R
(k−1)
ri Xr

ij(t),

breaking ties in the favor of the smaller relay index,
followed by the smaller queue index. Allocate channel
k to serve Rr∗i∗ , define Y r

∗

i∗k(t) = 1 and update the
value of R(k)

r∗i∗ to (R
(k−1)
r∗i∗ −Xr∗

i∗j(t))
+.

5) If k = n, stop, else increment k by 1 and goto step 2.
We now define a series of events and compute their probabil-
ities.

Lemma 6. Under Assumption 2 and the SSG MaxWeight
algorithm, let E0 be the event that the max queue-length of
the base-station queues at the end of slot t is 0. Then,

P (Ec0) = o

(
1

n3

)
.

Proof: Follows by Lemma 5.

�

Lemma 7. Let 3ε = Smax − λ. Under Assumption 2 and the
SSG MaxWeight algorithm, let E1 be the event that the max
arrivals to the base-station queues at the beginning of slot t
is less than n(λ+ ε). Then,

P (Ec1) = o

(
1

n3

)
.

Proof: Follows by Assumption 2(a).

�

Lemma 8. Under Assumption 2(c) and the SSG MaxWeight
algorithm, let E2 be the event that the max arrivals to any
relay queue in a given time-slot is less than 2nSmax

R(n) . Then,

P (Ec2) = o

(
1

n3

)
.

Proof: Recall the tie-breaking policy of the SSG
MaxWeight rule: initialize the priority order of the relays
as {1, 2, ..., R(n)}. In each round of the allocation process,
the relay that is allocated that particular channel is then
removed from its current position in the priority order and
inserted at the last position to get the new priority order.
Consider a particular relay r which is allocated the jth

channel. It is then pushed to the end of the priority order. In
the subsequent rounds of channel allocation, another channel
will be allocated to it only if that channel cannot be used at
Smax to send packets to any of the other relays which are
higher than r in the priority list. Consider the next R(n)/2
rounds of channel allocation. In each of these rounds, there
are at least R(n)/2 relays that have higher priority than relay
r. Then, by Assumption 2(c) for δ = 0.5, we have that the
probability that relay r is allocated another channel in the
next R(n)/2 rounds of channel allocation is o(n−4). The
result then follows from the union bound over all channels.

�

Let E3 = E0 ∩ E1 ∩ E2. By Lemma 6, 7 and 8, P (Ec3) =
o( 1
n3 ). In the following lemma, we prove that the AP-SSG

algorithm stabilizes the relay queues. Then, using the fact that
the SSG algorithm is throughput optimal for one hop networks,
we prove that the SSG MaxWeight algorithm will also stabilize
the relay queues.

Lemma (3). Let Sri =
∑n
j=1X

r
ijY

r
ij be the service allocated

to queue i at relay r by the AP-SSG algorithm. Under
Assumption 2(c) and 2(d), let E4 be the event that

∩r,i{Ari ≤ Sri} ∩ {Sr∗i∗ ≥ Ar
∗

i∗ + Smax},

where {r∗, i∗} ∈ arg maxr,iRri(t − 1). The event E4 means
that all the arrivals to the relay queues at the beginning of
slot t are served in slot t and at least one of the longest relay
queues is served by at least 1 additional channel. Then,

P (Ec4) = o

(
1

n

)
.

Proof: We condition the proof on E3. Pick any δ in(
0,
qmin(1− λ− 2ε)

2Smax(2− qmin)

)
.

Let Fm be the set of relay queues which received m packets
at the beginning of slot t. Conditioned on E3, |Fm| = 0 for
m > 2nSmax

R(n) . Recall that 3ε = Smax − λ. Let m = 2nSmax

R(n) .

Case I: |Fm| = |F (0)
m | ≥ δR(n).

Define w0 = |F (0)
m | − δR(n). By Assumption 2(c), we have

that after the first w0 rounds of service, |F (w0)
m | ≤ δR(n)

w.p. ≥ 1− δR(n)o(1/n3).

Consider the next v0 =
2δR(n)

qmin
rounds of allocation,

By Assumption 2(d), we have that |F (v0+w0)
m | = 0 w.p.

≥ 1− o(1/n3).
Case II: |Fm| = |F (0)

m | ≤ δR(n).

Consider the first v0 =
2δR(n)

qmin
rounds of allocation, By
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Assumption 2(d), we have that |F (v0)
m | = 0 w.p. ≥ 1−o(1/n3).

The proof now follows by repeatedly applying the above
procedure for m = 2nSmax

R(n) − 1, 2nSmax

R(n) − 2, ...1. As a result,
all the new packets are served at the end of

n(λ+ ε)− 2nSmaxδ

(
2

qmin
− 1

)
< n(1− ε)

rounds of allocation with probability

≥ 1− P (Ec3) +
2n2Smax
R(n)

(
δR(n)o

(
1

n3

)
+ o

(
1

n3

))
.

In the remaining εn rounds of allocation, by Assumption
2(d), at least one channel serves the longest relay queue with
probability = o(1/n3). Therefore,

P (Ec4) = o(1/n).

�

Lemma 9. Under Assumptions 2 and the Iterative MaxWeight
algorithm, for any arrival process with λ < Smax, the relay
queues are stable for n large enough.

Proof: Let R(t + 1) = R(t) + A(t) − S(t) + U(t) where
A(t), S(t) and U(t) represent the arrivals, service and unused
service respectively. Consider the Lyapunov function V (t)
where V (R(t)) = ||R(t)||2. We drop the time index for
convenience.

E[V (t+ 1)− V (t)|R(t)]

= ||R(t+ 1)||2 − ||R(t)||2

= ||R+A− S + U ||2 − ||R||2

= ||R||2 + ||(A− S)||2 + 2R(A− S) + ||U ||2

+2〈U, (R+A− S)〉 − ||R||2

≤ n2S2
max + 2〈R, (A− S)〉.

We use the fact that U = −(R + A− S), therefore 〈U, (R +
A− S)〉 = −||U ||2 ≤ 0.
For the AP-SSG algorithm and the event E4 defined above,
P (Ec4) = o(1/n). By the definition of event E4, we have that

E[〈R,A− S〉|R(t), E4] ≤ −RmaxSmax.

Also,

E[〈R,A− S〉|R(t), Ec4] ≤ RmaxSmaxn.

Therefore,

E[V (t+ 1)− V (t)|R(t)]

≤ n2S2
max + 2〈R, (A− S)〉.

≤ n2S2
max − 2RmaxSmaxP (E4) + 2RmaxSmaxnP (Ec4)

≤ n2S2
max −RmaxSmaxP (E4),

for n large enough. For Rmax >
n2S2

max−1/2
P (E4)Smax

, the drift is
≤ − 1

2 . Therefore, by Foster’s theorem, the relay queues are
stabilized by the AP-SSG algorithm. Further, by Theorem 5
in [4], the SSG algorithm is throughput optimal for a system

consisting of just the relay queues. Since there exists an
algorithm (AP-SSG) which can stabilize the relay queues, the
SSG algorithm will also stabilize the relay queues.

�

Theorem (2). Under Assumption 2, for arrival processes with
λ < Smax, the SSG MaxWeight algorithm stabilizes the FD-
w/oDL system, i.e., the markov chain {Q(t),R(t),A(t))} is
positive recurrent for n > n0 where n0 is a function of λ.

Proof: The proof follows from Lemma 5 and Lemma 9.

�

B. HD-wDL

This proof proceeds in the following three steps. Please refer
to [14] for the complete proof.

1) We first prove that under Assumption 3, there are no
arrivals to the relays at the beginning of a slot with
probability = o(1/n2).

2) We then prove that with high probability, the maximum
queue-length in the system does not increase in any
time-slot.

3) Next, we prove that there exists a constant k0 such that
in k0 consecutive time-slots, the maximum queue-length
in the system decreases by 1 with probability ≥ 1/2. We
use the proof technique used in Lemma 8 in [4] to get
this result.

4) Finally, We prove the stability of the system by con-
structing a Markov Chain of the maximum queue-length
of the system. We then use Theorems 2 and 3 from [5]
and Lemma 4 to prove stability of this Markov Chain,
thus proving the stability of the HD-wDL system.

APPENDIX B
PERFORMANCE ANALYSIS

In this section, we analyze the rate function for the small
buffer overflow probability of the BackPressure algorithm, the
SSG MaxWeight algorithm, the ILQF MaxWeight algorithm
and the ILQF BackPressure algorithm for the FD-W/oDL
model.

A. BackPressure

We first show that the BackPressure algorithm has a zero
rate for the small buffer overflow event. The proof follows on
the same lines as the proof of Theorem 3 in [4]. In [4], it
was proved that the maximum queue-length increases with at
least a constant probability in each slot. We prove the same
result for the backpressure value of the base-station queues and
use the backpressure values as a lower bound for the queue-
lengths to prove the desired result. Please refer to [14] for the
complete proof.

B. SSG MaxWeight

The proofs for performance of the ILQF BackPressure
algorithm, the ILQF MaxWeight algorithm and the SSG
MaxWeight algorithm for the FD-w/oDL system proposed in
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Section IV work in a sequential manner. We divide the set of
queues into two sets: the base-station queues and the relay
queues. Even though the two sets of queues are coupled,
surprisingly, they can be analyzed in a sequential manner to
provide performance guarantees on all the queue-lengths in
the system.

For the ILQF BackPressure algorithm, we analyze the relay
queues first and prove that they are all empty with probability
≈ e−nc for some c > 0. We observe that at the base-station,
the ILQF backpressure algorithm tries to serve queues with
the highest backpressure values which are not always queues
with maximum queue lengths. However, if the relay queues
are all empty, the two sets are the same. We use this fact to
analyze the maximum base-station queue length.

For the ILQF MaxWeight algorithm and the SSG
MaxWeight algorithm, we analyze the base-station queues first
and use that result to analyze the relay queues.

The analysis for each set of queues is carried out in the
following steps:

1) We first show that for the set of queues that we are
analyzing (either the relay queues or the base-station
queues), the maximum queue length increases in a slot
with a very small probability (≤ e−nc).

2) Using Step 1 and Lemma 8 in [4], we show that there
exists a constant k0 such that in k0 consecutive time-
slots, with probability at least 1/2, the maximum queue
length decreases by 1.

3) To compute the stationary distribution of the maximum
value of queues in this set, we construct a Markov Chain
Y (n)(t) which has the following properties:

P (Y (n)(t+ 1) = (Y (n)(t)− 1)+) = 1/2

P (Y (n)(t+ 1) = Y (n)(t) + χ(n)) = e−nc

P (Y (n)(t+ 1) = Y (n)(t)) = 1/2− e−nc.

For the relay queues, χ(n) = k0n. We prove that for
f(n) = e−nc for some c > 0, we have that,

lim inf
n→∞

−1

n
logP

(
Y (n)(0) > b

)
≥ (b+ 1)c.

For the base-station queues, χ(n) = k0. Using Theorem
4 in [5], we have that,

lim inf
n→∞

−1

n
logP

(
Y (n)(0) > b

)
≥ (b+ 1)c.

4) We use Theorem 3 in [5] to prove that the maximum
queue length in the set of interest is stochastically
dominated by the process Y (n)(t) for the corresponding
value of χ(n). We then use the stationary distribution of
Y (n)(t) to get the desired result.

For the SSG MaxWeight algorithm, we first focus on the
base-station queues and find the probability that in the steady
state, the maximum queue-length is greater than b at the
beginning of a slot. Conditioned on the fact that the longest
base-station queue has b packets, at the end of time-slot t−1,
not more than b + 1 packet can arrive to any particular relay
queue at the beginning of slot t + 1. Using this, we find the
probability that in the steady state, all relay queues have less

than b packets at the end of a time-slot for all integers b ≥ 0.

Basestation Queues

Lemma 10. Fix a value of ε ∈ (0, 1− p). Define

ξB(t) =: max
1≤i≤n

Qi(t).

Then,

P (ξB(t) > ξB(t− 1)) ≤ e−cBn
2+k(ε)n + e−nH(p|p+ε).

Proof: Consider the event E that
n∑
i=1

Ai(t) ≤ (p+ ε)n.

Then,

P (Ec) ≤ e−nH(p|p+ε).

We condition the rest of the proof on the event E.
Let F denote the set of queues whose length is ξB(t− 1) + 1
after incorporating arrivals for that slot. Let F (i) denote the
updated set after i rounds of channel allocation. If ξB(t) >
ξB(t− 1), then there exist at least n(1− p− ε) channels that
were not used.

P (n(1− p− ε) unused channels) = (1− q2)R̃n
2(1−p−ε)

= e−cBn
2

,

where cB = R̃(1− p− ε) log 1
1−q2 . Therefore,

P (ξB(t) > ξB(t− 1)) ≤ e−cBn
2+k(ε)n + e−nH(p|p+ε).

�

We now prove there exists a constant k0 such that the
maximum relay queue-length decreases by 1 in k0 consecutive
time-slots with probability ≥ 1/2.

Lemma 11. We can find k0 such that

P (ξR(t+ k0) = ξR(t)− 1) ≥ 1

2
.

Proof: The proof follows from Lemma 8 in [4] and Lemma
10 as stated above.

�

The following theorem uses the same proof technique as
Theorem 5 in [5] to compute a bound on the rate function
for the small buffer overflow event for the base-station queues
using Lemma 10 and 11.

Theorem (5a). Under Assumption 4, for the SSG MaxWeight
algorithm, for any ε ∈ (0, 1− p),

lim inf
n→∞

−1

n
logP

(
max
1≤i≤n

Qi(0) > b

)
≥ c(b+ 1).

Where,

c = H(p|p+ ε) > 0.

Proof: Using Lemma 10 and Lemma 11 as stated above and
by Theorem 5 in [5].
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�

Relay Queues

In the following theorem we use the same proof technique as
was used to compute the rate function of the SSG algorithm
in [5] with the additional step that we use the fact that the
base-station queues have less than b at the end of every
time-slot with an exponentially large probability. Conditioned
on this event, the maximum number of packets that arrive to
any relay queue in a time-slot is b + 1. This is an important
step in this proof because potentially nSmax packets can
arrive to a particular relay queue in a given time-slot and
it is not possible to serve all of them in that time-slot and
therefore the maximum queue-length in the relay queues can
increase in a time-slot.

Theorem (5b). Under Assumption 4, for the SSG MaxWeight
algorithm, for any ε ∈ (0, 1− p) and

δ ∈
(

0,
q3(1− p− ε)

2− q3

)
,

lim inf
n→∞

−1

n
logP

(
max

1≤i≤n,1≤j≤k
Rik(0) > b

)
= (b+ 1)cR,

where,

cR ≥ min

(
H
(
p|p+ ε

)
, δ log

1

1− q3
,

2δH
(
q3| q32

)
q3

)
.

Proof: Consider the event E5 that ξB(t − 1) = b. This
implies that all the base-station queues had less than b packets
at the end of time-slot t−1. Then from Theorem 5a, we have
that,

P (Ec5) ≤ (b+ 1)s(n)e−nH(p|p+ε),

where s(n) is a sub-exponential function of n. We condition
the rest of the proof on the event E5.
Conditioned on E5, the maximum possible arrivals to any relay
queue at the beginning of slot t is b+ 1. Therefore, using the
same steps as in Theorem 5 in [5], we have that, for any
ε ∈ (0, 1− p) and

δ ∈
(

0,
q3(1− p)

2− q3

)
,

lim inf
n→∞

−1

n
logP

(
max

1≤i≤n,1≤j≤k
Rik(0) > b

)
= (b+ 1)cR,

where,

cR ≥ min

(
H
(
p|p+ ε

)
, δ log

1

1− q3
,

2δH
(
q3| q32

)
q3

)
.

�

C. ILQF BackPressure

For the ILQF BackPressure algorithm, we first focus on the
relay queues and find the probability that in the steady state,
they are all empty at the beginning of a slot. We observe that
at the base-station, the iterative backpressure algorithm tries to
serve queues with the highest backpressure values which are
not always queues with maximum queue-lengths. However,

conditioned on the fact that the relay queues are all empty, the
two sets are the same. This allows us to bound the probability
that the maximum base-station queue-length at the end of a
time-slot is > b. Please refer to [14] for the complete proof.

D. ILQF MaxWeight

Similar to the analysis of the SSG MaxWeight algorithm, we
first focus on the base-station queues and find the probability
that in the steady state, they are have less than b packets at
the beginning of a slot. Conditioned on the fact that the base-
station queues have less than b packets at the end of time-slot
t− 1, not more than b+ 1 packet can arrive to any particular
relay queue at the beginning of slot t+ 1. Using this, we find
the probability that in the steady state, all relay queues are
empty at the end of a time-slot. Please refer to [14] for the
details.

APPENDIX C
k-HOP STABILITY

We consider a k−hop full-duplex feed-forward network
with 1 base-station, k − 1 layers of relays and n users. The
relays in the first layer of relays receive packets from the base-
station and the relays in the kth layer forward received packets
to the users. A relay in the lth layer (for 2 ≤ l ≤ k−1) receives
packets from the (l−1)th layer of relays and forwards them to
the next layer. See Figure 5 for an example of such a network.

Basestation

Layer 2 

Relays

UsersLayer 1 

Relays

Fig. 5. An illustrative example of a 3-hop feed-forward relay network
with 2 layers of relays and 3 users.

We use the following notation for this proof.
• Ai(t) = the number of arrivals for user i at the base-

station at the beginning of time-slot t.
• Qi(t) = The queue length of user i at the BS (measured

at the end of the time-slot).
• R(l),ri(t) = The queue length of user i at relay r at layer
l (measured at the end of the time-slot).

• R(l)(t) = {R(l)ri(t) : ∀r; 1 ≤ i ≤ n} : The vector of
queue lengths at the relays at layer l.

The k−hop version of the SSG MaxWeight algorithm is as
follows:

In each time-slot, for each hop, sequentially allocate chan-
nels to queues in the following manner: first allocate channel
S1 to the maximum weight queue, i.e., the queue with largest
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queue-length channel-rate product. Then update the queue
length based on the number of packets that are drained due to
this allocation, and proceeds sequentially to the next channel
(and so on).

For simplicity, we provide a proof of the stability of SSG
MaxWeight under the following assumptions.
Assumption 5: (k-hop Stability)
• The base-station can forward packets to all relays in

the first layer of relays. Each relay in layer l for every
l ∈ {1, .., k − 2} can forward packets to all relays in the
next layer (layer l + 1). Each relay in layer k − 1 can
communicate with all the users.

• Bernoulli Arrivals and ON-OFF Channels
– Ai(t) = Bernoulli(p) i.i.d. across users and time-

slots.
– All channels are Bernoulli(q) i.i.d. across channels,

time-slots, relays and users.
• Linearly Scaling Relays: We assume that the lth layer of

relays has υln relays for some constant υl > 0.

Theorem 8. Under Assumption 5, the k−hop system is
stabilized by the SSG MaxWeight algorithm.

Proof: The stability of the base-station queues follows from
Lemma 5. In addition, by applying Theorem 4 for χ(n) = 1
and f(n) = e−nc1 for some c1 > 0, we have that

P (max
i
Qi(t) > 0) ≤ 4e−nc1 ,

for all t.
Let F1 be the event that maxiQi(t − 1) = 0. Therefore,

we have that, P (F c1 ) ≤ 4e−nc1 . The rest of this proof is
conditioned on F1. Consider the queues at the relays of the
first layer. In each round of channel allocation under the SSG
MaxWeight algorithm, the probability that the channel cannot
serve the currently longest queue (updated to reflect previous
rounds of allocations) is (1−q)υ2n. Therefore with probability
> n(1 − q)υ2n, in a given time-slot, each channel serves the
currently longest queue (updated to reflect previous rounds
of allocations). Since the total arrivals to the relay queues at
the first hop in a time-slot is less than ≤ n, with probability
≥ 1−4e−nc1−n(1−q)υ2n, the maximum queue-length at the
first layer of relays does not increase in a time-slot. Therefore,
we have that,

P (max
r,i

R(1)ri(t+ 1) = max
r,i

R(1)ri(t) + 1) ≤ 4e−nc1 .

Using this and Lemma 8 in [5], we can find k0 such that,

P (max
r,i

R(1)ri(t+ 1) = max
r,i

R(1)ri(t)− 1) ≥ 1

2
.

The stability of the relay queues at the first layer then
follows using the Lyapunov function Lyap(R(1)(t)) =
maxr,iR(1)ri(t).

In addition, using Theorem 4, we have that,

P (max
r,i

R(1)ri(t) > 0) ≤ 16k0e
−nc1 + 4nk0(1− q)υ2n.

For the queues at the lth layer for 2 ≤ l ≤ k− 2, the proof
of stability follows on the same lines as the proof of stability

for relay queues at layer 1. For layer l, the proof follows by
conditioning on the event that the queues at the base-station
and relay layers 1 to l − 1 are empty in the previous l time-
slots.

The stability of the relay queues at layer l follows from
Lemma 9, thus completing the proof of Theorem 8.

�


